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Céline Robardet1

1INSA Lyon, LIRIS UMR 5205, F-69621 Villeurbanne, France.
2EPITA Lyon, EPITA Research Laboratory (LRE), F-94276 Le

Kremlin-Bicêtre, France.

*Corresponding author(s). E-mail(s): ataollah.kamal@insa-lyon.fr;
Contributing authors: alessio.ragno@insa-lyon.fr;

marc.plantevit@epita.fr ; celine.robardet@insa-lyon.fr;

Abstract

We address the challenge of identifying the most influential graph structures in
the decisions of Graph Neural Networks (GNNs). To tackle this, we propose a
novel approach for evaluating the importance of subgraphs in GNN decisions,
with a particular emphasis on calculating Shapley values. Unlike existing meth-
ods that impose rigid, predefined constraints on subgraph shapes (e.g., egographs
or individual nodes), our approach remains flexible, accommodating arbitrary
subgraph structures. Our method begins by analyzing activation patterns within
the representation spaces generated by the GNN, followed by computing Shapley
values for these patterns to quantify their contributions to model decisions. Using
these Shapley values, we produce both instance-level and model-level explana-
tions, offering deeper insights into the reasoning processes of GNNs. Extensive
empirical studies across diverse datasets and comparisons with state-of-the-art
methods highlight the effectiveness of our approach in delivering interpretable
and robust explanations.
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1 Introduction

Explainable Artificial Intelligence (XAI) for graph neural network (GNN) models is an
emerging field dedicated to demystifying the decision-making processes of AI models
applied to graph-structured data. As AI systems increasingly use graphs to model
complex relationships and interactions, the demand for transparent and interpretable
explanations of their behavior has grown significantly. By revealing the reasoning
behind model predictions and identifying key graph features driving these outcomes,
graph XAI can foster trust, improve accountability, and unlock the full potential of AI
in graph-centric domains such as social networks (Fan et al., 2019), biological networks
(Z. Wu et al., 2021), and recommender systems (S. Wu et al., 2022).

Most existing XAI methods rely on model-agnostic procedures, where explanations
are generated based on changes in the model output after input perturbations (Pereira
et al., 2023; Pope et al., 2019; Shan et al., 2021; Yuan et al., 2020; S. Zhang et al., 2022).
However, these approaches have two main drawbacks. First, they heavily depend on
the inputs considered to derive explanations, often leading to input-dependent expla-
nations rather than model-dependent ones (Ahmed et al., 2024). Second, most of
these techniques focus on instance-level explanations. Although instance-level expla-
nations are valuable for analyzing individual cases, due to the potential variety of the
instance explanations and noisy inputs, the general behavior of the model might not be
discovered. In such cases, model-level explanations are essential (Azzolin et al., 2023).

To address these challenges, Veyrin-Forrer et al. (2024) introduced INSIDE, a
method that explains GNN predictions by extracting activation rules from the latent
spaces of the GNN. This approach identifies relevant subgraphs by analyzing the
hidden neuron activation matrix, providing both instance-level and model-level expla-
nations. Despite its innovative design, INSIDE has two significant limitations. First,
it associates a single activation rule with each instance by selecting the one that
maximizes fidelity, thereby limiting its ability to account for the collaborative contri-
butions of multiple rules learned by the model. Second, it assumes that an activation
rule is supported exclusively by a set of homogeneous graphs, which constrains its
generalizability and applicability to more diverse graph datasets.

We aim to further leverage cooperative game theory techniques, which have
recently gained prominence for effectively capturing collaborative effects (S. Zhang et
al., 2022). Among these, the calculation of Shapley values stands out as a prominent
method for generating explanations, thanks to its axiomatic guarantees that ensure
fairness and consistency. In this work, we compute the Shapley values of activation
rules for each graph, quantifying their contribution to the model’s decision. By incor-
porating the collaborative effects of these rules, our approach provides more accurate
instance-level explanations than those generated by INSIDE. Moreover, we use Shap-
ley values to identify homogeneous subgroups within the support of activation rules,
enhancing the interpretability of model decisions. While the computation of Shapley
values is typically exponential in complexity, approximation techniques such as Ker-
nelShap (Lundberg & Lee, 2017) offer practical alternatives. However, these methods
remain sensitive to the number of players (i.e., features) they aim to assess. This
is where our approach holds a distinct advantage. Unlike other Shapley-value-based
explainers (Duval & Malliaros, 2021; Perotti et al., 2022), which impose restrictions on
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the form of players (e.g., individual nodes, edges, or frequent subgraphs), our method
offers greater flexibility by operating on latent representations. This approach enables
the inclusion of more sophisticated players (i.e., subgraphs of arbitrary size) while
maintaining scalability and robustness.

Fig. 1: Overview of INSIDE-SHAP. Step 1: Extract activation rules from the GNN’s
latent space. Step 2: Train a surrogate model using rule activations to approximate
the black-box model. Step 3: Compute Shapley values to quantify each rule’s individ-
ual and collaborative contributions. Step 4: Construct instance-level explanations by
propagating rule contributions to activated nodes. Step 5: Derive global explanations
by segmenting the rule’s support based on Shapley values and selecting representative
subgraphs via optimal transport.

In this paper, we introduce INSIDE-SHAP, an extension of INSIDE that incorpo-
rates Shapley values to quantify the importance of activation rules and capture their
collaborative effects on model decisions. Our contributions are fourfold: (i) Shapley
values enable precise quantification of each rule’s individual importance in graph clas-
sification; (ii) they facilitate the identification of collaborative interactions between
rules within a single instance; (iii) they allow differentiation of the contexts in which
rules are activated; and (iv) they enable the association of representative graphs
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with a rule based on its activation context. Unlike prior game-theoretic-based meth-
ods such as SubgraphX (Yuan et al., 2021a), GStarX (S. Zhang et al., 2022), and
EdgeShaper (Mastropietro et al., 2022), which define players as input-level elements
like nodes or edges and suffer from high computational cost as graph size increases,
INSIDE-SHAP uses activation rules derived from the GNN’s latent space as players.
Since the number of rules is independent of input size, our method achieves more sta-
ble and scalable Shapley value approximations across diverse datasets. Furthermore,
unlike GraphSVX (Duval & Malliaros, 2021), which focuses solely on instance-level
explanations, INSIDE-SHAP provides both instance-level and model-level insights,
enabling a more comprehensive understanding of GNN behavior.

The methodology of INSIDE-SHAP is illustrated in Figure 1:
• Step 1 – Extraction of activation rules: Similar to INSIDE, our method
starts by identifying activation rules as the foundation for generating explana-
tions.

• Step 2 – Quantifying rule collaboration: To evaluate the cooperative impact
of rules on decisions, a surrogate model is trained to mimic the GNN’s behavior
using the activation status of the rules. This enables the calculation of Shapley
values over the rules.

• Step 3 – Shapley value computation and context differentiation: Using
KernelShap (Lundberg & Lee, 2017), Shapley values are computed for each rule.
To capture the diverse contexts in which a rule may be activated, potentially
contributing to different decisions of the GNN model, INSIDE-SHAP identifies
subgroups within the rule’s graph support based on their Shapley values.

• Step 4 – Instance-level explanations: INSIDE-SHAP leverages the col-
laborative effects of rules, quantified via Shapley values, to provide detailed
instance-level explanations.

• Step 5 – Global-model explanations: Finally, INSIDE-SHAP generates
representative graphs for the discovered rules, enabling a human-interpretable
understanding of the model’s learned representations. Specifically, we tackle two
key challenges: selecting the most relevant rules to reduce interpretative complex-
ity arising from an overabundance of rules, and effectively managing rules with
heterogeneous support.

The remainder of this article is structured as follows: Section 2 reviews recent
advances in graph explanation methods; Section ?? outlines the foundational con-
cepts necessary to contextualize our work; Section 3 introduces our proposed method
INSIDE-SHAP, focusing on the computation and application of Shapley values to
explore the latent space of GNNs; Section 4 presents extensive experiments that vali-
date the effectiveness of our approach; Finally, Section 4.4.2 summarizes the findings
and outlines potential directions for future research.

2 Related Works

Explainable AI (XAI) approaches can be broadly categorized into factual and coun-
terfactual explanations. Factual explanations identify the most important parts of the
input contributing to the model’s decision, such as subgraphs or feature subsets. In
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contrast, counterfactual explanations highlight the minimal changes needed to alter the
model’s decision. Both perspectives offer complementary insights into model behavior.

