
Tuning SAT solvers for LTL Model Checking
Anissa Kheireddine

EPITA, LRE, Kremlin-Bicêtre
Sorbonne Université, CNRS, LIP6, Paris
France, anissa.kheireddine@lrde.epita.fr

Etienne Renault
EPITA, LRE, Kremlin-Bicêtre
France, renault@lrde.epita.fr

Souheib Baarir
Sorbonne Université, CNRS, LIP6, Paris

Université Paris Nanterre, Nanterre
Now at EPITA, LRE, Le Kremlin-Bicêtre France,

souheib.baarir@lip6.fr

Abstract—Bounded model checking (BMC) aims at checking
whether a model satisfies a property. Most of the existing
SAT-based BMC approaches rely on generic strategies, which
are supposed to work for any SAT problem. The key idea
defended in this paper is to tune SAT solvers algorithm using:
(1) a static classification based on the variables used to encode
the BMC into a Boolean formula; (2) and use the hierarchy
of Manna&Pnueli [33] that classifies any property expressed
through Linear-time Temporal Logic (LTL). By combining these
two information with the classical Literal Block Distance (LBD)
measure [46], we designed a new heuristic, well suited for solving
BMC problems. In particular, our work identifies and exploits
a new set of relevant (learnt) clauses. We experiment with these
ideas by developing a tool dedicated for SAT-based LTL BMC
solvers, called BSaLTic. Our experiments over a large database of
BMC problems, show promising results. In particular, BSaLTic
provides good performance on UNSAT problems. This work
highlights the importance of considering the structure of the
underlying problem in SAT procedures.

Index Terms—Bounded model-checking, SAT, Structural in-
formation, Linear Temporal Logic, Optimization

I. INTRODUCTION

Model checking [12] is an automated procedure that es-
tablishes the correctness of hardware and software systems
ranging from the simple program that runs a microwave to the
very complex software driving a nuclear power plant, passing
by our smartphones and cars. Model checking is therefore
very useful for eliminating bugs and increasing confidence in
hardware designs and software products.

Usually, the program (model) at hand is expressed in a
formal language (e.g., SMV [35], Verilog [37], Promela [25],
etc.), while the property is expressed as a temporal logic
formula (e.g., LTL [41], CTL [13], PSL [20], etc.). A prop-
erty is said to be verified if no execution of the model
can invalidate it, otherwise it is violated. To achieve this
verification, two approaches have been considered: explicit
model checking [26] and symbolic model checking [8], [10].
In explicit model checking, the behaviour of the system as
well as the property are represented as automata: a Kripke
structure for the system [2] and a Büchi automaton for the
LTL property [49]. Then, a synchronous product is performed
between the Kripke and the automaton of the (negated) prop-
erty. If the product is empty, the property is verified, otherwise
it is violated. The main drawback of this technique is the state-
space explosion problem [14], i.e., the size of the system state-
space grows exponentially. This problem can be tackled using

symbolic model checking, that represents states implicitly
using Boolean functions (e.g., BDD [8], SAT formula [5]).

Regardless of the used technique, properties are expressed
using temporal logic. In this paper, we focus on the Linear-
time Temporal Logic (LTL) since it is capable of expressing
many properties of interest and has been extensively stud-
ied [1], [33], [39]. For instance, Manna&Pnueli [33] estab-
lished a full hierarchy of the properties that can be expressed
using LTL. This hierarchy has been exploited for tuning the
performance of some model-checkers [18], [21], [40].

The objective of the paper is to improve the solving of
BMC problems, as far as SAT techniques are concerned. This
is realized through the exploitation of the structure of the BMC
problem. Indeed, we rely on: (1) a characterization of the vari-
ables encoding the BMC problem as a Boolean (SAT) formula
(Section III); (2) a categorization of the LTL properties w.r.t. to
the hierarchy of Manna&Pnueli (Section IV). Sections V and
VI give a preliminary study on the characteristics of BMC
problems in the SAT context. This latter section introduces
the framework BSaLTic1 we developed to achieve this study.
Section VII explains how the usage of these information
can improve the global performance of modern SAT solvers.
Experiments through BSaLTic are presented in Section VIII.

II. RELATED WORK

Most existing work focuses on building generic approaches
for tuning SAT solver [23], [28], [36], [46], [52] and rarely
exploits the information derived from the original problem.
In this paper, we focus our study on BMC problems offering
two main characteristics: the classification of clauses and the
specificity of the studied LTL property. To our knowledge,
none of these two elements have been studied together in
this context. Our previous work [29] can be considered at
the corner stone of this presented work. Regardless of the
LTL specificity, this prior study [29] suggests a generic clause
partitioning methodology and applied it in the case of BMC
problems. This partitioning leads to new optimizations for the
SAT solving to identify and protect interesting learnt clauses.

The work of [3] investigates the origin of each variables
w.r.t. its unrolling depth. The authors found a correlation
between these time steps and the communities found in the

1For a description of our setup, detailed results and code, see https:
//akheireddine.github.io/

https://akheireddine.github.io/
https://akheireddine.github.io/


CNF encoding. The study also demonstrates that the Literal
Block Distance [46] measure used in almost all modern
SAT solvers to identify good learnt clauses, is related to the
unrolling steps measure. The authors tried a number of hacks
in order to exploit the unrolling iterations of variables. The
proposed heuristics were not fruitful such as: forcing variable
elimination according to their unrolling iterations, shifting
variables score, protecting clauses using a different metric
than LBD. Still, this experimental study can complement our
work and point out some unsuccessful results of the authors.
Other BMC-based researches [44], [50], [51] present a variety
of optimizations in the context of SAT-based BMC, such as:
variable ordering heuristics, branching heuristics, studying the
symmetry structure of the BMC formula. These works could
be refined using the information exploited in this present paper.

Finally, the hierarchy of Manna&Pnueli [33] has been used
to tune explicit model-checkers [18], [21], [40]. These studies
suggested a decomposition of the input automaton or propose
optimizations for specific classes of the hierarchy.

To the best of our knowledge, this paper is the first covering
all the classes of this hierarchy in the context of SAT-
based BMC. Most of the literature gives attention to safety
or guarantee properties [43], [47] only, such as IC3 [7] or
PDR [19] procedures. There exist some rigorous methods to
convert liveness properties into safety properties [4] and thus
IC3/PDR approaches can be applied. In this paper, we go
further by specializing the verification procedure for each class
of the hierarchy.

