
20

Probabilistic Abstraction for Model Checking:
An Approach Based on Property Testing

SOPHIE LAPLANTE

LRI, Univ. Paris–Sud

RICHARD LASSAIGNE

Univ. Paris 7

FRÉDÉRIC MAGNIEZ

LRI, Univ. Paris–Sud, CNRS

SYLVAIN PEYRONNET

LRI, Univ. Paris–Sud

and

MICHEL DE ROUGEMONT

LRI, Univ. Paris II

The goal of model checking is to verify the correctness of a given program, on all its inputs. The
main obstacle, in many cases, is the intractably large size of the program’s transition system.
Property testing is a randomized method to verify whether some fixed property holds on individual
inputs, by looking at a small random part of that input. We join the strengths of both approaches
by introducing a new notion of probabilistic abstraction, and by extending the framework of model
checking to include the use of these abstractions.

Our abstractions map transition systems associated with large graphs to small transition sys-
tems associated with small random subgraphs. This reduces the original transition system to a
family of small, even constant-size, transition systems. We prove that with high probability, “suf-
ficiently” incorrect programs will be rejected (ε-robustness). We also prove that under a certain
condition (exactness), correct programs will never be rejected (soundness).

A preliminary version of this article appeared in Proceedings of the 17th IEEE Symposium on Logic
in Computer Science, 30–39 c© IEEE 2002.
Research partly supported by LRI, the EU 5th framework program RAND-APX IST-1999-14036,
the Alliance Partnership Programme 05690ZH, and CNRS/STIC01N80/0607 and Vera grants.
Authors’ addresses: S. Laplante, LRI, UMR 8623 CNRS, Université Paris–Sud, 91405, Orsay,
France; email: laplante@lri.fr; R. Lassaigne, Equipe de Logique, UMR 7056 CNRS, Université
Paris 7, France; email: lassaign@logique.jussieu.fr; F. Magniez, LRI, UMR 8623, Université Paris–
Sud, CNRS, 91405, Orsay, France; email: magniez@lri.fr; S. Peyronnet, Epita, France; email:
Sylvain.Peyronnet@lrde.epita.fr; M. de Rougemont, Université Paris II and LRI, Université Paris–
Sud, 91405, Orsay, France; email: mdr@lri.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1529-3785/2007/08-ART20 $5.00 DOI 10.1145/1276920.1276922 http://doi.acm.org/
10.1145/1276920.1276922

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Article 20 / 2 • S. Laplante et al.

Our work applies to programs for graph properties such as bipartiteness, k-colorability, or any
∃∀ first order graph properties. Our main contribution is to show how to apply the ideas of property
testing to syntactic programs for such properties. We give a concrete example of an abstraction for
a program for bipartiteness. Finally, we show that the relaxation of the test alone does not yield
transition systems small enough to use the standard model checking method. More specifically, we
prove, using methods from communication complexity, that the OBDD size remains exponential
for approximate bipartiteness.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Veri-
fication; F.1.2 [Computationly Abstract Device]: Modes of Computation; F.2.2 [Theory of
Computation]: Nonnumerical Algorithms and Problems

General Terms: Algorithms, Reliability, Security, Theory, Verification

Additional Key Words and Phrases: Approximate verification, probabilistic abstraction, model
checking, probabilistic verification, property testing

ACM Reference Format:
Laplante, S., Lassaigne, R., Magniez, F., Peyronnet, S., and De Rougemont, M. 2007. Proba-
bilistic abstraction for model checking: An approach based on property testing. ACM Trans.
Comput. Logic, 8, 4, Article 20 (August 2007), 24 pages. DOI = 10.1145/1276920.1276922
http:/doi.acm.org/10.1145/1276920.1276922

1. INTRODUCTION

The verification of programs is a fundamental problem in computer science,
where logic, complexity, and combinatorics have brought new ideas that have
been influential in practical applications. We combine two general methods:
model checking, where one formally proves that a program is correct for all
its inputs, up to a given length, and property testing, where a randomized
algorithm makes random local checks within a particular input to decide if this
input has a given property. Our approach brings the notions of sampling and
approximation from property testing to model checking.

