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Abstract—Graph Neural Networks (GNNs) have demonstrated
strong performance in molecular interaction prediction, but
their interpretability remains limited, especially in domain-
specific applications like ligand–receptor modeling. This paper
presents a model-agnostic explainer for GNN-CLS, a specialized
GNN model designed to predict interactions between molecules
and olfactory receptor proteins. The proposed method uses
cooperative game theory to identify influential molecular sub-
structures and receptor sequence regions, offering faithful and
theoretically grounded explanations of model predictions. This
approach enhances transparency by revealing which features
drive predictive outcomes, helping bridge the gap between model
performance and chemical insight. The contributions include
a formal framework for relevance attribution and interaction
analysis, positioning this work at the intersection of explainable
AI and computational chemistry.

I. INTRODUCTION

As machine learning models grow in complexity, they are
achieving unprecedented levels of performance across a wide
range of domains. However, this increase in capability often
comes at the cost of interpretability. The internal decision-
making processes of these models become harder to under-
stand, making it challenging for researchers and practitioners
to trust their outputs or gain meaningful insights from their
behavior. As a response, the field of Explainable Artificial
Intelligence (XAI) has emerged, aiming to bridge this gap by
providing tools to make model predictions more understand-
able and interpretable to humans.

The need for explainability is particularly critical in the do-
main of molecular interaction prediction, where understanding
the rationale behind a model’s output can generate valuable
biological hypotheses and guide experimental design. In this
context, domain-specific architectures have been developed
to more accurately capture the complexity of biochemical
systems, extending beyond general-purpose Graph Neural Net-
works (GNNs). However, the increased specificity and archi-
tectural sophistication of these models often obscure their in-
ner workings, reinforcing the need for dedicated explainability
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methods capable of elucidating how predictions are made. One
such model is GNN-CLS [1], a specialized GNN architecture
designed to predict interactions between molecules and olfac-
tory receptor (OR) proteins. GNN-CLS integrates molecular
graph representations with protein sequence embeddings to
model ligand–receptor interactions within a unified framework.
While the model achieves strong predictive performance, its
intricate design makes it challenging to trace which molecular
or receptor features are most influential in the prediction.

To address this, we develop a model-agnostic explainer
tailored to GNN-CLS model. Our method identifies the most
important parts of the molecule and the receptor sequence for
each prediction, as well as the key interactions between them.
Importantly, the explainer is grounded in cooperative game
theory, providing theoretical guarantees for the faithfulness
and consistency of the generated explanations. By combining
domain-aware relevance analysis with formal interpretability
principles, our approach improves transparency and brings
GNN-CLS closer to practical, insight-driven applications in
molecular interaction modeling.

This work offers two primary contributions. First, we
introduce a model-agnostic Graph Neural Network (GNN)
explainer grounded in cooperative game theory, which pro-
vides theoretical guarantees regarding the faithfulness of the
generated explanations. This framework allows for reliable
interpretation across a wide range of GNN architectures.
Second, we present a novel methodology to capture and
explain the interactions between molecular substructures and
specific regions of the receptor, offering deeper insights into
structure–activity relationships that are critical for tasks such
as drug discovery and molecular design.

The remainder of this paper is organized as follows. In
Section II, we review related work on Explainable Artificial
Intelligence (XAI), positioning our contribution within the
broader research landscape. Section III introduces the GNN-
CLS model and outlines the key principles of cooperative
game theory that underpin our approach. In Section IV, we
formally present our model-agnostic explainer, ESPAM, de-
veloped specifically for molecular machine learning model ex-
planation, and detail its game-theoretic foundation. Section V
describes the experimental setup and reports both quantitative
and qualitative results. Finally, Section VI concludes the paper



by summarizing our main contributions and findings, and by
outlining potential directions for future research.

II. RELATED WORKS

In recent years, self-explainable GNNs [2], [3] have
emerged as a promising step toward interpretability. Yet, such
models are not always practical to deploy, as many GNNs
are already implemented without intrinsic explainability. As
a result, most GNNs are still black boxes. Therefore, despite
progress on inherently interpretable designs, post-hoc explana-
tion methods remain essential for understanding the behavior
of these widely used opaque models.

A variety of methods have been proposed to explain GNN
predictions by identifying influential substructures within input
graphs. Two prominent examples are GNNExplainer [4] and
PGExplainer [5], which make clear a model’s decision by
learning edge masks over the input graph using perturbation-
based techniques. In contrast, PGM-Explainer [5] constructs
a probabilistic graphical model to approximate the causal
relationships between subgraph components and predictions.
Also, adaptations of Grad-CAM have been applied to GNNs
to attribute importance using gradient-based saliency maps [6].

Unlike the aforementioned methods, which focus on
instance-level explanations, GLGExplainer [7] offers model-
level insights through logical propositions of concepts, lever-
aging subgraphs obtained from an existing instance-level ex-
plainer. Nevertheless, the quality of these model-level expla-
nations remains highly dependent on the reliability of the
underlying instance-level explanations [8]. Moreover, previous
studies have shown that concept-based models either exhibit
limited effectiveness when relying solely on concept truth-
values or sacrifice interpretability when using concept em-
beddings, as the embedding dimensions lack clear semantic
meaning and thus hinder human-understandable reasoning [9].

In general, while these methods provide valuable insights,
they are primarily heuristic and lack formal theoretical guaran-
tees regarding the faithfulness and consistency of their expla-
nations. Furthermore, most of these approaches are not model-
agnostic, but are tightly coupled to specific GNN architectures
or require access to internal gradients or parameters. This
limitation reduces their applicability, making them difficult or
even infeasible to use with more complex or black-box models.