Our focus is on factual explanations, which can be further divided into self-
explainable models and post-hoc methods. Self-explainable models (Proietti et al.,
2024; Ragno et al., 2022; T. Wu et al., 2020; Y.-X. Wu et al., 2022) provide
built-in interpretability but often come at the cost of reduced accuracy (Kakkad et
al., 2023). Post-hoc methods, which generate explanations for pre-trained models,
can be classified into five categories: perturbation-based, surrogate, gradient-based,
decomposition-based, and generation-based methods.

Perturbation-based methods modify the input and measure the impact on predic-
tions. For instance GStarX (S. Zhang et al., 2022) perturbs the graph structure and
evaluates node importance using Hamiache-Navarro (HN) values. Surrogate methods
approximate complex models with simpler ones for interpretability. DnX (Pereira et
al., 2023) trains linear GNNs to mimic black-box models and derives explanations
via convex optimization. Gradient-based methods compute gradients of the output
with respect to the input to assess feature importance. Examples include contrastive
gradient-based saliency maps (Pope et al., 2019) and class activation mapping (CAM)
for GNNs (Jung & Oh, 2021). INSIDE (Veyrin-Forrer et al., 2024) follows a similar
approach by explaining GNNs through the identification of activation rules derived
from the model’s latent spaces, thereby revealing its internal decision-making process.
Decomposition-based methods aim to break down model decisions into interpretable
components by attributing different parts of the model’s output to specific features or
aspects of the input. In the context of GNNs, these methods decompose graph-level or
node-level decisions into interpretable substructures, making it easier to understand
the contribution of various elements to the final prediction. GNN-LRP (Schnake et al.,
2022) uses layer-wise relevance propagation to attribute predictions to graph struc-
tures. Generation-based methods employ generative models for explanation. XGNN
(Yuan et al., 2020) generates global explanations via reinforcement learning, while
RG-Explainer (Shan et al., 2021) produces instance-level explanations.

A distinct line of work leverages cooperative game theory for explainability, pri-
marily through Shapley values. SubgraphX (Yuan et al., 2021a) finds the most
contributing subgraph leveraging the Shapley values in a Monte Carlo Tree Search
algorithm. GraphShap (Perotti et al., 2022) assigns Shapley values to predefined
motifs. GraphSVX (Duval & Malliaros, 2021) computes Shapley values for nodes
and features. GStarX (S. Zhang et al., 2022) extends this approach using HN values
for node-level explanations. EdgeShaper (Mastropietro et al., 2022) and GNNShap
(Akkas & Azad, 2024) focus on Shapley values for edges, while FlowX (Gui et al.,
2023) evaluates them for message flows. GraphTrail (Armgaan et al., 2024) is another
noteworthy approach that provides model-level explanations for GNNs using Shapley
values. This method derives logical formulas for the k-best concepts associated with
each class, using computation trees as the underlying structures. While these formulas
offer detailed insights, their reliance on computation trees poses interpretability chal-
lenges, particularly for non-expert users. The complexity of these logical expressions
may further limit the accessibility of the explanations.
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Among the afformentioned explainers, GNNShap provides only explanations for
node classification tasks and GraphTrail does not offer instance-level explanations.
Therefore, in this work, we concentrate on the limitations associated with explainers
such as SubgraphX, GraphSVX, GStarX, and EdgeShaper which provide instance-level
explanations for graph classification tasks.

3 Explaining GNNs using activation rules and
Shapley values

In this section, we introduce our approach to overcome the limitations of existing meth-
ods based on INSIDE. As outlined in Section ??, INSIDE (Veyrin-Forrer et al., 2024)
provides explanations at both the model and instance levels. However, the method
presents two key drawbacks: at the instance level, it assumes that a single rule is
responsible for the decision, while in reality, multiple rules may combine to influence
the prediction; at the model level, it assumes that each rule can be represented by
a single graph. This assumption becomes problematic when a rule has heterogeneous
support, as one graph may not adequately represent the entire support.

To address these issues, we propose the use of Shapley values to quantify the contri-
bution of each rule to the model’s predictions. Shapley values allow us to allocate the
prediction contribution to each rule based on the nodes in its support, enabling a more
granular understanding of their impact. Additionally, by identifying homogeneous
clusters within the rule supports, we can construct more accurate and representative
graphs for each cluster. However, this process is not trivial, as rules often involve
nested activations, which complicates the direct calculation of Shapley values on the
original model. To overcome this challenge, we employ a surrogate model to approx-
imate the class distributions from the rule activations. This allows us to calculate
the Shapley values directly on the surrogate model, avoiding the complexities of the
original model’s direct interpretation.

In the following sections, we detail our approach, covering the Shapley value
computation, the model-level explanations, and the instance-level masking procedure.

3.1 Steps 2 and 3: Computing Shapley values of activation rules

We aim to define a cooperative game where the players are the rules, represented
as indivisible atomic units. Although rules consist of activated components that may
overlap with those of other rules, it is critical to treat each rule as a single, cohesive
entity that cannot be decomposed further. The cooperative game is defined as a pair
(R, λ), where R is the set of rules and λ is the characteristic function that approximates
the model decision f (the GNN) based on the rules activated by the nodes in the
graph:

λ : 2R → R (1)

λ ({r ∈ S | ∃v ∈ VG, active(v, r)}) ≈ f(G) (2)

where S ⊆ R represents a subset of the rules.
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To construct λ, we introduce a vector πv(S) of size |R| for each node v, where the
j-th component indicates whether the corresponding rule rj ∈ R is activated by v and
belongs to S. Formally:

πv(S)[j] :=

{
1 if active(v, rj) and rj ∈ S,
0 otherwise.

(3)

Using these vectors, we define a mapping mG that associates a subset S of rules with
a graph whose nodes are labeled by the activation vectors πv(S):

mG(S) = (VG, EG, π(S)), (4)

where VG and EG represent the node and edge sets of the original graph G, and π(S)
is the collection of activation vectors for the rules in S associated with the graph’s
nodes.

Next, we define a function γ to approximate the model decision f(G) using the
graph representation mG(R). It is a surrogate model of the GNN:

f(G) ≈ γ(mG(R)). (5)

By structuring the cooperative game in this manner, we can compute the Shapley
values for the rules that contribute to the predictions made by f . These Shapley
values are obtained by calculating them directly through the characteristic function
λ, defined as:

λG := γ ◦mG. (6)

Given the approximation capabilities of neural networks, multi-layer perceptrons
(MLPs), and GNNs, both are viable choices for the surrogate model γ. However,
it is important to note that when using MLPs or other tabular-based models, rule
activations must be aggregated over the graph. In this regard, we observe that GNNs
offer advantages over MLPs in our experiments. Since our goal is to minimize the
discrepancy between the distribution learned by the surrogate model γ and the target
distribution derived from the original GNN f , we employ the Kullback-Leibler (KL)
divergence as the loss function for our task. More formally, we aim to minimize the
following loss function during the training of γ:

Lγ =
1

|D|
∑
c∈C

∑
G∈Dc

fc(G) log
fc(G)

γc(mG(R))
. (7)

In our implementation, we employ the KernelShap method (Lundberg & Lee, 2017)
to efficiently approximate Shapley values. KernelShap is a powerful approximation
technique for quantifying the contribution of each feature to a model’s output, making
it especially suited for complex models and large feature sets. The method operates
by sampling subsets of input features, referred to as coalitions, and calculating the
corresponding model predictions. For each coalition, the influence of a feature is deter-
mined by assessing the change in model output when the feature is included versus
excluded. These coalitions are then used in a weighted linear regression, where the
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weights are computed using a kernel function specifically designed to satisfy the fun-
damental axioms of Shapley values. The kernel function assigns higher importance to
coalitions whose sizes are closer to the midpoint of the total feature set. This weight-
ing ensures that the contributions of features are evaluated fairly across all possible
coalitions, maintaining consistency with the Shapley axioms of efficiency, symmetry,
null player, and additivity. By leveraging these properties, KernelShap provides a com-
putationally efficient and principled way to approximate Shapley values for feature
contributions in machine learning models.

3.2 Step 4: Instance-level explanation based on Shapley values

In previous sections, we discussed how INSIDE generates instance-level explanations
by identifying a single responsible rule for a given prediction. While effective in some
cases, this approach has significant limitations, as multiple rules can be present in a
single graph, each contributing differently to the decision. To overcome this limita-
tion, we propose a novel method that incorporates rule collaboration for instance-level
explanations, leveraging Shapley values to quantify the contributions of all activated
rules.