III. SAT-BASED BOUNDED MODEL CHECKING

Existing model-checking approaches [8], [10] suffer from
the state-space explosion problem [14]. This issue is tackled
using SAT-based BMC methods [6], [11], [22] which has a
low memory footprint thanks to (1) the restrictions of the
verification to sequences bounded by some integer k, and (2)
the use of Boolean Satisfiability (SAT) techniques. Given a
model M , an LTL property p (after negation), and a bound k,
the SAT-based BMC approach builds a propositional formula
representing the combination (M ⊗ p) of M and p, both
unrolled up to k steps. The formula is said to be satisfiable iff
there exists a violation of the property of maximum length k.
Otherwise, it is unsatisfiable and the property is verified up to
length k. Equation 1 depicts the encoding of the synchronized
product into a Boolean formula.

Initial stats︷ ︸︸ ︷
I(s0)

∧ Transitions︷ ︸︸ ︷
T (s0, s1)

∧
· · ·

∧
T (sk−1, sk)︸ ︷︷ ︸

Model

∧
Pk︸︷︷︸

Property

(1)

This encoding [27], [48] translates a graph (M ⊗ p) to a set
of constraints (clauses) that are a disjunction of variables.
The final Boolean formula is represented in the form of a
conjunction of clauses (CNF) and can be solved using state-
of-the-art SAT solvers. Those solvers based on the Conflict
Driven Clause Learning algorithm [34], [45], [52] are of
particular interest in this work.

Conflict Driven Clause Learning (CDCL) [52]. This algo-
rithm is one of the main methods used to solve Satisfiability
problems and is an enhancement of the DPLL algorithm
[15], [16]. CDCL algorithm performs a backtracking search,
selecting at each node of the search tree, a decision variable
that is set to a Boolean value. Each decision, called branching,
is followed by an inference step that deduce and propa-
gates forced variable assignments (a procedure called unit-
propagation). This branching process is repeated until a model
is found or a conflict is reached. In the first case, the formula
is said to be satisfiable, and the model is reported. When a
conflict is reached while no branching is active, the formula is
unsatisfiable. Otherwise, a learnt clause is generated thanks
to a procedure called conflict-analysis [34], [45].

Learnt clauses will avoid repeating the same mistake, and
therefore allow faster deductions (during conflicts analysis and
unit-propagation steps). Since the number of conflicts is huge
(avg. 5000/s [46]), controlling the size of the database storing
learnt clauses is a challenging task. It can dramatically affect
the solver’s performance. Many strategies have been proposed
to manage the cleaning of the stored clauses. One of the state-
of-the-art strategies uses the Literal Block Distance (LBD)
measure [46].

IV. MANNA & PNUELI HIERARCHY

Reactivity∧
GFpi ∨ FGqi

Recurrence
GFp

Persistence
FGp

Obligation∧
Gpi ∨ Fqi

Safety
Gp

Guarantee
Fp

T

R P

O

S G

Fig. 1: Hierarchy of Manna&Pnueli with S ∪ G ⊆ O ⊆ R ∪
P ⊆ T

LTL is a temporal logic that specifies (infinite) sequences
describing system behaviors. Lamport [30] partitioned the
properties expressed by LTL into two classes: safety (some
bad thing never happens) and liveness (some good thing even-
tually happens). In these classes, two main temporal operators
are used: F (Finally something happens) and G (Globally
something holds). For example, one can specify some atomic
proposition “a = 42” (e.g., variable a is equal to 42) that must
holds at every point in time (i.e., G “a = 42”) or eventually
holds at some future point in time (i.e., F “a = 42”).

Based on the combination of the two precedent operators,
Manna&Pnueli [33] refined the Lamport’s partitioning into six
categories (depicted in Fig.1):

• Safety (S): similar to the one described in the Lam-
port [30] classification.



• Guarantee (G): some good thing happens at least once in
the future.

• Obligation (O): combines safety and guarantee properties.
This enforces more restrictions on the sequences leading
to some good thing.

• Persistence (P): at some point, a good thing will happen
and hold forever.

• Recurrence (R): some good things will appear infinitely
often.

• Reactivity (T): combines recurrence and persistence prop-
erties. This enforces more restrictions on the sequences
between good things.

Each one has inherent characteristics that can be exploited to
tune the performance of model-checkers. To the best of our
knowledge, only common classes (safety and guarantee) have
been exploited to improve SAT-based BMC [43]. In this work,
we studied the entire hierarchy (S, G, O, P, R and T) in order
to fine tune the SAT heuristics w.r.t the handled property.

V. A PEEK INSIDE SAT-BASED BMC PROBLEMS

The main goal of this paper is to identify relevant informa-
tion that can be used to enhance CDCL-based SAT solving
of BMC problems. We identify two sources of information,
static information and dynamic information:

• Variable-based classification (static): when translating
the high-level description of the problem into a SAT
problem, we can partition the obtained variables into
three disjoint sets: M, J and P where M (model) is a
Boolean representation of original variables of the system
at hand, J (auxiliary variables) is a set of fresh variables
used to finalize the conversion into a SAT formula, and P
(property) the set of variables used to translate the Büchi
automaton of the (negated) property.
Hence, any clause in C (the set of clauses of the problem)
can be classified according to the variables it handles:
CX = {ω ∈ C | ∀v ∈ Var(ω), v ∈ X} where Var(ω) is
the set of variables forming the clause ω, X is either P
(the property), M (the model), J (auxiliary variables),
PJ (property and auxiliary variables), PM (property
and model variables), MJ (model and auxiliary vari-
ables) or PMJ (property, model and junction variables).
Note that the intersection between pairs of the seven
classes CX is empty.

• LTL hierarchy (static): when solving a BMC problem,
the LTL formula is known a priori. We can apply the
syntactic characterization of Manna&Pnueli in order to
compute its corresponding class in the hierarchy. This
allows to propose a parametrization specific to each
category of the hierarchy.

• LBD score [46] (dynamic): It is a positive integer, used
as a learnt clause quality metric (the less the better) in
almost all competitive CDCL-like SAT solvers. The LBD
of a clause can change over time and can be recomputed
each time the clause is fully assigned.