To address the need for theoretical guarantees concern-
ing the faithfulness and consistency of explanations, game-
theoretic approaches have emerged, offering a principled
framework for attributing importance. SubgraphX [10] em-
ploys Monte Carlo tree search to approximate Shapley val-
ues [11], capturing the effects of subgraph interactions.
GraphSVX [12] uses surrogate modeling on perturbed inputs
to estimate Shapley values and provide fair attributions across
features and nodes. While these methods rely on Shapley
values, GStarX [13] instead leverages the Hamiache–Navarro
(HN) value [14], which explicitly incorporates graph structure
when forming coalitions, enhancing the structural coherence
of the explanations. However, computing exact Shapley or
Hamiache–Navarro values is computationally intractable in

practice. Consequently, these methods resort to sampling or
heuristic approximations [15], [16], which introduce a trade-
off between explanation fidelity and computational efficiency.
This compromise limits their scalability and applicability in
real-time or large-scale settings.

III. GNN-CLS MODEL AND COOPERATIVE GAME

The GNN-CLS model extends the general principles of
GNNs through a domain-specific architecture designed to
capture the interactions between molecules and olfactory re-
ceptor (OR) proteins. To support our analysis of this model’s
predictions, we propose an explainability approach grounded
in cooperative game theory. In what follows, we first describe
the structure and functioning of GNN-CLS, then present the
theoretical foundations of cooperative game-based explanation
methods, which provide a principled way to attribute contri-
butions to individual molecular and receptor features.

A. GNN-CLS model

Graph classification aims to assign labels to entire graph
structures based on their topology and node attributes. This
task is widely used in bioinformatics [17], cheminformat-
ics [18], and social network analysis [19], where entities and
their relationships are naturally represented as graphs. GNNs
have become a standard approach for this problem, leveraging
message-passing mechanisms to iteratively update node repre-
sentations based on their local neighborhoods [20]. The final
graph-level representation is typically obtained by aggregating
node embeddings using permutation-invariant functions such
as summation, mean pooling, or attention mechanisms.

The GNN-CLS model [1] is specifically designed to predict
molecular interactions with olfactory receptors by jointly pro-
cessing two distinct inputs: a molecular graph, where nodes
correspond to atoms and edges to chemical bonds, and a
receptor protein sequence, encoded using a pre-trained protein
language model [21]. The model extends standard GNN-
based graph classification by integrating multi-head attention
mechanisms and adopting a proteo-chemometric modeling
framework, enabling it to effectively capture the complex
interplay between molecular structure and receptor sequence.

To effectively capture receptor-ligand interactions, GNN-
CLS injects receptor sequence embeddings into the molecular
graph as additional node features, allowing the message-
passing process to account for both molecular topology and
receptor-specific properties. The model alternates between
graph-based message passing [20], fully connected layers,
and attention mechanisms to facilitate information exchange
beyond bonded interactions. Additionally, an edge-conditioned
convolution (ECC) layer [22] and an attention-based readout
function [23] generate the final graph-level representation used
for classification. Figure 1 provides an overview of GNN-
CLS, illustrating its architecture and how it integrates these
components.

By combining molecular structure and sequence-based rep-
resentations, GNN-CLS effectively models complex biochem-
ical interactions. However, its interpretability remains a chal-



Fig. 1: Figure from [1]. The model takes as input a pair
consisting of a protein sequence and a molecular graph. The
protein sequence is first encoded using ProtBERT, and the
resulting embedding is concatenated to the feature vector of
each node in the molecular graph. Within the GNN architecture,
node embeddings are initially updated through two successive
and identical message passing neural networks. Subsequently,
pairwise interactions between nodes are modeled using a multi-
head attention mechanism.

lenge. Since GNNs inherently rely on multi-step message
passing, identifying the most relevant molecular substructures
or receptor-specific features is nontrivial. In this work, we
develop explainability methods specifically designed for GNN-
CLS, shedding light on its decision-making process and im-
proving trust in its predictions.

B. Cooperative Games

To interpret the predictions of complex models such as
GNN-CLS, we turn to cooperative game theory, which of-
fers a rigorous framework for attributing the contribution of
individual features to a model’s output through concepts such
as Shapley values.

A cooperative game is defined as a pair (N, g), where
N is a finite set of players, and g : 2N → R is the
characteristic function, satisfying g(∅) = 0. A coalition is
any subset S ⊆ N , while N itself is referred to as the grand
coalition. The characteristic function assigns a real value to
each coalition, representing its collective worth. A solution
in cooperative game theory is a function that, for each game
(N, g), allocates the total worth of the grand coalition, g(N),
among the players. Formally, a solution is a function defined
over the set of all cooperative games, G, such that:

ϕ : G → R|N |,

(N, g) 7→ ϕ(N, g) = (ϕ1(g), . . . , ϕ|N |(g)),
(1)

where, for each player i ∈ N , the value ϕi(g) represents their
allocated contribution to the total worth of the game.

Various solutions can be introduced for cooperative games
based on the axioms imposed on ϕ. Among these, the Shapley
values are a foundational solution concept that satisfy a
specific set of desirable axioms: Efficiency, Symmetry, Null

Player, and Additivity. These axioms ensure that contributions
are distributed fairly among all players based on their marginal
impact across all possible coalitions. In the context of explain-
able AI, Shapley values have been widely adopted to attribute
the prediction of a model to its input features in a principled
and interpretable way.