Specifically, given a graph G, we compute the Shapley values for all rules activated
within the graph. Using these values, we generate explanation masks by averaging the
contributions across the nodes and edges. The final importance of a node v in G is
determined by the following formula:

soft maskG[v] =
∑
r∈R

1active(v,r).
ϕr(λG)

|SuppV (r,G)|
(8)

where ϕr(λG) is the Shapley value of the rule r associated to the decision of the model
on the graph G, and |SuppV (r,G)| is the number of nodes in the support of r within
G.

It is worth noting that, unlike traditional feature attribution methods, our
approach generates a soft mask on the nodes without requiring computational
resources that scale exponentially with input size. This ensures scalability and
efficiency while maintaining interpretability.

3.3 Step 5: Graph representation based on rules and their
Shapley values

We now describe the process of obtaining representative graphs for the discovered
rules, a crucial step in making the model’s learned patterns more interpretable. This
involves addressing two key challenges: selecting the most relevant rules to prevent
the difficulty of interpreting the XAI result due to rule abundance, and effectively
handling rules with heterogeneous support.

3.3.1 Rule selection

To ensure global explanations remain interpretable, it is crucial to select the most
significant rules, as the total number of rules can exceed an end-user’s capacity for
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interpretation. To identify these key rules, we adapt the formula from Eq. 8, originally
designed for instance-level explanations, to quantify the importance of each rule. A
rule is deemed significant if it plays a decisive role in explaining the graphs within its
support.

Consider a graph G within the support of a rule r, where ϕr(λG) represents the
contribution of r to G’s predicted class. If r is activated across a large number of nodes,
its contrastive effect on node selection diminishes compared to situations where it is
activated in fewer nodes. Furthermore, when ϕr(λG) is significantly higher than the
contribution values of other activated rules in G, the nodes influenced by r are more
likely to rank as top contributors in the explanation.

Therefore, the importance of a rule in explaining a graph within its support is
determined by the following key factors:
1. Relative contribution value: The rule’s contribution ϕr(λG) is compared to the

contributions of other activated rules in the graph. A higher relative value
indicates that the rule has a more substantial influence on the predicted class.

2. Number of nodes activated: A rule that activates fewer nodes can exert a stronger
contrastive effect, making it more significant in the explanation.

To quantify the importance of rule r in graph G, we use the formula:

Imp(r,G) =
ϕr(λG)

|SuppV (r,G)| ×
∑

r′∈R,G∈SuppD(r′) abs(ϕr′(λG))
(9)

with abs(x) the absolute value of x.
For a rule to be considered important for model-level explanations, it must influ-

ence the explanations of multiple graphs within the dataset, rather than having a
significant effect on just a single graph. Moreover, a rule mined for a specific class
should effectively distinguish graphs belonging to that class from those of other classes.
Thus, the evaluation of a rule’s importance must account for its discriminative power
across the entire dataset. Additionally, to ensure fairness and accuracy, the evaluation
process must address potential dataset imbalances, which could otherwise skew the
results. Taking these factors into consideration, we first define the rule’s effectiveness
for a specific class and subsequently generalize this to derive its global effectiveness
across the dataset.

Effectc(r,Dc) =
∑

G∈SuppDc

Imp(r,G). (10)

Assuming the target class of r is c, its effectiveness over the dataset D is defined as
follows:

Effect(r,D) = wc × Effectc(r,Dc)−
∑
c′∈C

wc′ × Effectc′(r,Dc′). (11)

Here, wc represents the same weight defined in Eq. ??. In this formula, Imp ensures
the within-graph effectiveness of a rule, capturing its contribution within individual
graphs. Meanwhile, Effect quantifies the rule’s contribution to the explanations of
graphs belonging to a specific class. Finally, Effect measures the rule’s overall discrim-
inability across classes, and by incorporating the defined weights for each class, the
effect of dataset imbalance is mitigated.

9



3.3.2 Rule representation

A limitation of rule-based methods is that when a rule spans multiple classes, a single
representation may not adequately capture its entire support. This limitation arises
from the inherent heterogeneity within the rule’s support, even though the rule remains
vital for the model’s decision-making. To tackle this issue, Shapley values computed
for a rule within its support are used to identify subgroups within the support.

Segmentation of the Shapley values

To segment the Shapley values associated with a rule r, we first eliminate outliers
using the Local Outlier Factor (LOF) method (Breunig et al., 2000). This step ensures
that the segmentation process focuses only on the meaningful data points, improving
robustness and accuracy. To analyze a given rule r, we focus on the graphs that support
it and their associated Shapley values. Let Φr represent the ordered list of Shapley
values corresponding to r:

Φr = [ϕr(λG1), · · · , ϕr(λGn)] (12)

with Gi ∈ SuppD(r) and ∀i < j =⇒ ϕr(λGi
) ≤ ϕr(λGj

).
Sorting these values allows for a systematic examination of the differences between

consecutive Shapley values. To achieve this, we compute the differences as follows:

Distr = [di | di = ϕr(λGi+1
)− ϕr(λGi

),∀i < |Φr| − 1]. (13)

Here, Distr represents the differences, where each di quantifies the change between
consecutive Shapley values in the ordered list Φr. This provides insights into the
relative importance of the rule r across the graphs that support it.

A value ϕr(λGi) is identified as a cut point if its corresponding distance di ∈ Distr
exceeds the 99.9th quantile of Distr. These cut points represent significant gaps in the
sorted Shapley values, effectively dividing them into meaningful segments: we assign
each graph Gi to a segment based on the identified cut points. A graph belongs to the
first segment if its Shapley value is less than the first cut point. For j > 1, a graph
belongs to segment j if its Shapley value lies between the (j − 1)-th and j-th cut
points. This method systematically segments the Shapley values, capturing meaningful
changes in their distribution and avoiding arbitrary thresholds.

Representative graph computing

The process of computing a representative graph begins by isolating the most relevant
parts of the graphs within each segment. For each graph in a given segment, a subgraph
called the mask is extracted. This mask is defined as the ℓ-ego network of the activated
nodes. The parameter ℓ corresponds to the GNN layer where the rule was discovered.
By constructing this mask, the method ensures that the resulting subgraph focuses on
the portions of the graph most pertinent to the rule, while excluding unrelated nodes
and edges.

After obtaining masks for all graphs in the segment, the next step is to identify
a single representative graph that captures the core substructure shared across the
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segment. This is achieved by computing pairwise distances between the masks using a
metric derived from optimal transport (OT). OT provides a mathematically principled
framework to compare distributions by minimizing the cost of transporting mass from
one distribution to another.

To apply optimal transport as a similarity measure between graphs, we first repre-
sent each graph as a probability distribution. Consider a graph G = (VG, EG, X). We
define a uniform probability distribution µ supported on the node set VG, so that

∀v ∈ VG, µ(v) =
1

|VG|
. (14)

Let G = (VG, EG, X) and H = (VH , EH , X ′) be two graphs with associated dis-
tributions µG and µH . The Fused Gromov-Wasserstein (FGW) distance (Vayer et al.,
2019) defines a transportation cost from µG to µH that jointly accounts for the struc-
tural information of G and H, as well as their node feature matrices X and X ′. While
a full discussion of FGW is beyond the scope of this paper, we briefly outline how it
is used to compute distances between graphs:

Define the set of probabilistic couplings between the nodes of G and H as

Π =

π : VG × VH → R+

∣∣∣∣∣∣
∑
i∈VG

π(i, j) = µH(j),
∑
j∈VH

π(i, j) = µG(i)

 . (15)

The FGW distance with parameter α ∈ [0, 1] is then defined as

FGWα(µG, µH) = min
π∈Π

(1− α)
∑

i,j∈VG×VH

d
(
X[i], X ′[j]

)
π(i, j)

+ α
∑

i,k∈VG
j,l∈VH

|Di,k −Dj,l|π(i, j)π(k, l),
(16)

where Di,k and Dj,l denote the distances between nodes i, k in G and j, l in H
respectively, and d(·, ·) measures the distance between node features.

Once pairwise FGW distances between all masks in the segment are computed,
the representative graph G∗ is selected as the one minimizing the sum of distances to
all other graphs, i.e., the FGW median:

G∗ = argmin
Gi

∑
j

FGWα(µGi
, µGj

). (17)

By leveraging FGW, this approach reduces bias and ensures that the selected
representative is a central exemplar of the shared substructure, rather than an outlier.

To enhance the interpretability of the representative graph, the contributions of its
individual nodes to the rule are analyzed and visually highlighted. This is achieved by
systematically removing nodes from the mask, one at a time, and observing the impact
of their removal. Specifically, the removal of a node is quantified by the number of other
nodes that become deactivated as a result, i.e. nodes that lose their contribution to
the rule. This step assigns a clear importance score to each node in the representative
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graph, making it possible to visually and intuitively understand which parts of the
graph play the most significant roles in supporting the rule.