Fig. 2: BSaLTic’s Framework. The dashed box represents the
BSaLTic tool

• Learnt clauses database (dynamic): during CDCL solv-
ing, every time a new clause is generated, its LBD is
computed. According to this value, the usefulness of the
clause is guessed and a storing strategy is then applied.
When considering MapleCOMSPS [32], the winner of
the main track of the SAT competition 2016 and used as
core engine for the best solvers in the last 5 years, it will
promote the clause at hand into one of its three databases:
core (LBD≤3) for the really important clauses (never
deleted), tier-2 (LBD≤6) for not-yet-decided clauses, and
local database for the remaining clauses. Clauses in tier-
2 can be promoted to the core or downgraded to the
local database whereas those of local database can either
be promoted to tier-2 or permanently deleted. Similarly,
Kissat-MAB [42] solver, the winner of the SAT competi-
tion 2021, processes the same way by promoting clauses
in three databases: core (LBD≤2), tier-2 (LBD≤6) and
local for the remain clauses.

In this paper we propose to combine and exploit the aforemen-
tioned static information and the LBD dynamic score in order
to build a new heuristic that sharply adjusts the identification
of interesting learnt clauses to protect (in the databases) for
the SAT-based BMC solving.

VI. A STUDY OF BMC PROBLEMS USING BSALTIC

This section aims to analyze the relation between static
BMC-based information and Dynamic CDCL-based informa-
tion. The derived information will be exploited further in
Section VII. We start by introducing the BSaLTic framework
developed for our experiments. Then, we detail the benchmark
setup before performing the analysis phase through BSaLTic.

Framework. To study the characteristics of BMC problems,
we developed a tool called BSaLTic1. Fig.2 shows the architec-
ture of the framework which involves NuSMV [9], Spot [17]
and MapleCOMSPS SAT solver [32]. BSaLTic takes three
parameters as input: (1) an SMV program, (2) an LTL property
(not negated), (3) and a bound k, required for any BMC
problem. Spot is used to identify (syntactically) the class
of LTL formula it belongs to (according to the hierarchy
of Manna&Pnueli). In the other hand, NuSMV produces a
file, representing the SAT encoding of the BMC problem at
hand [27]. These two information are then processed by (our



0 10 20 30 40
% of learnt clauses

20

40

60

80

100

%
 u

sa
ge

 in
 c

on
fli

ct
 a

na
ly

sis
 - 

Ob
lig

at
io

n

1

2

3

4
5

6 7 8 9 10

Conflict analysis

0 10 20 30 40 50
% of learnt clauses

20

30

40

50

60

70

80

90

100

%
 u

sa
ge

 in
 c

on
fli

ct
 a

na
ly

sis
 - 

Pe
rs

ist
en

ce

1

2

3

4
5

6 7 8 9 10

Conflict analysis

(a) without classification of the clauses

0 5 10 15 20
% of learnt clauses

0

10

20

30

40

50

%
 u

sa
ge

 in
 c

on
fli

ct
 a

na
ly

sis
 - 

Ob
lig

at
io

n

1

2

345678910

1 2
3 4 5 6 7 8 9 10

12345678910
12
3456789101

2

3

4
5

6 7 8 9 10

12
3 4 5678910

12345678910

C
C

C
C

C
C
C

0 5 10 15 20 25
% of learnt clauses

0

5

10

15

20

25

30

35

%
 u

sa
ge

 in
 c

on
fli

ct
 a

na
ly

sis
 - 

Pe
rs

ist
en

ce
1

2

3
45678

910

1
2

3
4

5 6 7 8 9 10

1
2345678910

123
45678910
1

2

3
4

5 6 7 8 910

1

2

3
4

5 6 7 8 910

1
2345678910

C
C

C
C

C
C
C

(b) with classification of the clauses

Fig. 3: Measures on the training benchmark showing learnt clauses usage in conflict-analysis for Obligation problems (top)
and Persistence problems (bottom). Each class is colored and annotated by its LBD value.

modified version of) MapleCOMSPS solver. Note that the
SAT solver component is encapsulated inside an aggregator
of solvers [31]. Thus it will be easy to integrate (later) other
SAT solvers into the framework.

Benchmark setup. Our benchmark is composed of 1320
problems. All SMV instances (with their respective LTL
properties) come from a variety of benchmarks: the HWMC
Competition (20172 and 20203), the hardware verification
problems [9], the BEEM database [38], and from the RERS
Challenge4. Some LTL properties have been generated using
Spot [17] such that, each category of the Manna&Pnueli
hierarchy would be equivalently represented (220 formula per
category). We used various bound k for each SMV problem
k = {20, 40, 60, ..., 4000, 6000}. We omitted trivial instances
that runs less than 1 second on MapleCOMSPS solver.

Measures. To evaluate the importance of the information
presented in Section V, we built a training benchmark for each
category of LTL property, composed of 27% of the associated

2http://fmv.jku.at/hwmcc17/
3http://fmv.jku.at/hwmcc20/
4RERS models translated in NuSMV: https://tinyurl.com/29a4jcme

benchmark (60 problems per category). For each instance of
this training benchmark, we logged the information related
to each learnt clause when used in the unit-propagation and
conflict-analysis phases with its corresponding LBD value (the
training phase is done once and took 220 hours). Thus, the
usage rate of each of the classes during these two procedures
are computed by accumulating all the clauses of the same class
and the same LBD value.

Fig.3 depict these rates for Obligation and Persistence
properties (the plots of the other classes are omitted for
place constraints1). The x-axis reports the cumulative mean
percentage of generated learnt clauses on the training bench-
mark and the y-axis corresponds to the cumulative mean
usage percentage on conflict-analysis (for space constraints,
we omitted the plots of unit-propagation step but it has similar
patterns as the conflict-analysis one). Each point represents the
used percentage of learnt clauses of a certain LBD (we only
display LBD from 1 up to 10 to simplify the reading, but we
went up to 22 in practice). Fig.3b displays the various classes
of clauses. For example, on Obligation benchmark (top figure),
the purple triangle with left annotation 3 shows that 2.9% of
generated learnt clauses of class PM, have an LBD≤3 and

https://tinyurl.com/29a4jcme


are used in 16.0% during the conflict-analysis time.
From these figures, we can observe that CP always stands

out. Nonetheless, the importance of the remaining classes seem
to vary according to the group of property that is checked.