Model checking is an algorithmic method for deciding if a program with
bounded inputs, modeled as a transition system, satisfies a specification, ex-
pressed as a formula of a temporal logic such as CTL or CTL∗ [Clarke et al.
1999]. This verification can be carried out, for CTL, in time linear in both the
size of the transition system and of the specification. For CTL∗ it is still linear
in the size of the transition system, but exponential in the size of the specifica-
tion [Clarke et al. 1986]. However, a program given in a classical programming
language, like C, converted to a transition system, typically undergoes an ex-
ponential blowup in the size of the input. Symbolic model checking [McMillan
1993; Clarke et al. 1999] addresses this problem by using ordered binary deci-
sion diagrams [Bryant 1986, 1992] (OBDDs, or equivalently read-once branch-
ing programs with an ordering restriction on the variables), which in many
practical cases provide a compact representation of the transition system. Nev-
ertheless, in some cases, such as programs for integer multiplication or bipar-
titeness, the OBDD size remains exponential.

The abstraction method [Clarke et al. 1994] provides a solution in some cases
when the OBDD size is intractable. By way of an abstraction, a large transi-
tion system is approximated by a smaller one, on which the specification can

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Probabilistic Abstraction for Model Checking • Article 20 / 3

be efficiently verified. A classical example is multiplication, where modular
arithmetic is the basis of the abstraction. Our goal is to extend the range of ab-
stractions to programs for a large family of graphs properties using randomized
methods.

In the late eighties the theory of program checking and self-testing/correcting
was pioneered by the work of Blum and Kannan [1995], and Blum et al. [1993].
This theory addresses the problem of program correctness by verifying a co-
herence property (such as linearity) between the outputs of the program on
randomly selected inputs. Rubinfeld and Sudan [1996] formulated the no-
tion of property testing, which arises in every such tester. One is interested
in deciding whether an object has a global property φ by performing random
local checks, or queries, on it. The goal is to distinguish with sufficient con-
fidence between objects that satisfy φ and those that are ε-far from any ob-
jects that satisfy φ, for some confidence parameter ε > 0, and some distance
measure. The surprising result is that when ε is fixed, this relaxation is suffi-
cient to decide many properties with a sublinear or even a constant number of
queries.

Goldreich et al. [1998, 1999, 2002] investigated property testing for several
graph properties such as k-colorability. Alon et al. [2000] showed a general
result for all first-order graph properties of type ∃∀.

We identify a notion that is implicit in many graph property testers: a graph
property φ is ε-reducible to ψ if testing ψ on small random subgraphs suffices
to distinguish between graphs that satisfy φ, and those that are ε-far from
satisfying φ. Our goal will be to distinguish with sufficient confidence between
programs that accept only graphs that satisfy φ and those that accept some
graph that is ε-far from any graph that satisfies φ. We introduce probabilistic
abstractions which associate to a program small random transition systems. We
show that for probabilistic abstractions based on ε-reducibility this goal can be
achieved.

In Section 2 we review basic notions of model checking and property testing,
and define ε-reducibility (Definition 2.6). In Section 3, we introduce the notion
of probabilistic abstraction (Definition 3.1). To be useful, an abstraction must
preserve the behavior of the program. An abstraction is sound (Definition 3.3)
if it preserves program correctness. It is ε-robust (Definition 3.2) if correctness
on the abstraction implies that the original program does not accept any graph
that is ε-far from any graph that satisfies φ. The latter is an extension to ab-
straction of robustness introduced in Rubinfeld and Sudan [1996]. We show how
to derive a probabilistic abstraction using ε-reducibility (Section 3.4). We give
a generic proof of ε-robustness for a large class of specifications (Theorem 3.5).
Moreover, we give a sufficient condition for soundness to hold (Theorem 3.7).
We establish the applicability of our method by applying it to a program for
bipartiteness. On the one hand, we show how to construct a robust and sound
abstraction on a specific program for testing bipartiteness (Corollary 3.9) and
other temporal properties. On the other hand, in Section 4 we show that ab-
straction is necessary, in the sense that the relaxation of the test alone does not
yield OBDDs small enough to use the standard model checking method. More
specifically, we prove, using methods from communication complexity [Hajnal

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Article 20 / 4 • S. Laplante et al.

et al. 1988], that the OBDD size remains exponential for approximate bipar-
titeness (Theorem 4.2). This lower bound may also be of independent interest.