Overall, this multi-step process ensures that the representative graph not only cap-
tures the essential elements of the discovered rule but also provides insights into how
individual nodes contribute to the explanation. By isolating relevant substructures,
selecting a median graph, and highlighting node contributions, the method offers a
comprehensive and interpretable representation of the rule’s impact across the dataset.

4 Experiments

In this section, we present a comprehensive evaluation of our proposed method,
INSIDE-SHAP, through a series of experiments. Our aim is to demonstrate the effec-
tiveness and robustness of INSIDE-SHAP in generating high-quality explanations
for graph classification tasks. First, we outline the experimental setup, detailing the
datasets utilized and the configurations applied (Section 4.1). This provides the foun-
dation for a fair and transparent evaluation. Next, we address a critical component
of our methodology: the selection of a surrogate model to compute Shapley values for
the rules (Section 4.2). Once the surrogate model is established, we focus on evalu-
ating the explanations generated by INSIDE-SHAP. In Section 4.3, we analyze the
rules discovered by our method and their corresponding visualizations. In Section 4.4,
we turn our attention to instance-level explanations and benchmark INSIDE-SHAP
against state-of-the-art explainers.

Through this structured evaluation, we provide a detailed understanding of the
capabilities and advantages of INSIDE-SHAP across multiple dimensions1.

4.1 Experiment settings and aims

We perform the experiments over several benchmark datasets:
• BA2-Motifs (Luo et al., 2020) is a synthetic dataset where graphs are labeled
into positive and negative classes depending on the presence of a 5-node cycle or
a house motif, respectively;

• AIDS (B. Wu et al., 2017), BBBP (Z. Wu et al., 2017) and Mutagenicity (Z. Zhang
et al., 2019) are three datasets containing molecular graphs associated with their
biological activities;

• Benzene and Alkane-Carbonyl (Agarwal et al., 2023) are two molecular datasets
where molecules are divided into two classes, depending on the presence of par-
ticular functional groups: the benzene ring and the carbonyl group with an
unbranched alkane, respectively.

These datasets are often used as benchmarks in XAI for GNNs due to the presence
of known data rules, which can help during the analysis of the explanations. For
instance, BA2-Motifs and Benzene present “ground-truth” masks for explanations
that highlight the subgraphs which are determinant for the class. However, there is
currently an active debate on the role of these “ground-truths” as they cannot be used
to assess the correctness of the explanations, as this property should only be checked

1To reproduce the results, the code is accessible at the following link: https://github.com/atakml/INSIDE
SHAP
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with respect to the models’ predictions (Faber et al., 2021). In this case, we utilize
such motifs to compare them with the rules representation and have an understanding
of wether the model is identifying them.

We divide each dataset into three partitions: training (80%), validation (10%), and
testing (10%). On each dataset, we train a 3-convolutional layer GNN2 with an embed-
ding size of 20. The main characteristics of the datasets and the performance of the
associated black-box GNN model are summarized in Table 1. In all the experiments,
we use the best-performing black box (using the validation accuracy as reference) to
obtain the explanations.

Table 1: Statistics of the datasets and the performance metrics of the models trained
on these datasets, expressed as mean ± standard deviation over 5 seeds, with the best
results, according to the validation accuracy, reported in parentheses.

Dataset # Graphs Avg # Nodes Train Acc (%) Validation Acc (%) Test Acc (%)

AIDS 2000 15.69
99.19 ± 0.41

(99.56)
98.50 ± 0.45

(99.00)
99.30 ± 0.25

(99.50)

BA2-Motifs 1000 25
99.90 ± 0.20

(100.00)
100.00 ± 0.00

(100.00)
100.00 ± 0.00

(100.00)

BBBP 1640 24.08
89.27 ± 0.80

(90.55)
81.46 ± 0.83

(82.93)
81.22 ± 0.98

(82.93)

Mutagenicity 4337 30.32
84.63 ± 0.84

(85.90)
81.43 ± 1.06

(82.72)
79.54 ± 1.36

(81.34)

Benzene 4000 20.58
93.71 ± 0.62

(94.56)
91.65 ± 0.64

(92.49)
90.21 ± 0.45

(90.95)

Alkane-Carbonyl 1125 21.13
99.00 ± 0.07

(99.11)
99.11 ± 0.00

(99.11)
100.00 ± 0.00

(100.00)

We explore the following research questions:
• What surrogate model should be used, and how effectively does it capture the
behavior of the original model by leveraging the activation rules?

• Do the segments obtained from the Shapley value-based rule support seg-
mentation capture meaningful structural differences, and how well do their
representative graphs reflect the underlying rules?

• How does INSIDE-SHAP compare to other state-of-the-art explainers, and does
the incorporation of Shapley values enhance instance-level explanations compared
to INSIDE? To answer this, we evaluate the impact of multiple rules on instance-
level explanations and conduct a thorough comparison with INSIDE and other
baseline methods, demonstrating the overall performance and versatility of our
approach.

2To demonstrate that the experimental results are not specific to the GCN architecture, we include
additional experiments using alternative GNN architectures in the Appendix B.
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4.2 Evaluation of the surrogate model

We evaluate several options for the surrogate model to determine the most effective
architecture for capturing the behavior of the original black-box model. Specifically,
we compare the following approaches:

• A GCN model with the same architecture as the black-box model, but instead
of raw graph data, it takes the rules’ activations as input node features. This
approach ensures that the surrogate model leverages the same structural inductive
biases as the original model while focusing on the rules’ activation.

• An MLP that operates on aggregated rule activations. Here, the activations are
summed over the nodes of the graph, resulting in a vector representation used
as input to the MLP. This method simplifies the input representation while
maintaining essential information about the rule activations.

• Two traditional machine learning models: decision tree regression and linear
regression. Both models also use the summed rule activations as input. The
decision tree regression offers non-linear interpretability, while linear regression
provides a simpler, more transparent mapping to assess the rules’ contribution.

These diverse architectures allow us to explore the trade-offs between complexity,
interpretability, and fidelity to the original model in our surrogate modeling approach.

Dataset Metric Decision Tree Linear Model MLP GCN

AIDS Acc. (%) 97.70± 1.80 98.50±0.20 98.50 ± 0.20 98.60 ± 0.58
KL-Div. 0.0654± 0.0166 0.0320±0.0008 0.0320 ± 0.0008 0.0154 ± 0.0017

BA2-Motifs Acc. (%) 98.00± 0.80 97.00±0.00 97.00 ± 0.00 99.80 ± 0.40
KL-Div. 0.0044± 0.0010 0.0037±0.00015 0.0037 ± 0.0002 0.0003 ± 0.0001

BBBP Acc. (%) 91.80± 1.40 94.51±0.00 94.51 ± 0.00 95.85 ± 1.18
KL-Div. 0.0444± 0.0060 0.0296±0.0004 0.0296 ± 0.0004 0.0107 ± 0.0014

Mutagenicity Acc. (%) 86.20± 1.00 87.52±0.26 87.52 ± 0.26 93.27 ± 0.59
KL-Div. 0.0817± 0.0045 0.0769±0.0003 0.0769 ± 0.0003 0.0216 ± 0.0017

Benzene Acc. (%) 92.60± 1.20 94.38±0.31 94.38 ± 0.31 96.97 ± 0.54
KL-Div. 0.0774± 0.0099 0.0413±0.0002 0.0413 ± 0.0002 0.0158 ± 0.0013

Alkane- Acc. (%) 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.82 ± 0.35
Carbonyl KL-Div. 0.0014± 0.0000 0.0011±0.0000 0.0011 ± 0.0000 0.0005 ± 0.0002

Table 2: Surrogate models evaluation. Test accuracy and KL-Divergence between
surrogates and the black-box expressed in mean ± std.

The performance of the surrogate models is summarized in Table 2. Each surro-
gate was trained to optimize for the KL-Divergence between its predictions and those
of the black-box model. To comprehensively evaluate their effectiveness, we report
both the KL-Divergence and accuracy of the surrogates relative to the black-box
model. Among the tested architectures, the GCN model demonstrates superior per-
formance, achieving the lowest KL-Divergence and the highest accuracy. This result
can be attributed to its ability to operate on rule activations at the node level, thereby
preserving the granular structural information inherent to the graph. In contrast, the
other surrogates, which rely on aggregated rule activations at the graph level, may
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lose critical information, leading to reduced fidelity when approximating the behavior
of the original black-box model.