VII. CONTRIBUTION

The above study reveals that LBD could hide interesting
information. For instance, the LBD value used to define the
core database (LBD≤3) represents 8.1% of learnt clauses for
76.4% of usage. A closer look to Fig.3 reveals that half of
this usage came from the CP class and represents only 1.3%
of the learnt clauses.

The idea defended in this paper is: even if the generic
characterization of learnt clauses with the LBD measure works
efficiently for a majority of SAT problems, it can be sharply
adjusted with structural information in the case of BMC
problems. Our contribution offers an opening toward new ideas
on the identification of good selector (a specific LBD value for
each class of clauses according to the handled LTL property).

This selector identifies new sets of clauses that are relevant
during the solving process. Typically, a selector would be
of the form: protect clauses CP with LBD≤8, CJ with
LBD≤4, etc.

We present a new heuristic, called HF (computed thanks to
linear programming system) for building selectors of interest,
depending on the information collected during the training
phase. The proposed approach does not rely on a specific
SAT solver and can be implemented on top of any CDCL-
based SAT solvers. The clauses identified by this selector can
be protected in different manners. In this work, we propose
two protections strategies (see Sections VII-B and VII-C).

A. Frequency-based heuristic HF

This section introduces a way of finding interesting selectors
based on the usage frequency of a class i ∈ X (see Sec-
tion VI), namely f = %usage of Ci

%generated learnt Ci
.

The optimization problem. The idea here is to derive a
selector that does not overpass a given threshold on the number
of generated learnt clauses, while proposing a better usage
frequency. Thus, we define a linear program M(b,ϵ), that looks
for a selector that maximizes the total usage frequency w.r.t.
3 major constraints:

(1) A constraint to ensures that the total number of learnt
clauses is at most equal to that corresponding to
LBD≤b, with a precision ϵ ∈ [0, 2]. We observed that
beyond 2% margin, the number of additional clauses
becomes harmful for the solver.

(2) A constraint which ensures that the total utilisation rate
is equal to that corresponding to LBD≤b, at worst.

(3) Constraints that reflect the importance of each class of
clauses. Indeed, Fig.3b shows that some classes are more
relevant than others (for example, class CP ). This must
have an influence on the resolution of the linear system.
Therefore, we constraint the linear program to protect
much more the relevant classes of clauses by giving

them an LBD≥b. To do so, we associate a probability
to each class i ∈ X according to their relevance in
Fig.3b. The probability is calculated by taking the total
frequency of use of the clauses in a given class, and
then normalizing over the 7 classes. Thus, for a set of
classes S ⊆ X , having a probability higher than a given
threshold5, we force the system to generate a solution
where the LBD score of the class i ∈ S is at least equal
to b (LBD≥b).

The formal description of the linear system needs the
introduction of the following variables and notations:

- xj
i : the decision variable of class i with LBD≤j.

- Lj
i : the percentage of generated learnt clauses (x-axis) of

class i with an LBD≤j.
- Uj

i : the usage rate of class i (y-axis) with an LBD≤j.
- b: LBD value of reference used in the constraints.
- ϵ: the precision gap.
Hence, our optimization problem, M(b,ϵ), is:

M(b, ϵ) = maximize
∑
i∈X

fi =
∑
i∈X

∑
j≥1

% usage︷ ︸︸ ︷
xj
iU

j
i

xj
iL

j
i︸ ︷︷ ︸

% learnt

s.t.



∑
i∈X

∑
j≥1

xj
iL

j
i ≤ (

∑
i∈X

b∑
j=1

Lj
i ) + ϵ (1)

∑
i∈X

∑
j≥1

xj
iU

j
i ≥

∑
i∈X

b∑
j=1

U j
i (2)

b - 1∑
j=1

xj
i = 0 ∀i ∈ S (3)∑

j≥1

xj
i = 1 ∀i ∈ X

xj
i ∈ {0, 1} ∀i ∈ X, ∀j, 0 < j ≤ 22

The system is applied on both conflict-analysis and unit-
propagation procedures. We then obtain two selectors (the
optimal solution for each of the two procedures). Naturally, we
will opt for the solution with the best frequency usage in both.

Instantiation of the optimization problem. State-of-the-art
solvers like MapleCOMSPS [32] identifies two particulars
LBD values of interest: LBD≤3 and LBD≤6. Clauses having
the former LBD value belong to the core database and are
never deleted. Those clauses having the latter LBD value
belong to the tier-2 database and are treated with a finer
deletion strategy. The Kissat-MAB [42] solver fellow the same
reasoning but changing the LBD≤3 to LBD≤2 for the core
database. Hence, we propose to derive our selectors according
to these LBD values: S3=M(3,ϵ) (for LBD≤3) and S6=M(6,ϵ)
(for LBD≤6). We recall here that we have defined these
selectors for each category of the hierarchy of Manna&Pnueli.
Each linear program was solved in less than 5 seconds using
the Gurobi Optimizer [24].

5According to the information we collected in SectionV, we determined
that classes with probability higher than 0.2 are interesting.



Selectors Manna&Pnueli CJ CM CMJ CP CPJ CPMJ CPM

Default core - 3 3 3 3 3 3 3

S3

S safety 3 3 3 3 3 2 4
G guarantee 2 3 2 4 2 2 4
O obligation 2 4 2 4 3 2 3
P persistence 2 4 2 3 3 2 4
R recurrence 2 3 2 4 3 2 4
T reactivity 2 3 2 4 2 2 4

Default tier-2 - 6 6 6 6 6 6 6

S6

S safety 2 6 4 6 7 5 7
G guarantee 6 6 4 5 8 5 10
0 obligation 3 19 3 11 7 5 6
P persistence 22 4 5 9 7 5 7
R recurrence 6 9 5 5 7 5 8
T reactivity 22 6 3 6 6 5 7

TABLE I: Selectors computed using HF on the training benchmark of each LTL property

Table-I presents the selectors S3 and S6 for each LTL
property. A selector is described as a set of values, each of
these corresponds to a class of clauses CX . For example,
value 19 of the column CM means that S6 identifies CM
clauses with an LBD≤19, as good clauses for Obligation
specifications.

At first sight, our strategies produce selectors that sharply
contrast the state-of-the-art selectors. Indeed, the generated
LBD values can go up to 22 while the default selectors are
constants.

For instance, the S6 selector on Obligation properties gives
a high LBD score for CP class (LBD≤11) which correlates
with the previous Fig. 3b: CP clauses are frequently used with
fewer involved learnt clauses.