Building on this framework, [24] propose an alterna-
tive attribution method, Fair-Efficient-Symmetric-Perturbation
(FESP) values, grounded in a modified set of axioms: Effi-
ciency, Symmetry, and Fair Treatment. These axioms aim to
preserve fairness in feature attribution while allowing for more
flexibility in perturbation-based explanations. The definitions
of these axioms are presented below.

• Efficiency: The total value of the grand coalition is fully
distributed among all players:

∑
i∈N ϕi(g) = g(N).

• Symmetry: For any permutation π on the players, the
following equations holds: ϕi(g) = ϕπ(i)(π · g)

• Fair Treatment: If adding a player i to every coalition
adds more contribution than adding a player j to the same
coalition, then the contribution value of i should be higher
than j:

∀i, j ∈ N,S ⊆ N \ {i, j}; g({i} ∪ S) ≥ g({j} ∪ S)

⇒ ϕi(g) ≥ ϕj(g).

The calculation of FESP values is defined in Equation (2):

ϕi(g) = w × g({i})− (1− w)× g(N \ {i}) (2)

with w =
g(N) +

∑
j∈N g(N \ {j})∑

j∈N g({j}) +
∑

j∈N g(N \ {j})

Shapley values are one of the most widely used attribution
methods in cooperative game theory, offering a principled way
to distribute the overall output of a model among its input
features. However, their exact computation is known to be
computationally expensive, requiring exponential time in the
number of features [11]. To address this, several approximation
methods have been proposed [15], [16], but these approaches
often suffer from slow convergence and may yield only coarse
estimates of feature contributions.

In contrast, the Fair-Efficient-Symmetric-Perturbation
(FESP) attribution method [24] provides an exact solution
with a much lower computational cost. FESP achieves
linear-time computation, specifically O(|N |). This makes
it a practical and efficient alternative to Shapley values,
particularly for complex machine learning models.

IV. EXPLAINING GNN-CLS MODEL

We propose a methodology to explain the predictions of
the GNN-CLS model by identifying both the key molecular
substructures and the relevant regions of the receptor that
contribute to the model’s output. Our approach combines two
complementary attribution strategies. In Section IV-A, we in-
troduce ESPAM (Efficient Symmetric Perturbation Attribution
Method), a FESP-inspired technique designed to highlight the
most influential parts of the molecular graph. In Section IV-B,
we present a corresponding method for analyzing the receptor



sequence, enabling a joint interpretation of the ligand-receptor
interaction captured by GNN-CLS.

A. ESPAM for explaining the role of the molecular graph in
predictions

A distinctive feature of Graph Neural Networks (GNNs)
is that node embeddings evolve through iterative interactions
with their neighbors. At each layer, a node aggregates infor-
mation from its local neighborhood, gradually expanding its
receptive field. This process naturally leads to the notion of
an ego network, that is the subgraph that directly influences a
node’s representation at a given layer.

Formally, the ego network of a node v at layer ℓ, denoted
Egoℓ(v) = (Vℓ(v), Eℓ(v)), is recursively defined as:

Egoℓ(v) =


({v}, ∅)if ℓ = 0,

(Vℓ−1(v) ∪ {w | (u,w) ∈ E, u ∈ Vℓ−1(v)},
Eℓ−1(v) ∪ {(u,w) | u ∈ Vℓ−1(v), (u,w) ∈ E})
if ℓ > 0.

(3)
This recursive formulation captures how information prop-
agates in the graph through local interactions, ultimately
encoding both neighborhood structure and broader topological
context.

In the framework of cooperative game theory, consider a
game (N, g) where the set of players N corresponds to the
nodes of a molecular graph G, and each coalition corresponds
to an induced subgraph. The Fair Treatment axiom in this
setting posits that if, for any coalition S disjoint from both v
and u, we have g(S∪{v}) ≥ g(S∪{u}), then it should follow
that ϕv(g) ≥ ϕu(g). However, this classical formulation fails
to consider the graph’s structure: if v is adjacent to S while
u is not, their contributions are not being fairly compared. In
practice, such asymmetries can distort attribution, especially
in GNNs where node relevance depends strongly on graph
connectivity.

One potential remedy is to restrict comparisons to subgraphs
that are connected to both u and v. However, this approach
suffers when u and v are far apart in the graph, as the number
of such subgraphs becomes vanishingly small, introducing a
new source of bias.

To overcome this limitation, we propose redefining the
Fair Treatment axiom in terms of ego networks. Since ego
networks directly reflect how GNNs propagate information and
build node representations, they offer a more appropriate basis
for comparing node importance. Specifically, we introduce a
GNN-aware Fair Treatment axiom: given two nodes v and
u, if the following conditions hold for all layers ℓ, then
ϕv(g) ≥ ϕu(g):

∀ℓ :

{
g(Egoℓ(v)) ≥ g(Egoℓ(u)),

g(N \ Egoℓ(v)) ≤ g(N \ Egoℓ(u)).
(4)

This formulation leverages the structure of ego networks to
assess the relative influence of nodes in a way that is consistent

with how GNNs process input data, offering a principled and
efficient foundation for attribution in molecular graphs.

Indeed, Equation (4) assesses the relative importance of ver-
tices v and u by considering two factors: (1) the influence each
node exerts on the GNN’s prediction when its corresponding
ego-network is removed, and (2) the similarity between the
GNN’s prediction on ego-network-based subgraphs and the
original full-graph prediction. This dual criterion ensures a
robust comparison grounded in both structural and functional
perspectives.