Fig. 2: Loss and accuracy comparison of the GCN surrogate model using random
features and rules activation status matrix as features across different datasets. High
accuracy and low loss are desired.

To dispel any doubts that the superior performance of the GCN surrogate might
be due to its use of graph structure rather than actual rule activations, we include a
comparison in Figure 2 between the GCN and another GCN trained on random rule
activations. This comparison shows that the GCN trained on random rule activations
fails to approximate the black-box model, confirming our claim that the GCN’s per-
formance is tied to its ability to leverage node-level rule activations rather than relying
solely on graph structure.

Additionally, the superior performance of the GCN with respect to the other mod-
els suggests that the mere presence of a rule is not sufficient to make a decision. This
implies that a rule could potentially recognize multiple motifs, even those belong-
ing to different classes. In the remainder of this work, we utilize the GCN to obtain
instance-level explanations, given its best ability to approximate the black-box-model.

4.3 Global view of activation rule importance and their
representative graphs

To analyze the rules, we present visualizations of the representative graphs for the
most relevant rules identified across several datasets. Specifically, we focus on the
BA2-Motifs, Alkane-Carbonyl, and Benzene datasets, as they provide a rich source
for understanding the types of structures that the black-box models are capable of
recognizing. Our goal is to investigate whether these identified structures align with
the relevant motifs present in the ground truth.
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It is important to note that the lack of correlation between the discovered rules
and the ground-truth motifs does not necessarily imply poor quality of the rules. On
the contrary, this discrepancy can be insightful in uncovering rules that, while not
explicitly part of the ground truth, offer new perspectives on the model’s behavior.
This approach allows us to identify exemplary structures that contribute to a deeper
understanding of the underlying model.

For each dataset, we examine the rules with the highest effectiveness by the Effect
measure introduced in Equation 11. In particular, for each identified rule, we report the
median graph of the clusters obtained by analyzing the Shapley values associated with
that rule, following the procedure outlined in Section 3.3. This detailed examination of
the rules aims to provide valuable insights into how the model processes and classifies
different structures within the data.

4.3.1 BA2-Motifs

On BA2-Motifs, rules 6, 16, 14, and 12 achieve the highest Effect scores (see
Equation 11). The median graphs for these rules are displayed in Figure 3.

Rule 6 is predominantly activated in the negative class, which is characterized by
the presence of a 5-node loop. Notably, the Shapley values for this rule exhibit two
primary segments, both of which highlight nodes within the loop structure with a
strong negative contribution. However, in the first segment, the importance of the cycle
motif diminishes when a node outside the loop is activated, indicating a contextual
shift in rule activation.

Rule 16 is primarily activated by the cycle motif when the Shapley value is negative,
whereas a positive Shapley value indicates activation by the house motif. A similar
pattern is observed in rule 14, though with a slightly lower magnitude. This analysis
of Shapley values enables us to cluster activations into distinct structural motifs, such
as loops and houses, offering deeper insights into how the model distinguishes between
these patterns.

Rule 12, in contrast, is mostly associated with the positive class and can be divided
into two segments. In this case, the segment with higher importance aligns with the
motif characteristic of the positive class, while the segment with lower Shapley values
corresponds to activations of the 5-node loop, which defines the negative class.

Overall, our findings demonstrate that the learned rules successfully capture
the two ground-truth motifs, confirming that the model integrates these structural
patterns within its activations. Moreover, by leveraging Shapley values, we can dif-
ferentiate between heterogeneous activations of the same rule, further refining our
understanding of the model’s decision-making process.

4.3.2 Alkane-Carbonyl

The results for Alkane-Carbonyl are presented in Figure 4, where rules 35, 23, 26,
and 38 exhibit the highest Effect values on this dataset. This case is particularly
noteworthy, as experiments indicate that the model predominantly relies on a shortcut.
While the classes are theoretically defined by the presence of a carbonyl functional
group (C=O bond) and an unbranched alkane chain (a sequence of carbon atoms), the
model instead tends to use fluorine atoms as a key determinant for the positive class.
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This reliance on fluorine is consistently observed across all analyzed rules. Specifi-
cally, these rules primarily activate on fluorine atoms, assigning them high importance,
while the contributions of their neighboring atoms remain relatively minor. This
finding highlights a potential bias in the model’s decision-making process, where an
unintended feature plays a dominant role in classification.

4.3.3 Benzene

The results for Benzene are shown in Figure 5, where rules 41, 42, 10, and 32 exhibit
the highest Effect values in this dataset.

Most of these rules primarily identify six-carbon rings, a common structural fea-
ture in chemistry. Notably, a six-carbon ring can correspond to either cyclohexane or
benzene, depending on the bond types between the carbon atoms. However, since the
black-box model does not have direct access to bond type information, it relies on the
presence of surrounding atoms to differentiate between these structures. This is par-
ticularly evident in rule 42, where the neighboring atom arrangements help determine
the ring type. Additionally, some rules capture rings with varying numbers of atoms,
which may assist the model in distinguishing benzenes from other cyclic structures,
making these rules critical for accurate predictions.

4.3.4 General considerations

When analyzing a rule within its segment, we observe a clear relationship between its
Shapley value and its contribution to the model’s decision. When the Shapley value is
weak (i.e., close to zero), the rule does not focus on any particular region of the graph
and thus has little to no impact on the prediction. Conversely, when the Shapley value
is strong, the rule selectively activates specific graph components that are critical to
the model’s decision-making. This confirms that the Shapley value serves as a valid
and reliable metric for assessing a rule’s influence on a graph’s classification.

This effect is explicitly incorporated in Equation 8, which generates soft masks
for instance-level explanations. The formulation ensures that nodes activated by rules
with near-zero Shapley values receive minimal weight, while nodes influenced by strong
Shapley values are assigned higher importance. Consequently, Equation 8 guarantees
that highly weighted nodes in the soft mask correspond to activations with strong
Shapley contributions, reinforcing their interpretability and reliability.

At a global level, we find that the identified rules provide meaningful insights into
the model’s reasoning by capturing key structural components. However, in datasets
such as Alkane-Carbonyl and Benzene, some rules do not always align perfectly with
the expected chemical reasoning behind positive-class predictions. For example, in the
Benzene dataset, the rules do not activate all nodes corresponding to atoms in the
aromatic functional group. This suggests that rather than relying on full structural
activation, the model may be identifying specific motifs that serve as class indicators.
Indeed, removing the activated nodes generally leads the model to shift its prediction
from the positive to the negative class. This indicates that the model primarily depends
on these rules for classification, as when a crucial activation is removed, the decision
flips. For instance, in the case of benzene, removing nodes from the aromatic cycle
disrupts the motif, causing the model to classify the graph as negative. However, the
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reverse does not hold: removing nodes from a negative-class graph does not cause the
model to switch its prediction to positive.

4.4 Evaluation of the instance-level explanations

We evaluate our instance-level explanations using both quantitative and qualitative
methods. In the quantitative analysis, we compare INSIDE-SHAP with its competitors
using the Fidelity, Inv-Fidelity, and Sparsity metrics, in addition to their combination
by leveraging H-Fidelity (S. Zhang et al., 2022). To isolate the effect of the black-
box model architecture, we further compare INSIDE-SHAP with cooperative game-
theoretic explainers based solely on the H-Fidelity metric.

For the qualitative evaluation, we conduct two experiments. First, we randomly
select instances from the BA2-Motifs and Benzene datasets to assess the human
interpretability of INSIDE-SHAP’s explanations in comparison to INSIDE and the
top-performing competitor. Then, we present specific examples where INSIDE-SHAP
significantly outperforms other methods.

4.4.1 Quantitative Results

We evaluate the instance-level explanations generated by INSIDE-SHAP by pro-
viding explanations as masks over relevant nodes. In the literature, Fidelity and
Inv-Fidelity (see Equation ??) are commonly used to assess how well an explanation
method identifies important portions of the graph by measuring the variation in pre-
diction probability when removing important or non-important nodes. Drawing from
the precision-recall analogy, S. Zhang et al. (2022) introduced a single scalar met-
ric called harmonic fidelity (H-Fidelity), which combines Fidelity and Inv-Fidelity by
normalizing them with Sparsity and calculating their harmonic mean.

Evaluation of Explainability Metrics on INSIDE-SHAP Against
Competitors

In this study, we compare INSIDE-SHAP with state-of-the-art methods using H-
Fidelity as the evaluation metric, as it offers a balanced view across all key evaluation
criteria. However, some methods generate explanations in the form of soft masks. To
ensure a fair comparison, we discretize the soft masks of all methods by selecting the
sparsity that maximizes H-Fidelity.