A comparison of the S3 and S6 selectors to the references
show a better usage frequency. For instance, when observing
the obligation properties, the usage frequency of S3 is 9.97%
(w.r.t. 7.20% of the generated learnt clauses) and 9.11% (w.r.t.
7.86% of the generated learnt clauses) for the reference. In the
other hand, the usage frequency of S6 is 1.25% (w.r.t. 16.12%
of the generated learnt clauses) against 1.17% (w.r.t. 17.37% of
the generated learnt clauses) for the reference. These number
are taken from the conflict-analysis procedure.

The next section presents two approaches to protect those
clauses identified by the selectors S3 and S6: for S3, we
use a permanent protection by redefining the core database
(Section VII-B). For S6, we soften the protection and act
around the purge of tier-2 and local databases (Section VII-C).

B. Permanent protection (C)

As the total size of clauses identified by S3 is almost the
same than the size for the default strategy (LBD≤3), we
propose here to apply a permanent protection strategy for the
clauses of S3. Indeed, we redefine the core database according
to S3: no deletion strategy is applied on this database, and
all clauses identified by S3 are kept forever. The remaining
clauses not recognized by the selector follow the default
storage technique: clauses with LBD≤6 are kept in the tier-2
and clauses with LBD>6 are added in the local database.

C. Database Reduction (T)

In the case of S6, the number of identified clauses is too
large to consider a permanent storage approach. The solver
will be quickly flooded by too many clauses to manage.
Therefore, we propose to act on the deletion strategies.

By default, in MapleCOMSPS, clauses with LBD>3 are
stored in either the tier-2 or local databases. Clauses in tier-2
can be moved to local and conversely. Clauses in local may
be permanently deleted if not used. Clauses in tier-2 are kept
if they are used at least once every 30000 conflicts, otherwise
they are dropped to local. Half of the clauses in this last
database are permanently deleted.

We propose to modify the above strategy as follows: clauses
identified by S6 and belonging to the databases tier-2 or local
are kept “alive” for some additional time. They are not dropped
if they are used at least once every 30000 × r conflicts (we
experimented on a subset of the benchmark different values
of r ∈ {2, 4, 6, 8} and the value 4 gave the best results). In
our experiments, we set r to 4. This way, the solver is given
a chance to remove clauses that are totally useless.

VIII. BENCHMARK

This section presents the evaluation of the heuristic HF
on the full benchmark presented in Section VI (omitting
the training benchmark and the pre-processing time). All the
experiments are conducted on an Intel Xeon machine with a
time limit of 2 hours using BSaLTic tool.

A. Comparison with state-of-the-art

We evaluate our S3 and S6 selectors and their associated
protections (resp. C and T), with state-of-the-art techniques:
BSaLTic-STD (the MapleCOMSPS solver integrated into our
tool BSaLTic), and the best approach presented in the pa-
per [29], namely, BSaLTic-HLP. It relies on protecting good
learnt clauses as the permanent protection strategy (C) but uses
a different linear program to compute the selector. Moreover,
BSaLTic-HLP does not exploit the information provided by
the studied LTL specification.



Solver Manna&Pnueli UNSAT SAT TOTAL PAR-2
B

Sa
LT

ic
-S

T
D

S safety 52 30 82 360h04
G guarantee 72 56 128 170h35
0 obligation 25 107 132 135h15
P persistence 46 66 112 213h34
R recurrence 43 70 113 217h33
T reactivity 56 79 135 124h08

Total 294 408 702 1221h11

B
Sa

LT
ic

-H
L

P

S safety 52 28 80 364h40
G guarantee 70 56 126 176h12
0 obligation 29 109 138 119h37
P persistence 49 66 115 205h59
R recurrence 42 73 115 210h50
T reactivity 55 78 133 128h42

Total 297 410 707 1206h02

B
Sa

LT
ic

-S
3

-C

S safety 55 31 86 350h48
G guarantee 71 55 126 178h58
0 obligation 28 108 136 125h01
P persistence 50 68 118 194h43
R recurrence 43 71 114 213h58
T reactivity 56 80 136 118h21

Total 303 413 716 1181h52

B
Sa

LT
ic

-S
6

-T

S safety 52 29 81 364h03
G guarantee 74 57 131 163h51
0 obligation 32 109 141 110h06
P persistence 51 66 117 196h46
R recurrence 43 73 116 202h27
T reactivity 58 81 139 109h15

Total 310 415 725 1146h30

TABLE II: Comparison between state-of-the-art solvers
BSaLTic-STD and BSaLTic-HLP with our modified solvers
BSaLTic-S6-T and BSaLTic-S3-C.

For the sake of clarity we rename our S3 and S6 selectors
with their associated protecting strategies BSaLTic-S3-C and
BSaLTic-S6-T, respectively.

Table-II details the results of our experiments. For each
class of the hierarchy, we display the number of UNSAT solved
instances where no counter-example (of length at most k) was
found that displays a violation of the property, the number of
SAT solved instances that violate the handled LTL property,
the total number of solved instances and the PAR-2 metric
used in SAT competitions6.

First, we observe that BSaLTic-STD obtains the worst per-
formance due to its generic approach for preserving and detect-
ing relevant clauses. We also note that, on this benchmark, the
results of the approach presented in [29] are reproducible, i.e.
tuning the core database according to some metric improves
the results.

Table-II reveals that both the proposed approaches in this
paper outperform state-of-the-art techniques. Indeed, BSaLTic-
S6-T wins over the reference BSaLTic-STD on the SAT and
UNSAT problems: it manages to solve 16 more UNSAT and
7 more SAT instances, with a PAR-2 of 74 hours less than
BSaLTic-STD. It also outperforms BSaLTic-HLP with a total

6PAR-k is the penalised average run time, counting each timeout as k times
the running time cutoff.

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000
0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

B
Sa

LT
ic

-S
6
-T

(s
ec

on
ds

)

(a) UNSAT instances

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000
0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

BSaLTic-STD (seconds)

B
Sa

LT
ic

-S
6
-T

(s
ec

on
ds

)
(b) SAT instances

Fig. 4: Scatter-plot of UNSAT and SAT instances comparing
BSaLTic-S6-T to BSaLTic-STD solver (on O, P, R and T only)

of 18 instances resolved for 59 hours less. A closer look at
the results shows that BSaLTic-S6-T, wins by a large margin
over the high-level classes of Manna&Pnueli’s hierarchy that
are known to be difficult (O, P, R and T). Nonetheless, we
remain competitive on safety and guarantee properties (S and
G) where BSaLTic-S6-T solves as many UNSAT instances on
safety, and 2 UNSAT instances more on guarantee properties
than BSaLTic-STD approach. The explanation we have behind
this, is that the generic tuning of learnt clause databases in SAT
procedures already encompasses relevant information when it
comes to solve safety or guarantee properties.