2. FRAMEWORK AND PRELIMINARIES

2.1 Programs and Transition Systems

We will use transition systems to represent all possible executions of a given
program.

Definition 2.1. A transition system is a triple M = 〈S, I, R〉 where S is the
set of states, I ⊆ S is the set of initial states, and R ⊆ S × S is the transition
relation.

To simplify the discussion we only consider programs which implement
Boolean functions. They will be written in a simple language that manipu-
lates bit, bounded integer and finite array variables, using basic instructions:
while statements, conditionals, assignments and a get instruction which allows
the user to interact with the program. The input variables correspond to the
function’s input. An implicit variable ack is set to false at the beginning of the
program and is set to true at the end of the computation. An implicit variable
ret is defined together with the instruction RETURN where RETURN b sets ret to
b and ack to true. To verify properties on the behavior of a program, we must
know values of the variables at certain points of the program, called control
points. The control points are at the beginning of lines labeled by integers. An
implicit variable PC contains the label value of the last visited control point.

Let P be such a program with a finite set of variables {v1, . . . , vn} including
the implicit variables PC, ack, and ret. Each variable vi ranges over a (finite)
domain Di. We define the transition system of P . A state of P is an n-tuple
s = (s1, . . . , sn) corresponding to an assignment of variables v1, . . . , vn at a con-
trol point during a computation. The set of states of P is S = D1× · · · ×Dn.
The initial states of P are all the possible states before any computation starts,
and the transition relation of P is the set of all possible transitions of the pro-
gram between two control points. When the program terminates, the transition
system loops with an infinite sequence of transitions on the final state.

Model checking does not manipulate transition system directly; it manip-
ulates a logical representation of the transition system, expressed as a set of
relational expressions. A relational expression is a formula of first-order logic
built up from the programming language’s constants and basic operators (such
as +, −, and =). We always assume that relational expressions are in negation
normal form, that is, negations pushed down to the atomic level.

Definition 2.2. Let I (resp. R) be a relational expression on S (resp. S × S).
Then (I, R) is a representation of a transition system 〈S, I, R〉 if and only if
I = {s ∈ S : I(s) = true} and R = {(s, s′) ∈ S × S : R(s, s′) = true}.

Example. We give a sample toy program, with its transition system and a
specification of its behavior, as we define in the following paragraphs.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Probabilistic Abstraction for Model Checking • Article 20 / 5

FUNCTION GUESS

INPUT a : BOOLEAN

VAR b : BOOLEAN

1: get(b)

2: IF (a=b) RETURN true

ELSE RETURN false

The program variables are a and b with the implicit variables PC, ack, and ret.
A state of the program is a 5-tuple (PC, ack, ret, a, b). A transition of the pro-
gram is a pair of states ((PC, ack, ret, a, b), (PC′, ack′, ret′, a′, b′)). The relational
expression for the initial states of the program is (PC = 1) ∧ (ack = false). The
relational expression for the transition relation of the program is defined as the
disjunction of the following three formulas:

(PC = 1) ∧ (PC′ = 2) ∧ (ack′ = ack) ∧ (ret′ = ret) ∧ (a′ = a),
(PC = 2) ∧ (PC′ = 2) ∧ (ack′ = true) ∧ (ret′ = true) ∧ (a = b)

∧ (a′ = a) ∧ (b′ = b),
(PC = 2) ∧ (PC′ = 2) ∧ (ack′ = true) ∧ (ret′ = false) ∧ (a �= b)

∧ (a′ = a) ∧ (b′ = b).