Table 3 presents the results for INSIDE-SHAP, INSIDE, and other state-of-the-art
techniques based on cooperative game theory, including GStarX (S. Zhang et al., 2022),
SubGraphX (Yuan et al., 2021b), GraphSVX (Duval & Malliaros, 2021), and Edge-
Shaper (Mastropietro et al., 2022). Compared to INSIDE, our method consistently
achieves superior results. As discussed in previous sections, INSIDE relies on a single
rule for explanations, significantly limiting its effectiveness. In contrast, INSIDE-SHAP
aggregates contributions from multiple rules, weighting them using Shapley values.
This approach not only enhances explanation accuracy but also provides insights into
the relative influence of different rules on a given prediction.
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Compared to other state-of-the-art approaches, INSIDE-SHAP outperforms them
in four out of six cases and achieves the second-best performance in another,
demonstrating its effectiveness in generating high-quality explanations.

Method AIDS BA2-Motifs BBBP Mutagenicity Alkane-Carbonyl Benzene

INSIDE-SHAP 0.5157 0.5579 0.5440 0.5845 0.5415 0.6043
INSIDE 0.4765 0.5421 0.5368 0.5837 0.5411 0.6034

SubgraphX 0.4627 0.5190 0.4963 0.5001 0.5237 0.5394
GStarX 0.5100 0.5519 0.5430 - 0.5382 0.5822
GraphSVX 0.5109 0.5774 0.5334 0.5467 0.5367 0.5728
EdgeShaper 0.5055 0.5613 0.5535 - 0.5236 0.5836

Table 3: Evaluation of the instance-level explanations in terms of H-Fidelity. We
conducted experiments with a timeout limit of 60 hours for computation. “-” indicates
that the results were not available within this timeframe. The best value is highlighted
in bold, and the second-best value is underlined.

Figure 6 presents the Fidelity, Inv-Fidelity, and Sparsity metrics for six different
explanation methods. Notably, these metrics are derived from explanations optimized
using H-Fidelity as the objective function. Despite this optimization, our method
consistently performs on par with the best-performing approach for each individual
metric.

4.4.2 Qualitative Evaluation of INSIDE-SHAP’s Explanations

To complement the quantitative results, we conduct two qualitative experiments aimed
at understanding the strengths of INSIDE-SHAP in different scenarios. The first exper-
iment focuses on instances where INSIDE fails to produce sparse explanations, allowing
us to assess how INSIDE-SHAP performs in such challenging cases. The second exper-
iment highlights examples where INSIDE-SHAP outperforms other game-theoretic
methods in terms of H-Fidelity, providing insight into the conditions under which it
delivers the most faithful and concise explanations.

Experiment 1: Performance Where INSIDE Fails

In this experiment, we analyze instances where INSIDE fails to generate sparse
explanations—specifically, those with a sparsity score below 0.5. From this subset,
we randomly sample examples to compare the quality of explanations produced by
INSIDE-SHAP, INSIDE, and the best-performing game-theoretic competitor. While
our goal is not to align with the ground truth, it serves as a useful reference for
evaluating the plausibility and focus of the explanations.

A key observation is that, compared to INSIDE, INSIDE-SHAP consistently pro-
duces sparser and more focused explanations. This is because INSIDE relies on a single
rule, which limits its ability to distribute importance across multiple contributing fac-
tors. As a result, it often highlights many nodes as important, even when their actual
relevance to the prediction is minimal.
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To further illustrate this comparison, we present example explanations for the BA2-
Motifs and Benzene datasets in Table 4. These examples are drawn from the subset
of instances where INSIDE fails to achieve a sparsity score of at least 0.5. For the
Benzene dataset, we additionally restrict the selection to positively predicted graphs
to facilitate comparison with the ground truth.

In the BA2-Motifs example, INSIDE-SHAP mostly avoids highlighting redundant
nodes and focuses on those within the cycle motifs, the structure known to be influ-
ential. Compared to GraphSVX, INSIDE-SHAP provides a sharper contrast between
important and unimportant nodes, enhancing interpretability.

In the Benzene example, while INSIDE highlights two entire cycles, INSIDE-SHAP
distinguishes between individual nodes within those cycles. As shown in Section 4.3,
for over 90% of positively predicted graphs (covered by rule 41), the GNN’s decision
is influenced by a partial rather than a complete cycle. This makes INSIDE-SHAP’s
explanation more faithful to the model’s actual behavior. Additionally, EdgeShaper
fails to correctly identify the cycle structure, further underscoring the advantages of
INSIDE-SHAP in capturing meaningful and precise explanations.

These findings reinforce that INSIDE-SHAP is particularly effective in scenarios
where other methods—especially rule-based ones like INSIDE—struggle to isolate the
most relevant components. Its ability to generate sparse, focused, and structurally
meaningful explanations makes it a robust choice for interpreting complex graph-based
decisions.

Dataset INSIDE-SHAP INSIDE Best Method

BA2-Motifs

Benzene

Table 4: Comparison of the explanations between INSIDE-SHAP,
INSIDE, and the best method among others (GraphSVX for BA2-motifs
and EdgeShaper for Benzene). The stronger the color of a node/edge is,
the more important it is.

Experiment 2: Performance Where INSIDE-SHAP Outperforms
Competitors

While the first experiment focuses on challenging cases for INSIDE, the sec-
ond experiment investigates instances where INSIDE-SHAP achieves the highest
H-Fidelity among all methods. These examples help us understand the conditions
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under which INSIDE-SHAP provides superior explanations and also serve to validate
H-Fidelity as a meaningful quantitative metric.

Table 5 presents the results for two datasets: Benzene and BA2-Motifs. Below, we
examine each case in detail.

In the BA2-Motifs dataset, all methods except INSIDE-SHAP and EdgeShaper
select nodes outside the main motif, suggesting redundancy in their explanations.
EdgeShaper identifies only a single important edge, whereas INSIDE-SHAP highlights
one highly important node and three additional, less critical nodes, all within the
motif. Although the Inv-Fidelity scores for INSIDE-SHAP and EdgeShaper may be
comparable, EdgeShaper’s failure to identify multiple relevant components negatively
impacts its Fidelity, resulting in a lower overall H-Fidelity compared to INSIDE-SHAP.

In the Benzene dataset, SubgraphX fails to detect any atoms within the two rings,
resulting in the lowest H-Fidelity among all methods. GStarX identifies one atom
inside a ring and one atom outside, but fails to capture any atoms in the upper ring.
Consequently, its explanation lacks fidelity, as removing its mask still leaves a complete
ring structure, preventing a change in the prediction. GraphSVX includes atoms from
both rings; however, the most important atoms in its explanation lie outside the rings.
As a result, each mask of this explanation includes non-ring atoms, reducing the
sparsity of the explanation and introducing redundancy. EdgeShaper identifies several
relevant edges within the rings, but also includes an edge that connects the upper ring
to the remainder of the graph, which diminishes its precision.

By contrast, INSIDE-SHAP uniquely identifies the most influential atoms as those
within the rings—capturing atoms from both rings while maintaining a minimal and
concise explanation. This means that removing these specific atoms is both necessary
and sufficient to alter the model’s prediction. Importantly, INSIDE-SHAP does not
select any atoms outside the rings as significant, resulting in both high fidelity and
high sparsity in its explanation.

5 Conclusion and Directions for Future Works

In this study, we presented INSIDE-SHAP, a novel framework for explaining GNN
decisions that effectively provides instance-level and model-level explanations, address-
ing a key limitation of many existing methods that typically focus on only one of these
levels. By leveraging Shapley values to analyze activation rules, our approach enables
the collaborative assessment of rules at each input, resulting in improved instance-
level explanations compared to INSIDE. Furthermore, INSIDE-SHAP demonstrated
superior performance against state-of-the-art methods across multiple benchmarks.

Unlike other cooperative game theory-based methods that compute Shapley values
for input features (where the number of players scales with input size) our approach
calculates Shapley values for rules. These rules are independent of input size, and their
number remains fixed. This reduction in the number of players significantly enhances
the accuracy and efficiency of the Shapley value approximations. Additionally, we
introduced a methodology to calculate Shapley values for players with potential
overlaps, addressing a critical challenge in cooperative game-based explanations.

Another key contribution is our solution to the representation problem for heteroge-
neous rule supports. By utilizing Shapley values in conjunction with optimal transport
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techniques, we created meaningful and interpretable graph representations even when
the rule supports were diverse. This advancement enhances the interpretability of
GNNs, providing clearer insights into their decision-making processes.