Building on this principle, we introduce ESPAM, a feature
attribution method tailored for GNNs, which quantifies node-
level contributions based on ego-networks and the FESP
framework. Given a graph G = (V,E) and a trained GNN
model f , we define the cooperative game (N, g) and its
solution ϕ as follows:

• The set of players: The set of players N corresponds to
the collection of ego-networks {Egoℓ(v)|v ∈ V } for a
given layer ℓ.

• The characteristic function: Let the predicted class of
the input graph G by model f be c. The characteristic
function g is defined as: g = fc, where fc(G

′) denotes
the predicted probability for class c when the model is
evaluated on subgraph G′ ⊆ G.

• The solution ϕ: The attribution score ϕi(g) for node i is
given by:

ϕi(g) =
1

L

L∑
ℓ=1

ϕ
(ℓ)
i (g), (5)

where ϕ(ℓ) represents the FESP attribution computed for
radius ℓ over the cooperative game defined by the ego-
networks at that radius, i.e., ({Egoℓ(v) : v ∈ V }, fc).
The parameter L controls the aggregation depth, i.e.,
the number of GNN layers considered when computing
attributions. Since our goal is a model-agnostic explainer
with no assumptions on the GNN architecture, L is
treated as a hyperparameter, chosen empirically based
on the relevance and stability of the explanations. More
precisely, the optimal L is chosen by maximizing H-
Fidelity [13], an objective function that measures the
quality of the explanations.

The following result guarantees that our attribution method
ESPAM adheres to a principled foundation by satisfying key
axiomatic properties, including our proposed adaptation of Fair
Treatment.

Theorem 1. The solution ϕ satisfies the three axioms of
Efficiency, Symmetry, and the proposed GNN-aware Fair
Treatment (as defined in Equation (4))1.

B. From molecule-level to receptor-molecule interaction ex-
planation

We propose a method to analyze how specific atoms within
a molecule interact with distinct regions of a receptor’s amino

1Proof available at https://github.com/atakml/ESPAM



acid sequence. This approach extends traditional molecular
graph attribution by incorporating receptor–ligand interactions,
thereby enhancing the interpretability of molecular binding
mechanisms. G protein-coupled receptors (GPCRs), including
olfactory receptors, are composed of well-defined structural
segments, each contributing to different aspects of the recep-
tor’s function and activation. These segments can be broadly
categorized as follows:

• Transmembrane Helices: GPCRs typically span the
cell membrane through seven α-helical segments. These
transmembrane helices form a barrel-like architecture,
enclosing a ligand-binding pocket. They are critical for
detecting extracellular molecules and transmitting confor-
mational changes to the receptor’s intracellular side.

• Extracellular Loops (ECLs): Positioned between the
transmembrane helices on the extracellular side, these
loops contribute to ligand specificity and binding affinity.
They may undergo structural rearrangements during lig-
and interaction, influencing the receptor’s activation state.

• Intracellular Loops (ICLs): Located on the cytoplasmic
side, these loops connect the helices and mediate signal
transduction by interacting with intracellular partners
such as G proteins. Their configuration directly affects
the initiation of downstream signaling cascades.

Fig. 2: Snake plot representation of the OR1A1 sequence
(A) and three-dimensional structure (B). The colored regions
indicate the transmembrane helices (TMH). The loops between
TMH2-3, TMH4-5, and TMH6-7 are the extracellular loops 1, 2,
and 3 (named ECL1, ECL2 and ECL3) while the loops between
TMH1-2, TMH3-4, and TMH5-6 are the intracellular loops 1,
2, and 3 (ICL1, ICL2, ICL3).

Figure 2 presents a visualization of the segmental structure
of the OR1A1 receptor. Since the transmembrane helices are
primarily responsible for ligand binding and activation, we
focus on assessing how each helical segment influences the
model’s interpretation of molecular atom importance. Specif-
ically, we aim to understand how masking different helical
regions of the receptor affects the contribution of individual
atoms in the ligand to the model’s prediction.

To formalize this, we construct a matrix C ∈ Rn×m,
where each row corresponds to one of the n atoms in the
molecule and each column to one of the m helical segments
in the receptor. The entry Cij quantifies the influence of

helical segment j on the contribution of atom i to the model’s
decision.

Each row of the matrix is derived from a separate cooper-
ative game, defined as follows:
Players: The set of players consists of all helical segments of

the receptor.
Characteristic Function: For a given atom i, the characteris-

tic function gi(S) measures the change in its contribution
to the prediction when a coalition S ⊆ helical segments
of the receptor is masked. Formally:

gi(S) = sigmoid
(
ϕi(g)− ϕS

i (g)
)
, (6)

where ϕi(g) is the original attribution score of atom i
(computed using Equation (5)) and ϕS

i (g) is the attri-
bution after masking the amino acids in segments S.
Masking is performed by substituting the correspond-
ing residues with the [MASK] token in the ProtBert-
encoded [21] sequence, effectively removing their con-
tribution from the receptor representation.

Given this setup, each entry Cij is defined as the FESP
attribution score of helical segment j in the game associated
with atom i. That is:

Ci,j = φj(gi), (7)

where φj denotes the FESP solution for player j, and gi is the
characteristic function for atom i as defined in Equation (6).

Proposition 2. The sum of columns at row i in the matrix
C corresponds to the sigmoid of the original contribution of
atom i to the model’s prediction:

∑
j Cij = sigmoid (ϕi(g)) .

By aggregating row-wise, we define the overall contribution
of helical segment j as the sum of its corresponding row in
the matrix C. We can then show the following:

Theorem 3. Let the cooperative game be defined with he-
lical segments as players and the characteristic function
g(S) =

∑
i∈atoms

sigmoid(ϕi−ϕS
i ). Then, the resulting attribution

of helical segments, obtained by aggregating the matrix C
satisfies the axioms of Efficiency, Symmetry, and the Fair
Treatment.