Due to user interaction, b′ does not appear in the first formula, and the
first transition is therefore nondeterministic. The following CTL∗ formula (see
Section 2.2) is a specification of the behavior of the program GUESS:

∀(¬ackU ack∧((ret∧(a=b))∨(¬ret∧(a�=b))))

2.2 Temporal Logic and Model Checking

To express the desired behavior of a transition system (associated with a pro-
gram), we use a branching-time temporal logic. All our results will be stated
for the temporal logic CTL∗. We refer the reader to Clarke et al. [1999] for more
details on CTL∗, but briefly, formulas of CTL∗ are defined inductively from a
set of atomic propositions and built up by boolean connectives (¬, ∧, ∨), path
quantifiers ∀ (“for all paths”) and ∃ (“for some path”), temporal operators X
(“next”) and U (“until”). The Future operator F is such that Fψ iff (trueUψ).
In our framework, the atomic propositions are (vi = d ) where vi is a variable
which corresponds to the ith coordinate of a state, and d is any constant.

Let M be a transition system with representation (I, R) and let � be a CTL∗

formula. Let us briefly review the symbolic model checking method [Clarke
et al. 1999] for M |= �. Notice that in model checking, the notation M |= � is
shorthand for M , s |= � for every initial state s. The verification proceeds in
three steps. This process is fully algorithmic, in contrast with methods which
require human assistance. First, OBDD representations [Bryant 1986, 1992]
are constructed for R and I. Then, an OBDD check(R, �) is constructed, whose
entries are states of S, such that for every s ∈ S, (check(R, �)(s) = true) ⇐⇒
(M , s |= �). Finally, the verification of M |= � is achieved by checking the
validity of the OBDD of (¬I ∨ check(R, �)).

When the resulting OBDD is polynomial in size, the verification can be car-
ried out in polynomial time. A typical example where this is not the case is

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Article 20 / 6 • S. Laplante et al.

multiplication, since any OBDD for multiplication has exponential size [Bryant
1991]. In the next section, we will see how abstraction has been used to suc-
cessfully overcome this problem in some cases, including for multiplication.

2.3 Abstractions

The use of an abstraction [Clarke et al. 1994] helps in some cases to overcome
the problem of intractably large OBDDs. The objective of abstractions is to
replace the transition system with an abstract version which is smaller, but
sufficient for verifying the specification on the original system. For each vari-
able, a surjection is used to reduce the size of the domain, and transitions are
made between the resulting equivalence classes, as we define below.

Definition 2.3 [Clarke et al. 1994]. Let M = 〈S, I, R〉 be a transition sys-
tem, where S = D1 × · · · × Dn. An abstraction for M is a surjection h : S → Ŝ,
such that h can be decomposed into an n-tuple h = (h1, . . . , hn), where
hi : Di → D̂i is any surjection, and D̂i is any set. The minimal transition
system of M with respect to h is the transition system M̂min = 〈Ŝ, Îmin, R̂min〉
such that Ŝ = D̂1 × · · · × D̂n, Îmin = h(I ), and

(̂s, ŝ′) ∈ R̂min ⇐⇒ ∃(s, s′) ∈ S2, (h(s) = ŝ) ∧ (h(s′) = ŝ′) ∧ (
(s, s′) ∈ R

)
.

Note that minimal transition systems and all the notions that follow are
defined with respect to a fixed abstraction h. When it is not clear from the
context, we will specify the abstraction h as a superscript. When h is applied to
a variable, it is understood that the corresponding hi is applied.

For every abstraction h, define the operator [·] so that for any first-order
formula φ:

[φ](̂v1, . . . , v̂k) def= ∃v1 . . . ∃vk

(
k∧

i=1

v̂i = h(vi)

)
∧ φ(v1, . . . , vk).

Then observe that R̂min = [R]. In general, it is very difficult to construct M̂min
because the full description of the transition system M is needed in order to
carry out the construction. Nevertheless, one can produce an approximation
directly from its representation. Let us first define the notion of approximation.