The scatter plots of Fig.4 compares UNSAT and SAT in-
stances (in seconds) between BSaLTic-STD and BSaLTic-S6-
T, on LTL properties coming from higher parts of the hierar-
chy (i.e., O, P, R and T). It shows significant improvement on
the known difficult UNSAT problems while being competitive
on the SAT instances compared to the state-of-the-art approach.

We investigate further the behaviour of BSaLTic-S6-T by
splitting the benchmark into ASYNCHRONOUS and SYN-
CHRONOUS problems. Such problems have different character-
istics and will help to decide when our approaches are useful.

The scatter plots in Fig.5 and Fig.6 reveal that BSaLTic-
S6-T is mostly effective on ASYNCHRONOUS instances, in
particular UNSAT ones (see Fig.6a). Nevertheless, BSaLTic-S6-
T remains competitive on SYNCHRONOUS instances (Fig.5a
and Fig.5b).



0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000
0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

B
Sa

LT
ic

-S
6
-T

(s
ec

on
ds

)

(a) UNSAT instances

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000
0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

BSaLTic-STD (seconds)

B
Sa

LT
ic

-S
6
-T

(s
ec

on
ds

)

(b) SAT instances

Fig. 5: Scatter-plot of UNSAT and SAT SYNCHRONOUS prob-
lems comparing BSaLTic-S6-T to BSaLTic-STD solver (on O,
P, R and T only)

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000
0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

B
Sa

LT
ic

-S
6
-T

(s
ec

on
ds

)

(a) UNSAT instances

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000
0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

BSaLTic-STD (seconds)

B
Sa

LT
ic

-S
6
-T

(s
ec

on
ds

)

(b) SAT instances

Fig. 6: Scatter-plot of UNSAT and SAT ASYNCHRONOUS
problems comparing BSaLTic-S6-T to BSaLTic-STD solver
(on O, P, R and T only)

Solver UNSAT SAT TOTAL PAR-2

BSaLTic-S6-T 310 415 725 1146h30

BSaLTic-S3-C 303 413 716 1181h52

BSaLTic-S3-C,S6-T 302 411 713 1177h17

TABLE III: Comparison between BSaLTic-S6-T, BSaLTic-S3-
C and their combo BSaLTic-S3-C,S6-T

Solver Manna&Pnueli UNSAT SAT TOTAL PAR-2

B
Sa

LT
ic

-n
LT

L
-T S safety 51 32 83 359h41

G guarantee 73 55 128 173h20
0 obligation 26 108 134 130h41
P persistence 47 66 113 210h24
R recurrence 43 71 114 206h20
T reactivity 57 80 137 119h35

Total 297 412 709 1200h05

B
Sa

LT
ic

-H
F

S safety 52 29 81 364h03
G guarantee 74 57 131 163h51
0 obligation 32 109 141 110h06
P persistence 51 66 117 196h46
R recurrence 43 73 116 202h27
T reactivity 58 81 139 109h15

Total 310 415 725 1146h30

TABLE IV: Comparison of (non) LTL-based approaches
BSaLTic-S6-T and BSaLTic-nLTL-T.

Although it is difficult to analyse the comparison of our ap-
proaches when using different back-end engines, we thought it
was important to discuss the results we obtained using state-of-
the-art solvers. Thus, in BSaLTic we replaced MapleCOMSPS
with Kissat-MAB7 [42]. The derived tool is called BSaLTic-
Kissat-MAB where the solver is not tuned, and is used as a
black-box. The results of the latter tool show that, although
BSaLTic-Kissat-MAB outperforms the presented approaches
globally, we manage to solve 26 SAT and 17 UNSAT that
BSaLTic-Kissat-MAB could not solve (where it is known that
the Kissat-MAB solver performs better on SAT instances).

Therefore, the question that remains open is how to inte-
grate our optimizations in Kissat-MAB which has the same
management of the different learnt clause, but a more complex
implementation.

B. Variations of the proposed approaches

To have a complete study of the techniques proposed in this
paper, we derive and evaluate new variants.

As BSaLTic-S3-C has the best performance on the safety
properties, with 5 extra instances compared to the BSaLTic-S6-
T approach (see Table-II), we experimented the combination
of S3 and S6. The resulting tool, named BSaLTic-S3-C,S6-
T will protect clauses of S3 in the core database via the
permanent protection C. The remain clauses identified by S6

are stored using the database reduction T.

7the winner of the SAT 2021 competition



The aim is to increase the performance of BSaLTic-S6-T
on safety problems, while maintaining its contribution on the
rest of the problems.

Table-III highlights the results. The combined version man-
ages to reduce the PAR-2 with 4 hours less in comparison
to BSaLTic-S3-C, but it does not provide any improvement
on the number of solved instances compared to the separated
configurations. It solves only 713 instances while the least
efficient solver (BSaLTic-S3-C) solves 716.

We also experimented a non LTL-based selector using HF
heuristic: BSaLTic-nLTL-T. It does not take into account
the information provided by the LTL specification (i.e., the
hierarchy of Manna&Pnueli).

Table-IV shows that dedicated LTL-based selector
(BSaLTic-S6-T) outperforms the non LTL-based one
(BSaLTic-nLTL-T), with 16 additional instances and a
reduction on the PAR-2 time of 53 hours. As previously
observed, (BSaLTic-S6-T) doesn’t perform better on safety
instances, however, the drawback of the LTL-based tuning
only affects SAT instances but we remain competitive on
well-known difficult UNSAT problems. The experiment shown
in Table IV strengthens the defended idea of building
dedicated heuristics.