V. EXPERIMENTS AND RESULTS

In this section, we address the following research questions
related to the explainability and effectiveness of ESPAM:
Q1 How does ESPAM compare to state-of-the-art explanation

methods in terms of performance and fidelity?
Q2 Can ESPAM capture changes in key molecular sub-

structures when molecular properties are modified in the
context of protein–molecule interaction tasks?

Q3 Is ESPAM capable of revealing how specific atoms inter-
act with the helical regions of the receptor, as interpreted
by the underlying predictive model? To what extent can
ESPAM help uncover the sources of the model’s predic-
tion errors, thereby improving trust and transparency?

To address Q1, we conduct two types of quantitative exper-
iments. First, we evaluate the effectiveness of ESPAM using



a conventional GNN and benchmark it against state-of-the-art
explanation methods on the synthetic BA2-Motifs dataset, as
well as two real-world molecular datasets: AIDS and BBBP.
This allows us to assess the faithfulness and relevance of the
explanations in both controlled and practical settings. Second,
we extend our evaluation to a more complex, large-scale
scenario by applying ESPAM to five distinct sets of pro-
tein–molecule pairs, using the GNN-CLS model specifically
designed for protein–ligand interaction prediction.

To address Q2 and Q3 research questions, we still use GNN-
CLS along with known protein-molecule pairs, leveraging
chemical background knowledge regarding their interactions.

The remainder of this section is organized as follows. In
Section V-A, we present the evaluation metrics used to assess
explanation quality. Section V-B addresses Q1 by outlining the
evaluation protocol and comparing ESPAM against state-of-
the-art methods on benchmark datasets. Section V-C focuses
on Q2, evaluating the ability of ESPAM to identify relevant
molecular substructures in protein–molecule interactions. Fi-
nally, in Section V-D, we address Q3 by providing qualitative
results that illustrate ESPAM’s behavior.

A. Evaluation Method

A good explanation should be both concise and faithful
to the model’s decision. In other words, it must not only
highlight a minimal subset of input features but also capture
the essential elements responsible for the model’s prediction.
Ideally, removing the explanation should significantly impact
the prediction, while the explanation alone should approximate
the original decision.

To quantitatively assess these properties, we employ three
core metrics: fidelity, infidelity, and sparsity. Let G denote
the input graph, m the explanation mask (a subgraph or node
subset), and f the model being explained.

Fidelity evaluates how much the model’s prediction drops
when the explanatory part of the input is removed. A high
fidelity score indicates that the explanation captures crucial
elements of the model’s decision: Fidelity(G,m) = fc⋆(G)−
fc⋆(G \ m), where c⋆ is the predicted class label with the
highest confidence assigned by f to G.

Infidelity measures how closely the model’s prediction on
the explanation alone matches the original output. A lower
infidelity indicates that the masked part alone is sufficient to
support the model’s prediction: Infidelity(G,m) = fc⋆(G) −
fc⋆(m).

Sparsity quantifies how compact the explanation is by
measuring the relative size of the mask compared to the full
input: Sparsity(G,m) = 1− |m|

|G| , where |.| denotes the number
of nodes in the corresponding graph or subgraph.

These metrics are often in tension: for instance, using
the entire input trivially maximizes fidelity and minimizes
infidelity, but yields no sparsity. Conversely, an overly small
mask may be sparse but provide poor fidelity and infidelity
scores. Hence, evaluating them jointly is essential for fair
and meaningful comparisons. To address this trade-off, we
adopt the H-Fidelity metric [13] which harmonizes fidelity,

infidelity, and sparsity into a single scalar measure. The idea
is to reward explanations that are both effective (high fidelity,
low infidelity) and concise (high sparsity). It does so by first
normalizing fidelity and infidelity with respect to sparsity:

N-Fidelity = Fidelity(G,m) · (1− Sparsity(G,m))
N-Infidelity = Infidelity(G,m) · Sparsity(G,m)
so that large masks are penalized when measuring fidelity

and small masks are penalized when measuring infidelity.
These normalized quantities are then combined via a harmonic
function:

H-Fidelity(G,m) =
(1 + N-Fidelity)(1− N-Infidelity)
(2 + N-Fidelity − N-Infidelity)

This formulation ensures that explanations which are compact,
preserve the model’s confidence, and faithfully reflect its rea-
soning receive higher scores. Throughout our experiments, we
report H-Fidelity as a primary evaluation metric for comparing
the overall quality of different explanation methods.

While the aforementioned metrics are designed to evaluate
explanations in the form of hard masks (that is, discrete
subgraphs extracted from the original input) many explain-
ability methods, including ESPAM, GStarX, GraphSVX, and
GradCAM, produce soft masks, which assign continuous im-
portance scores to individual elements of the graph (e.g., nodes
or edges). These soft masks are not directly compatible with
the defined metrics, which assume a binary inclusion of input
elements. To enable a fair and consistent evaluation across
both soft- and hard-mask methods, we adopt the following
standardization procedure. Given a soft mask generated for
a graph G, we convert it into a corresponding hard mask
by selecting the top-k most important elements such that the
resulting mask satisfies a sparsity constraint of at least 0.5.
In other words, the selected subset includes no more than
half the original graph elements. Among all possible values
of k, we choose the one that yields the highest H-Fidelity
while satisfying this sparsity threshold. If multiple values of
k produce similar results, we select the one that achieves the
best trade-off between fidelity and sparsity. For methods that
inherently produce hard masks, we directly use their outputs
to compute H-Fidelity without any transformation.