Future Directions. While INSIDE-SHAP builds on INSIDE’s rule mining frame-
work, which can generate a large number of patterns, our global explanation results
in Section 4.3 show that only a small subset of these rules is typically needed
to capture the GNN’s decision logic. This opens up opportunities to integrate
INSIDE-SHAP with alternative rule extraction techniques that are both more selective
and computationally efficient.

Additionally, INSIDE-SHAP currently relies on KernelSHAP, a general-purpose
method for approximating Shapley. While effective, its accuracy and stability can be
sensitive to the number of samples. Future work could explore dedicated methods for
computing Shapley values in games where the players are rules or patterns. Such meth-
ods could provide more accurate and confident attributions by directly modeling the
contribution of rules with more reliable approximations designed for rules as players.
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A Time Complexity and Efficiency

In this section, first we theoritically discuss about the time complexity of
INSIDE-SHAP. Second, we compare its time with the comepetitores to assess its time
efficiency.

A.1 Computational Complexity Analysis

INSIDE-SHAP comprises multiple stages. To demonstrate its practical feasibility, we
present a theoretical analysis of its computational complexity. Specifically, we evaluate
the complexity of each component and derive the overall computational cost for both
global and instance-level explanations using Big O notation. To avoid confusion from
the variety of variables used in this section, we summarize all of them in Table 6.

Step 1: Rule Discovery

The rule extraction process in INSIDE-SHAP leverages the INSIDE framework, which
consists of two principal phases:

• Maximum Entropy Model Construction: This phase employs the FOR-
SIED method to build a probabilistic model. The corresponding time complexity
is given by:

O(tmaxent ·
√
m · n),

where n denotes the number of nodes in the training set, m represents the embed-
ding dimension, and tmaxent is the number of iterations required to optimize the
entropy (De Bie, 2011).

• Rule Mining: This stage utilizes a branch-and-bound strategy to identify
patterns that maximize subjective interestingness. While the worst-case complex-
ity is exponential, empirical observations suggest that the algorithm generally
terminates in polynomial time.

Step 2: Surrogate Model Training

A three-layer GCN is trained as a surrogate model. Given the sparsity typical of
real-world graphs, the per-iteration time complexity is:

O(n ·m2 + e ·m),

where e denotes the number of edges. Since e is often linear in n, this simplifies to:

O(n ·m2).

Step 3: Shapley Value Approximation

This step applies Kernel-Shap to approximate Shapley values:
• Shapley Value Computation: The time complexity is:

O(|R|(tshap + |R|2)),
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where |R| is the number of rules and tshap denotes the number of samples used
in the approximation (Lundberg et al., 2020).

• Rule Matrix Construction: For each instance, constructing the rule activation
matrix incurs a cost of:

O(|VG| · |R|),
where |VG| is the number of nodes in the graph.

Instance-Level Explanation

Shapley values attributed to rules are propagated to the corresponding supporting
nodes:

• In the worst case, where all rules apply to all nodes, the cost is:

O(|R| · |VG|).

• A tighter bound, reflecting practical conditions where each graph activates only
a subset of patterns, is:

O(Tpattern · |VG|),
where Tpattern is the number of patterns activated in a specific input graph.

Global-Level Explanation

This component includes segmentation of explanations and aggregation into a
summary representation.

• Outlier Removal and Segmentation: Outliers are removed using the LOF
method, which has a complexity of:

O(Sr · logSr + k · Sr),

where Sr = |SuppD(r)| is the number of graphs supporting rule r, and k is the
number of nearest neighbors in LOF. The segmentation process has an additional
cost of:

O(Sr · logSr).

• Mask Generation: For each supporting graph, generating the mask for the
activated subgraph has complexity:

O(|VG|),

resulting in a total cost of O(n) across the rule support.
• FGW Distance Computation: The pairwise distance between graphs is
computed using the FGW metric (Vayer et al., 2019), with the complexity:

O(n2
1 · n2 + n1 · n2

2),
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where n1 and n2 denote the number of nodes in two input graphs. Assuming ni

nodes in the i-th graph, the overall cost is:∑
j

∑
i

O(n2
i · nj + ni · n2

j ) =∑
j

∑
i

O(n2
i · nj) +O(ni · n2

j ) =∑
j

O(
∑
i

n2
i · nj) +O(

∑
i

ni · n2
j ) =∑

j

O(
∑
i

n′′ · nj) +O(n′′ · n2
j ) = O(n′′n′′

s ) = O(n′′3),

(18)

where n′′ =
∑

i ni and n′′
s =

∑
i n

2
i .

• Heatmap Generation: The final step involves projecting the aggregated values
onto the summary graph:

O(n′),

with n′ being the number of nodes in the representation.

Overall Complexity of Global-Level Explanation

Summing the complexities of the contributing components, the total cost is:

O(tmaxent ·
√
m · n) +O(Pattern Mining) +O(n ·m2)+

O(DT · |R|(tshap + |R|2)) +O(n · |R|) +O(Sr logSr) +O(n3
r)
, (19)

where nr is the total number of nodes of the masks generated for the graphs within
the support of r.

It is worth noting that the term O(|DT | · |R|(tshap+ |R|2)) is computed once across
all rules. Hence, the total asymptotic complexity becomes:

O(tmaxent ·
√
m · n) +O(Pattern Mining) +O(n ·m2)+

O(DT · (tshap + |R|2)) +O(n · |R|) +O(Sr logSr) +O(n3
r)
. (20)

Instance-Level Explanation Complexity

Since both the pattern mining and surrogate model training are performed offline,
their computational cost does not contribute to the per-instance complexity. Given a
graph instance G = (VG, EG), the explanation generation incurs the following cost:

O(|R| · (tshap + |R|2)) +O(Tpattern · |VG|). (21)

A.2 Evaluation of Execution Time

In this section, we evaluate the time required by each method to generate explanations.

28



All benchmarks were conducted on a machine with the following configuration:
Operating System: Debian GNU/Linux 12, CPU: Intel(R) Xeon(R) Silver 4210R
@ 2.40GHz, RAM: 251GB, and GPU: NVIDIA RTX A6000.

Since INSIDE-SHAP involves two precomputation steps prior to generating
instance-level explanations, we report the total runtime, including these precompu-
tations, in Table 7. Note that the precomputations are performed only once on the
training dataset.

Furthermore, we compare the average time required to obtain an explanation for
a single instance, as reported in Table 8. As can be seen, while GraphSVX achieves
the fastest computation time overall, INSIDE-SHAP consistently ranks as the best or
second-best performer across all datasets among other methods.

At first glance, INSIDE-SHAP may appear to require more time than its com-
petitors due to the initial precomputation phase. However, except for GraphSVX,
INSIDE-SHAP’s significantly lower time per instance compensates for this upfront
cost, especially in large datasets like Mutagenicity and Benzene. Furthermore, unlike
GraphSVX, which lacks model-level explanations, INSIDE-SHAP provides them,
offering a key advantage to GraphSVX.

B Investigation of the Role of Black-Box Model’s
Architecture

In this section, we evaluate the instance-level explanations provided by INSIDE-SHAP,
alongside other game-theoretic-based explainers, on models with architectures other
than GCN. Specifically, for each dataset, we train two black-box models with identi-
cal data—one using a GAT architecture and the other using GIN—substituting the
original GCN architecture. We then assess the explanations using H-Fidelity as the
main evaluation metric to determine whether the architecture of the underlying model
impacts the relative performance of INSIDE-SHAP.

It is important to note that the GAT-based model was unable to learn on the
BA2-Motifs dataset; hence, we omit the evaluation for this case.

As the comparison of H-Fidelity shown in Table 9, when using GIN, INSIDE-SHAP
achieves the highest performance on 4 out of 6 datasets: BA2-Motifs, BBBP, Muta-
genicity, and Benzene. With GAT, INSIDE-SHAP outperforms all baselines across
the evaluated datasets, except for BBBP, where it ranks as the second-best method.
These observations suggest dominance of INSIDE-SHAP over other game-theoretic-
based explainers is independent from the choice of the architecture of the black-box
model, and INSIDE-SHAP is applicable to variety of architectures while preserving
the performance.