IX. CONCLUSION

In this paper we proposed to exploit the characteristics
of BMC problems in order to improve their solving through
SAT techniques. Our approach focuses on tuning one of the
main components of CDCL-like SAT solvers: learnt clauses
databases. Such databases usually use generic metrics to iden-
tify and preserve relevant clauses. We proposed a refinement
of this metric with structural information extracted from the
model and the property at hand. We then presented the HF
heuristic that uses the above information to determine relevant
learnt clauses. This latter, experimented over a large set of
BMC problems, outperforms the state-of-the-art approaches
on both verified (UNSAT) properties and violated ones (SAT)
for a specific bound k. Thereby, building dedicated (problem-
specific) selectors for managing the database of clauses is
crucial but requires a deep understanding of the structure of
the underlying problem.

The next steps of our work is to integrate this idea on
the state-of-the-art Kissat-MAB [42] solver by performing the
analysis (Section VI) and experimenting the selectors S3 and
S6 on the Kissat-MAB version.

Another perspective is to experiment our idea in the context
of parallel environments. The aim is to derive an efficient
procedure for a SAT-based parallel solving of the BMC
problem. Actually, one of the main components in SAT-based
parallel solving is the sharing of information between different
solvers. Hence, we think to adapt our approaches in order to
fine-tune the sharing strategies.

REFERENCES

[1] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.
Distrib. Comput., 2(3):117–126, September 1987. doi:10.1007/
BF01782772.

[2] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, 2008.

[3] Guillaume Baud-Berthier, Jesús Giráldez-Cru, and Laurent Simon. On
the community structure of bounded model checking SAT problems.
In Proceedings of the 20th International Conference on Theory and
Applications of Satisfiability Testing (SAT’17), pages 65–82, 2017.

[4] Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking
as safety checking. Electronic Notes in Theoretical Computer Science,
66:160–177, 12 2002. doi:10.1016/S1571-0661(04)80410-9.

[5] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu.
Symbolic model checking without bdds. In W. Rance Cleaveland, editor,
Tools and Algorithms for the Construction and Analysis of Systems,
pages 193–207, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[6] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman,
and Yunshan Zhu. Bounded model checking, 12 2003. doi:10.1016/
S0065-2458(03)58003-2.

[7] Aaron R. Bradley. Understanding IC3. In SAT, volume 7317 of Lecture
Notes in Computer Science, pages 1–14. Springer, 2012.

[8] Randal E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Trans. Comput., 35(8):677–691, August 1986.
doi:10.1109/TC.1986.1676819.

[9] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking. In Proc. International
Conference on Computer-Aided Verification (CAV 2002), volume 2404
of LNCS, Copenhagen, Denmark, July 2002. Springer.

[10] E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen. Sym-
bolic model checking. In Rajeev Alur and Thomas A. Henzinger, editors,
Computer Aided Verification, pages 419–422, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

[11] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded model checking using satisfiability solving. Form.
Methods Syst. Des., 19(1):7–34, July 2001. doi:10.1023/A:
1011276507260.

[12] Edmund Clarke, E. Emerson, and Joseph Sifakis. Model checking. Com-
munications of the ACM, 52, 11 2009. doi:10.1145/1592761.
1592781.

[13] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of
synchronization skeletons using branching time temporal logic. In Dex-
ter Kozen, editor, Logics of Programs, pages 52–71, Berlin, Heidelberg,
1982. Springer Berlin Heidelberg.

[14] Edmund M. Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani.
Model Checking and the State Explosion Problem, pages 1–30. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[15] Martin Davis, George Logemann, and Donald Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394–397, July 1962.
doi:10.1145/368273.368557.

[16] Martin Davis and Hilary Putnam. A computing procedure for quantifi-
cation theory. J. ACM, 7(3):201–215, July 1960.

[17] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille,
Thibaud Michaud, Etienne Renault, and Laurent Xu. Spot 2.0 — a
framework for LTL and ω-automata manipulation. In Proceedings of the
14th International Symposium on Automated Technology for Verification
and Analysis (ATVA’16), volume 9938 of Lecture Notes in Computer
Science, pages 122–129. Springer, October 2016.

[18] Stefan Edelkamp, Stefan Leue, and Alberto Lluch-Lafuente. Directed
explicit-state model checking in the validation of communication proto-
cols. International Journal on Software Tools for Technology Transfer,
5(2–3):247–267, 2004.

[19] Niklas Een, Alan Mishchenko, and Robert Brayton. Efficient im-
plementation of property directed reachability. In Proceedings of
the International Conference on Formal Methods in Computer-Aided
Design, FMCAD ’11, page 125–134, Austin, Texas, 2011. FMCAD Inc.

[20] Cindy Eisner and Dana Fisman. A Practical Introduction to PSL
(Series on Integrated Circuits and Systems). Springer-Verlag, Berlin,
Heidelberg, 2006.

[21] Sami Evangelista, Alfons Laarman, Laure Petrucci, and Jaco van de Pol.
Improved multi-core nested depth-first search. In Proceedings of the
10th international conference on Automated technology for verification
and analysis (ATVA’12), volume 7561 of Lecture Notes in Computer
Science, pages 269–283. Springer-Verlag, 2012.

[22] Malay K. Ganai. Sat-based scalable formal verification solutions. In
Series on Integrated Circuits and Systems, Springer-Verlag New York,
2007.

https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
https://doi.org/10.1016/S1571-0661(04)80410-9
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/368273.368557


[23] Matthew L. Ginsberg and David A. McAllester. Gsat and dynamic
backtracking. Journal of Artificial Intelligence Research, 1:25–46, 1994.

[24] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021.
URL: http://www.gurobi.com.

[25] Gerard Holzmann. Spin Model Checker, the: Primer and Reference
Manual. Addison-Wesley Professional, first edition, 2003.

[26] Gerard J. Holzmann. Explicit-state model checking. In Ed-
mund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roder-
ick Bloem, editors, Handbook of Model Checking, pages 153–171,
Cham, 2018. Springer International Publishing. doi:10.1007/
978-3-319-10575-8_5.

[27] Paul Jackson and Daniel Sheridan. Clause form conversions for boolean
circuits. In Holger H. Hoos and David G. Mitchell, editors, Theory and
Applications of Satisfiability Testing, pages 183–198, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[28] Sima Jamali and David Mitchell. Simplifying CDCL clause database
reduction. In SAT, volume 11628 of Lecture Notes in Computer Science,
pages 183–192. Springer, 2019.

[29] Anissa Kheireddine, Etienne Renault, and Souheib Baarir. Towards
Better Heuristics for Solving Bounded Model Checking Problems. In
Laurent D. Michel, editor, 27th International Conference on Principles
and Practice of Constraint Programming (CP 2021), volume 210 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–
7:11, Dagstuhl, Germany, 2021. URL: https://drops.dagstuhl.de/opus/
volltexte/2021/15298.