B. Answering Q1: Comparison of ESPAM with state-of-the-art
methods

To assess the performance of ESPAM relative to state-
of-the-art explainability techniques, we conduct experiments
using a standard Graph Neural Network (GNN) architecture.
Specifically, we employ a model composed of three Graph
Convolutional Network (GCN) layers [25], each with a hidden
dimension of 20. The node-level embeddings are aggregated
using both max and average pooling to construct a graph-level
representation, which is then passed through a linear layer to
produce the final prediction.

We evaluate this model across three datasets: BA2-Motifs,
AIDS, and BBBP. The BA2-Motifs dataset [5] is a synthetic
benchmark tailored for evaluating graph explanation methods.
It comprises graphs labeled positive if they contain a house-
shaped motif, and negative if they contain a 5-cycle, providing



a controlled environment to assess an explainer’s ability to
recover ground-truth motifs. The AIDS dataset [26], derived
from molecular data, focuses on predicting anti-HIV activity
and is widely used in the evaluation of molecular explainabil-
ity. The BBBP dataset [27] assesses whether molecules can
cross the blood-brain barrier, making it particularly pertinent
for applications in pharmacokinetics and drug design.

For each dataset, we split the data into training (80%),
validation (10%), and test (10%) sets. Model selection is
performed based on the highest validation accuracy during
training. Table I summarizes the key characteristics of these
datasets and reports the corresponding classification perfor-
mance of the GNN model used in our experiments.

Table II presents a comparison of ESPAM against
seven state-of-the-art explainability methods: PGExplainer [5],
GNNExplainer [4], GradCAM [6], PGMExplainer [5],
GraphSVX [12], GStarX [13], and SubgraphX [10]. ESPAM
consistently achieves the highest H-Fidelity scores across all
three benchmark datasets, highlighting its superior capability
in generating faithful and compact explanations. To evaluate
the statistical significance of these results, we performed
paired t-tests comparing ESPAM to each baseline method.
The findings show that ESPAM significantly outperforms all
competitors, with p-values consistently below 0.01, confirming
strong statistical significance. The only exception occurs in
the comparison with GraphSVX on the AIDS dataset, where
the p-value is 0.06. Although this result still favors ESPAM,
the difference does not meet the conventional significance
threshold of 0.05.

C. Answering Q2: Evaluating ESPAM’s ability to capture
important molecular parts in protein–molecule interaction

We evaluate the ability of ESPAM to explain predictions
made by the GNN-CLS model proposed in [1], focusing on
its capacity to detect variations in crucial molecular sub-
structures as molecular properties are altered. Our analysis is
conducted on protein–molecule pairs involving four olfactory
receptors with distinct response profiles: broad (OR1A1),
specific (OR5K1 and OR51E2), and narrow (OR7D4). Ad-
ditionally, we include a mixed test dataset comprising diverse
protein–molecule interactions. These receptors were selected
because their functional mechanisms are well-documented in
the chemical and biological literature [28], [29], [30], [31],
providing a basis for qualitative validation of the generated
explanations.

Among the seven explainability methods evaluated in the
previous section, only GraphSVX, GStarX, and SubgraphX
are fully model-agnostic, relying solely on the model’s output
without requiring access to internal parameters or gradients.
Therefore, we focus our comparison on these three approaches.
However, due to SubgraphX’s prohibitive computational cost,
it is not practically applicable to the GNN-CLS model. As
a result, GStarX and GraphSVX are retained as the primary
baselines in this setting.

It is worth noting that GraphSVX does not natively support
edge features, which are crucial in the GNN-CLS input rep-

resentation. Although we attempted to modify GraphSVX to
accommodate edge attributes, these efforts were unsuccessful.
Given this limitation, we instead employ KernelSHAP [15]
on the nodes of the graph for our protein–molecule interaction
experiments. This approach is closely aligned with GraphSVX,
differing primarily in that it does not attempt to reconnect
disconnected components within coalitions. However, this dis-
tinction is not problematic in the context of GNN-CLS, which
relies on transformer-based global attention rather than local
connectivity. In fact, reconnecting disconnected components
may introduce artifacts when explaining such architectures,
and we argue that preserving the original graph structure yields
more realistic attributions.

It is important to emphasize that the GNN-CLS model used
in these experiments is pre-trained on a large and diverse
set of protein–molecule pairs and remains fixed across all
receptor categories. This ensures that any observed differences
in explanation quality are attributable to the explanation meth-
ods themselves rather than to variations in model behavior.
Table III provides detailed statistics for each receptor dataset
along with the corresponding prediction performance of the
model.

Table IV presents the H-Fidelity scores for three explanation
methods across five receptor-molecule pair datasets. ESPAM
consistently outperforms the baselines, achieving the highest
H-Fidelity score on all datasets, indicating superior ability to
generate concise and faithful explanations. While KernelSHAP
generally ranks second, especially on OR51E2 and Mix, its
performance shows higher variance. GStarX demonstrates sta-
ble but lower fidelity across the board. Paired t-tests reveal that
ESPAM’s improvements over both baselines are statistically
significant, with p-values below 0.01 for all comparisons.
These results highlight the effectiveness and robustness of
ESPAM across a variety of molecular prediction tasks.

D. Answering Q3: Qualitative ESPAM’s results

In this section, we focus on verifying the alignment of ex-
planations generated by ESPAM with established background
knowledge. Our experiments specifically analyze the explana-
tions provided for molecular interactions with the olfactory
receptors OR1A1, OR5K1, and OR51E2. Predictions for the
OR7D4 receptor were not further analyzed due to the limited
number of active pairs.