C Evaluation of the Extracted Rules by INSIDE

To evaluate the quality of the extracted rules in Section ??, we adopt DiffVer-
sify (Chataing et al., 2024) as a comparative baseline. DiffVersify is a pattern
discovery framework tailored for binary datasets with class labels. It leverages a neu-
ral autoencoder architecture trained via a multi-objective loss function, comprising
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reconstruction loss, classification loss, a regularization term to penalize excessively
long patterns, and a coverage loss that encourages both pattern diversity and com-
prehensive data representation. We select DiffVersify over established baselines such
as BinAPS and DiffNAPS due to its empirically demonstrated superiority in terms of
coverage, purity, and accuracy of the patterns.

We train Diffversify on the activation matrices and extract the learned patterns.
To further evaluate the quality of the rules extracted in Section ?? and by Diffversify,
we introduce three evaluation metrics: purity, cover, and the weighted F1 score.

Purity: This metric measures the average label homogeneity within the support
of the patterns. Specifically, purity is defined as follows:

Purity(R) =
1

|R|
∑
r∈R

maxc∈C |{G ∈ SuppD(r) : f(G) = c}|
|SuppD(r)|

(22)

Cover: This metric measures the proportion of graphs that are contained in the
support of at least one pattern. It is defined as:

Cover(R) =
|{G ∈ D : ∃r ∈ R such that G ∈ SuppD(r)}|

|D|
(23)

Weighted F1: For each graph G, we assign the label of the pattern with the
highest purity in which G is included in its support. If no pattern includes G in its
support, we assign the majority class label to G. The F1 score is then calculated
between the predicted class by the GNN f and the assigned labels for each class,
and the weighted average of the F1 scores is reported.

To compare the rules mined by INSIDE-GNN and Diffversify, we first sort the
rules in descending order based on their purity. The purity of a single rule is measured
when the rule set contains only that pattern. In other words, it is the proportion of
the majority class in its support relative to the size of its support. Then, for each k,
we evaluate the weighted F1 score and the cover of the top-k patterns. The results
of this comparison are shown in Figure 7 and Figure 8. As both methods eventu-
ally reach a cover of 1, we focus on three factors at the point where full coverage is
achieved: the number of rules required, the purity of the patterns, and their weighted
F1 score. Across all datasets, INSIDE-GNN achieves full coverage with fewer rules
compared to Diffversify. Furthermore, INSIDE-GNN consistently offers superior or
comparable purity while maintaining a higher weighted F1 score. These observations
provide justification for choosing INSIDE-GNN over Diffversify for the continuation
of this work.
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(a) Rule Effect: 17.12 (b) Rule Effect: 9.32

(c) Rule Effect: 4.91 (d) Rule Effect: 4.90

Fig. 3: BA2-Motifs Rule Representations. For each rule, the top plot displays the
distribution of Shapley values for the positive class. Higher Shapley values (towards the
right) indicate a stronger contribution to predicting the positive class. Each segment
of the rule’s support is color-coded, with the number of instances shown above each
segment. The bottom figure presents a representative graph for each segment, where
node importance is indicated by color intensity—the stronger the color, the greater
the importance. Nodes outlined in red denote activation by the rule.
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(a) Rule Effect: 26.55 (b) Rule Effect: 21.10

(c) Rule Effect: 9.47 (d) Rule Effect: 7.70

Fig. 4: AlkaneCarbonyl Rule Representations. For each rule, the top plot displays the
distribution of Shapley values for the positive class. Higher Shapley values (towards the
right) indicate a stronger contribution to predicting the positive class. Each segment
of the rule’s support is color-coded, with the number of instances shown above each
segment. The bottom figure presents a representative graph for each segment, where
node importance is indicated by color intensity—the stronger the color, the greater
the importance. Nodes outlined in red denote activation by the rule.
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(a) Rule Effect: 25.42 (b) Rule Effect: 15.63

(c) Rule Effect: 9.37 (d) Rule Effect: 8.85

Fig. 5: Benzene Rule Representations. For each rule, the top plot displays the dis-
tribution of Shapley values for the positive class. Higher Shapley values (towards the
right) indicate a stronger contribution to predicting the positive class. Each segment
of the rule’s support is color-coded, with the number of instances shown above each
segment. The bottom plot presents a representative graph for each segment, where
node importance is indicated by color intensity—the stronger the color, the greater
the importance. Nodes outlined in red denote activation by the rule.
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Fidelity comparison Inv-Fidelity comparison Sparsity comparison

Fig. 6: Comparison of INSIDE-SHAP in terms of Fidelity, Inv-Fidelity, and Sparsity.
High values for Fidelity and Sparsity and low values for Inv-Fidelity are desired.
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Explainer BA2-Motifs Benzen

INSIDE-SHAP

H-Fidelity: 0.600 H-Fidelity: 0.642

SubgraphX

H-Fidelity: 0.580 H-Fidelity: 0.476

GStartX

H-Fidelity: 0.591 H-Fidelity: 0.602

GraphSVX

H-Fidelity: 0.596 H-Fidelity: 0.607

EdgeShaper

H-Fidelity: 0.572 H-Fidelity: 0.621

Table 5: Comparison of explainers on BA2-Motifs and Benzene datasets with
visualizations and H-Fidelity scores.
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Symbol Description

n Number of nodes in the dataset
m Embedding size or feature dimension
tmaxent Number of iterations for maximum entropy optimization
e Number of edges in the dataset
|R| Number of extracted rules
tshap Number of samples in Kernel-Shap approximation
|VG| Number of nodes in a single input graph
Tpattern Number of patterns activated in an instance
Sr Support size of rule r in the dataset
k Number of neighbors used in LOF outlier detection
ni Number of nodes in the i-th graph in a segment
n′′ Total number of nodes across all graphs in a segment (

∑
i ni)

n′′
s Sum of squared node counts across all graphs (

∑
i n

2
i )

n′ Number of nodes in the final representative graph
nr total number of nodes of the masks generated for the graphs within the support of r.
|DT | Number of Graphs in train dataset

Table 6: Summary of notation used in complexity analysis

Dataset Rule Mining by INSIDE Surrogate Model Training

AIDS 4724 731
BA2-Motifs 240 162
BBBP 5944 609
Mutagenicity 17766 1156
AlkaneCarbonyl 1513 674
Benzene 47914 1936

Table 7: Execution times for rule mining and surrogate model train-
ing for each dataset in seconds.

Explainer AIDS BA2-Motifs BBBP Mutagenicity AlkaneCarbonyl Benzene
INSIDE-SHAP 43.42 40.71 42.97 46.02 36.37 44.46
SubgraphX 35.77 224.46 52.09 145.58 71.50 89.67
GStarX 124.26 122.73 245.33 – 141.86 185.63
GraphSVX 0.76 0.60 0.53 1.53 0.47 0.58
EdgeShaper 206.45 41.75 292.27 – 45.11 69.97

Table 8: Execution times per instance for each explainer across different datasets in seconds.
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Method AIDS BA2-Motifs BBBP Mutagenicity Alkane-Carbonyl Benzene

GIN

INSIDE-SHAP 0.518 0.559 0.535 0.583 0.535 0.567
SubgraphX 0.500 0.528 0.499 0.542 0.500 0.544
GStarX 0.524 0.547 0.531 – 0.546 0.549
GraphSVX 0.518 0.557 0.525 0.557 0.536 0.567
EdgeShaper 0.520 0.549 0.520 – 0.524 0.549

GAT

INSIDE-SHAP 0.521 – 0.549 0.515 0.560 0.575
SubgraphX 0.501 – 0.502 0.508 0.499 0.504
GStarX 0.514 – 0.559 – 0.559 0.572
GraphSVX 0.515 – 0.529 0.509 0.536 0.571
EdgeShaper 0.518 – 0.528 – 0.525 0.551

Table 9: Comparison of Explanation Methods for Black-Box GIN and GAT (Highlighted Best
per Column).
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(a) AIDS - INSIDE-GNN (b) AIDS - Diffversify

(c) BA2-Motifs - INSIDE-GNN (d) BA2-Motifs - Diffversify

(e) BBBP - INSIDE-GNN (f) BBBP - Diffversify

Fig. 7: Comparison of quality of the rules discovered by INSIDE-GNN and Diffversify
(Part 1). High purity and weighted F1, and the low number of rules while reaching
full coverage are desirable.
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(a) Mutagenicity - INSIDE-GNN (b) Mutagenicity - Diffversify

(c) Benzene - INSIDE-GNN (d) Benzene - Diffversify

(e) Alkane-Carbonyl - INSIDE-GNN (f) Alkane-Carbonyl - Diffversify

Fig. 8: Comparison of quality of the rules discovered by INSIDE-GNN and Diffversify
(Part 2). High purity and weighted F1, and the low number of rules while reaching
full coverage are desirable.
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