[30] L. Lamport. Proving the correctness of multiprocess programs. IEEE
Trans. Softw. Eng., 3(2):125–143, mar 1977. doi:10.1109/TSE.
1977.229904.

[31] Ludovic Le Frioux, Souheib Baarir, Julien Sopena, and Fabrice Kordon.
PaInleSS: a framework for parallel SAT solving. In Proceedings of the
20th International Conference on Theory and Applications of Satisfia-
bility Testing (SAT’17), volume 10491 of Lecture Notes in Computer
Science, pages 233–250. Springer, Cham, August 2017.

[32] Jia Hui Liang, Chanseok Oh, Vijay Ganesh, Krzysztof Czarnecki, and
Pascal Poupart. Maple-comsps, maplecomsps lrb, maplecomsps chb.
Proceedings of SAT Competition, 2016, 2016.

[33] Z. Manna and A. Pnueli. A hierarchy of temporal properties (invited
paper, 1989). In PODC ’90, 1990.

[34] Joao Marques-Silva and Karem A. Sakallah. Grasp: A search algorithm
for propositional satisfiability. IEEE Trans. Computers, 48:506–521,
1999.

[35] Kenneth L. McMillan. The SMV System, pages 61–85. Springer US,
Boston, MA, 1993.

[36] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient sat solver. In Pro-
ceedings of the 38th Annual Design Automation Conference, DAC ’01,
page 530–535, New York, NY, USA, 2001. Association for Computing
Machinery. doi:10.1145/378239.379017.

[37] Samir Palnitkar. Verilog HDL: A Guide to Digital Design and Synthesis.
Prentice-Hall, Inc., USA, 1996.

[38] Radek Pelánek. Beem: Benchmarks for explicit model checkers. In Dra-
gan Bošnački and Stefan Edelkamp, editors, Model Checking Software,
pages 263–267, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[39] Doron Peled and Klaus Havelund. Refining the Safety–Liveness Classi-
fication of Temporal Properties According to Monitorability, pages 218–
234. Springer International Publishing, Cham, 2019.

[40] Etienne Renault, Alexandre Duret-Lutz, Fabrice Kordon, and Denis
Poitrenaud. Strength-based decomposition of the property büchi automa-
ton for faster model checking. In Nir Piterman and Scott A. Smolka,
editors, Proceedings of the 19th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’13),
volume 7795 of Lecture Notes in Computer Science, pages 580–593.
Springer, 2013.

[41] Kristin Y. Rozier. Survey: Linear temporal logic symbolic model
checking. Comput. Sci. Rev., 5(2):163–203, May 2011.

[42] Mohamed Sami Cherif, Djamal Habet, and Cyril Terrioux. Un bandit
manchot pour combiner CHB et VSIDS. In Actes des 16èmes Journées
Francophones de Programmation par Contraintes (JFPC), Nice, France,
June 2021. URL: https://hal-amu.archives-ouvertes.fr/hal-03270931.

[43] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety
properties using induction and a sat-solver. In Warren A. Hunt and
Steven D. Johnson, editors, Formal Methods in Computer-Aided Design,
pages 127–144, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[44] Ofer Shtrichman. Tuning sat checkers for bounded model checking. In
E. Allen Emerson and Aravinda Prasad Sistla, editors, Computer Aided
Verification, pages 480–494, Berlin, Heidelberg, 2000. Springer Berlin
Heidelberg.

[45] João P. Marques Silva and Karem A. Sakallah. Grasp—a new search
algorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD ’96, page
220–227, USA, 1997. IEEE Computer Society.

[46] Laurent Simon and Gilles Audemard. Predicting Learnt Clauses Quality
in Modern SAT Solver. In Twenty-first International Joint Conference
on Artificial Intelligence (IJCAI’09), Pasadena, United States, July 2009.
URL: https://hal.inria.fr/inria-00433805.

[47] Ofer Strichman. Accelerating bounded model checking of safety
properties. Formal Methods Syst. Des., 24(1):5–24, 2004.

[48] G. S. TSEITIN. On the complexity of derivation in propositional calcu-
lus. Structures in Constructive Mathematics and Mathematical Logic,
pages 115–125, 1968. URL: https://ci.nii.ac.jp/naid/10030021172/en/.

[49] M.Y. Vardi and P. Wolper. Reasoning about infinite computations.
Information and Computation, 115(1):1–37, 1994. doi:https://
doi.org/10.1006/inco.1994.1092.

[50] Chao Wang, HoonSang Jin, Gary D. Hachtel, and Fabio Somenzi.
Refining the sat decision ordering for bounded model checking. In Pro-
ceedings of the 41st Annual Design Automation Conference, DAC ’04,
page 535–538, New York, NY, USA, 2004. Association for Computing
Machinery.

[51] Emmanuel Zarpas. Simple yet efficient improvements of sat based
bounded model checking. In Alan J. Hu and Andrew K. Martin, editors,
Formal Methods in Computer-Aided Design, pages 174–185, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[52] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad
Malik. Efficient conflict driven learning in a boolean satisfiability solver.
In Proceedings of the 2001 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD ’01, page 279–285. IEEE Press, 2001.

http://www.gurobi.com
https://doi.org/10.1007/978-3-319-10575-8_5
https://doi.org/10.1007/978-3-319-10575-8_5
https://drops.dagstuhl.de/opus/volltexte/2021/15298
https://drops.dagstuhl.de/opus/volltexte/2021/15298
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1145/378239.379017
https://hal-amu.archives-ouvertes.fr/hal-03270931
https://hal.inria.fr/inria-00433805
https://ci.nii.ac.jp/naid/10030021172/en/
https://doi.org/https://doi.org/10.1006/inco.1994.1092
https://doi.org/https://doi.org/10.1006/inco.1994.1092

	Introduction
	Related work
	SAT-based Bounded model checking
	Manna & Pnueli Hierarchy
	A peek inside SAT-based BMC problems
	A study of BMC problems using BSaLTic
	Contribution
	Frequency-based heuristic Hfreq
	Permanent protection (C)
	Database Reduction (T)

	Benchmark
	Comparison with state-of-the-art
	Variations of the proposed approaches

	Conclusion
	References