The qualitative experiment is divided into two complemen-
tary parts, each focusing on a different aspect of the molecule-
receptor interaction. On the molecule side, we investigate
whether the molecular substructures identified by ESPAM as
important are indeed responsible for the binding interaction.
Conversely, on the receptor side, we examine whether the
predictions made by ESPAM can provide insights into the
key features of the receptor that drive the binding interaction.
Together, these two analyses aim to address the following
question: Can ESPAM accurately identify the crucial factors
on both the molecule and receptor sides that contribute to
the binding interaction? We will also attempt to diagnose the
causes of the model’s prediction errors. Specifically, we will



TABLE I: Summary statistics of classical benchmark datasets and corresponding conventional GNN performance metrics.

Dataset # Graphs (#Positive, #Negative) Avg Nodes Avg Edges Model Acc (Test) F1 ROC-AUC PR-AUC
BA2-Motifs 1000 (500, 500) 25 50.93 0.970 0.99 1.00 1.00
AIDS 2000 (400, 1600) 15.69 32.39 0.990 1.00 1.00 1.00
BBBP 1640 (389, 1251) 24.08 51.96 0.787 0.81 0.76 0.89

TABLE II: Comparison of H-Fidelity scores (mean ± standard
deviation) achieved by different explanation methods across
multiple datasets, each evaluated over five random seeds. For
each dataset, the highest score is shown in bold. If the second-
best score is not statistically different from the best, it is
underlined.

Method BA2-Motifs AIDS BBBP

PGExplainer 0.544 ± 0.0029 0.526 ± 0.0051 0.542 ± 0.0008
GNNExplainer 0.481 ± 0.0005 0.515 ± 0.0007 0.522 ± 0.0003
GradCAM 0.539 ± 0.0000 0.506 ± 0.0003 0.511 ± 0.0015
PGMExplainer 0.482 ± 0.0000 0.492 ± 0.0000 0.501 ± 0.0000
GStarX 0.549 ± 0.0013 0.527 ± 0.0002 0.532 ± 0.0001
GraphSVX 0.575 ± 0.0009 0.529 ± 0.0016 0.550 ± 0.0017
SubGraphX 0.541 ± 0.0121 0.502 ± 0.0028 0.521 ± 0.0096
ESPAM 0.580 ± 0.0000 0.531 ± 0.0000 0.557 ± 0.0000

examine whether the errors arise from the quality of the dataset
used to train the GNN-CLS model.

1) Identifying the Binding Atoms: In this section we ex-
amine the capability of ESPAM in finding the atoms of the
molecule responsible for the binding.

The results separated by the receptor are as follows2:

• OR51E2: This receptor is mainly sensitive to short-
chain fatty acids [30]. In chemistry, a fatty acid is a
carboxylic acid (R-COOH functional group) with an
aliphatic chain (chain of carbon atoms). Figure 3 (c–d)
shows that ESPAM effectively captures these functional
groups and makes a different decision between long-
chain and short-chain fatty acids. The model indeed
captures these chemical functions as being important for
the decision. For octanoic acid, it is interesting to note
that although the carboxylic acid function is detected in
the structure of this odorant, the decision to predict the
molecule as inactive appears to come from the length of
the aliphatic chain.

• OR5K1: [31] investigated how various ligands interact
with the 5K1 odorant receptor. Their findings indicate
that the aliphatic (non-aromatic) side chains attached to
the pyrazine ring of these ligands play a crucial role in
binding to OR5K1. The explanations in Figure 3 (e–g)
demonstrate the same results as [31]. Interestingly, a
comparison between Diethylpyrazine and 2-isopentyl-3-
methoxypyrazine shows that ESPAM well destinguishes
between the aliphatic chains and ether functional group
(C-O-C).

• OR1A1: We evaluate the expressivity of ESPAM on two
molecules (-)-carvone and (+)-carvone (Figure 3 (a–b)).

2The code to reproduce the result for all examined molecules is available
at https://github.com/atakml/ESPAM

Notably, the model identifies the carbonyl group (C=O)
and the isopropenyl tail as key features distinguish-
ing the two isomers. Functional assays by [28] found
that (+)-carvone has reduced activity compared to (-)-
carvone, due to the carbonyl group’s hydrogen bonding
within the binding pocket and the isopropenyl group’s
orientation. Our model successfully captures these subtle
differences, highlighting its ability to discern nuanced
structural features influencing binding affinity. As shown
in Figure 3 (a–b), ESPAM indicates that the oxygen atom
of the ketone group and the isopropenyl group in (+)-
carvone have lower activity than their counterparts in (-)-
carvone, which are primarily responsible for binding. This
difference arises from variations in chirality, affecting the
relative positioning of these functional groups within the
binding pocket, as reported by [28].

OR1A1 (a) (-)-carvone (b) (+)-carvone

OR51E2 (c) Isobutyric acid (d) Octanoic acid

OR5K1 (e) 2-Vinyl-
pyrazine

(f) Diethyl-
pyrazine

(g) 2-isopentyl-
3-methoxy-
pyrazine

Fig. 3: Heat map visualizations highlighting substructural rele-
vance for molecules binding to three olfactory receptors. (a–b)
Stereoisomers of carvone interacting with OR1A1, both cor-
rectly predicted as positives. (c–d) Short- and long-chain fatty
acids binding to OR51E2 with correct model predictions. (e–g)
Molecules sharing a pyrazine scaffold binding to OR5K1, where
the model consistently identifies aliphatic chains as important
regions. These examples demonstrate ESPAM’s effectiveness in
identifying chemically meaningful binding patterns.

2) Identifying the Key Receptor Parts: In this section,
we study the interaction between the atoms and the helical
segments of the proteins. To this end, we use the molecules
(-)-carvone and (+)-carvone as the molecular examples and the
receptor OR1A1. The reason for selecting these molecules and
this receptor is based on the existing background knowledge
about the interaction between these two molecules and the



TABLE III: Datasets of receptor-molecule pairs and corresponding GNN-CLS performance metrics.

Proteins #Pairs (#Positive, #Negative) Avg Nodes Avg Edges Model Acc (Test) F1 ROC-AUC PR-AUC
OR1A1 561 (136, 425) 10.33 20.02 0.81 0.70 0.90 0.75
OR5K1 240 (33, 207) 9.78 18.83 0.96 0.87 0.97 0.93
OR7D4 176 (14, 162) 11.68 23.50 0.96 0.82 0.98 0.81
OR51E2 196 (28, 168) 11.58 22.67 0.87 0.28 0.57 0.37
Mix 1565 (348, 1217) 10.05 19.39 0.86 0.70 0.86 0.69

TABLE IV: Comparison of H-Fidelity scores (mean ± stan-
dard deviation) across protein datasets for different explanation
methods. Each row corresponds to a protein dataset, and the
highest H-Fidelity score in each row is highlighted in bold.

Dataset GStarX KernelSHAP ESPAM

OR5K1 0.508±0.0000 0.521±0.0002 0.528±0.0000
OR51E2 0.517±0.0000 0.531±0.0033 0.549±0.0000
OR1A1 0.546±0.0000 0.552±0.0011 0.571±0.0000
OR7D4 0.515±0.0000 0.524±0.0012 0.536±0.0000
Mix 0.523±0.0000 0.537±0.0004 0.546±0.0000

protein [28]. However, it should be noted that our goal is to
investigate whether the interactions that the model identifies
align with the knowledge of the activity of the receptor.

Our experiments involve a two-step process. First, we com-
pute the matrix C from Equation (7). Then, for each segment,
we mask it and measure the resulting change in the model’s
decision. By comparing the matrix, decision changes, and
heatmaps from SectionV-D1, we can verify whether the matrix
reflects the model’s behavior. This comparison also enables us
to determine if the model has learned the known interactions
by aligning the matrix with background knowledge.

Figures 4 and 5 confirm that the total contribution of the
segments is correlated with their ability to alter the decision
when masked. Furthermore, when 3 (a–b) is compared with
the heatmaps, it becomes clear that atoms with higher impor-
tance in the molecule tend to exhibit stronger interactions.
These two observations collectively support the conclusion
that the heatmap interactions are consistent with the model’s
behavior. Figures 4 and 5 also reveal that transmembrane
helices 3 and 6 play a dominant role in the model’s prediction
for both molecules. It is well established that in GPCRs, trans-
membrane helices 3 and 6 harbor the most critical functional
motifs for ligand recognition and receptor activation [32].
Notably, the contribution of these helices is more significant
for (-)-carvone than for (+)-carvone, which is in line with the
established activity profile of the receptor, where (-)-carvone
exhibits higher activity than its (+) enantiomer.

3) Explanation of the Model Errors: Prediction errors are
often related to the data used to train a model [33], particularly
when the data is imbalanced. Therefore, we sought to analyze
the role of local information density in the chemical space of
the tested odorants for each OR. We counted the number of
neighbors for each molecule and compared the results between
two categories of molecules: those with correct predictions and
those with incorrect predictions (Figure 6). Two molecules are
considered neighbors if they have a Tanimoto coefficient less

Fig. 4: Interaction Heat Map and Atom Indices of (-)-carvone.
Numbers written next to each segment indicate its total contri-
bution C∗i value. Plus indicates the decision change, and minus
indicates no change in the decision by masking the segment.

than 0.3 using a Morgan2 fingerprint (2048 bits). Notably, for
OR51E2 and OR5K1, the local information density is lower
for molecules that are poorly predicted, suggesting that this
may be a contributing factor to the model’s errors. In contrast,
the results for OR1A1 are more nuanced. While the average
local information density is higher for correctly predicted
molecules than for poorly predicted molecules, the difference
is not statistically significant. This may be attributed to the
greater chemical diversity of the OR1A1 dataset, given that it
is a receptor with a very broad response spectrum.

VI. CONCLUSION

This study introduces the theoretical foundations of a novel
method, called ESPAM, designed to explain the decision-
making process of molecular graph neural networks. Our
approach substantially outperforms existing methods in terms
of accuracy, efficiency, and interpretability. Moreover, we have
successfully applied ESPAM to a complex GNN-CLS model,
which predicts the intricate interactions between a protein
(here an olfactory receptor) and a small molecule (an odorant),



Fig. 5: Interaction Heat Map and Atom Indices of (+)-Carvone.
Numbers written next to each segment indicate its total contri-
bution C∗i value. Plus indicates the decision change, and minus
indicates no change in the decision by masking the segment.

Fig. 6: Number of neighbors for correctly predicted (OK class)
and poorly predicted (PB class) molecules in the datasets associ-
ated with the OR1A1, OR5K1, and OR51E2 receptors. A Mann-
Whitney U test was performed to compare the distributions of
neighbor counts between the two classes (circle and square are
respectively average and median values).

yielding insights that are consistent with the known functions
of these (macro)molecular entities.
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