Definition 2.4 [Clarke et al. 1994]. Let M = 〈S, I, R〉 be a transition sys-
tem, and let h : S → Ŝ be an abstraction for M . A transition system
M̂ = 〈Ŝ, Î , R̂〉 approximates M with respect to h (M �h M̂ for short) if and
only if Îmin ⊆ Î and R̂min ⊆ R̂.

The approximation operator, which is denoted by A, is inductively defined
on formulas that are in negation normal form by applying [·] only at the atomic
level (including negations). For every transition system M = 〈S, I, R〉 with the
representation (I, R), we denote by A(M ) the transition system with the set
of states Ŝ = h(S) and representation (A(I), A(R)). Clarke et al. [1994] show
that the approximation operator A gives an approximation for any M , h, that
is, M �h A(M ).

Let M̂ be an approximation of M . Suppose that M̂ |= �. What can we con-
clude on the concrete model M? To answer, let us first consider the following

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Probabilistic Abstraction for Model Checking • Article 20 / 7

transformations C andD between CTL∗ formulas on M and their approximation
on M̂ . These transformations preserve Boolean connectives, path quantifiers,
and temporal operators, and act on atomic propositions as follows:

C (̂vi = d̂i)
def=

∨
di :hi (di )=d̂i

(vi = di), D(vi = di)
def= (̂vi = hi(di)).

Denote by ∀CTL∗ and ∃CTL∗ the universal fragment and the existential frag-
ment of CTL∗. The following theorem gives correspondences between concrete
models and their approximations.

THEOREM 2.5 [CLARKE ET AL. 1994]. Let M = 〈S, I, R〉 be a transition sys-
tem. Let h : S → Ŝ be an abstraction for M, and let M̂ be such that M �h M̂ .
Let � be a ∀CTL∗ formula on M̂ , and �′ be a ∃CTL∗ formula on M. Then

M̂ |= � =⇒ M |= C(�) and M |= �′ =⇒ M̂ |= D(�′).

The second implication of the theorem is only implicit in Clarke et al. [1994].
Notice that the two statements are not reciprocals of one another. In both cases,
reciprocals can be shown under certain conditions. The first result validates the
usefulness of abstractions in practical model checking. The second will be used
in our proof of Theorem 3.5.

2.4 Property Testing

We consider only undirected, simple graphs (no multiple edges or self-loops).
For a graph G, we denote by VG its vertex set, by EG its edge set, and by n
the cardinality |VG | of VG . When there is no ambiguity, we will simply write
V and E instead of VG and EG . In the remainder of the paper we will use the
following distance measure: for any two graphs G and G ′ on the same n-vertex
set, Dist(G, G ′) is the number of edges on which the graphs disagree, divided
by n2. Our theory and our main results (Theorems 3.5 and 3.7) hold for any
distance measure.

Let φ be a graph property and G |= φ is the classical logical notation stating
that G has the property φ. An ε-test for φ is a probabilistic algorithm that accepts
every graph with property φ, and rejects with probability 2/3 every graph which
has distance more than ε from any graph having the property.1 Moreover, an
ε-test can only access the input graph by querying whether any chosen pair of
vertices are adjacent. The property φ is called testable if for every ε > 0, there
exists an ε-test for φ whose total number of queries depends on ε, but does not
depend on the size of the graph. In several cases, the proof of testability is based
on a reduction between two properties. The notion of ε-reducibility highlights
this idea. This notion is central to the design of our abstractions. For every
graph property φ and every graph G, we denote by G |=ε φ the assertion:

∃H, VH = VG , Dist(G, H) ≤ ε, and H |= φ.

1We may also consider two-sided error, and the choice of 2/3 as the success probability is of course
arbitrary.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Article 20 / 8 • S. Laplante et al.

We say that G is ε-close to φ if G |=ε φ and G is ε-far to φ if G �|=ε φ i.e. G |=ε φ

is false.
For every graph G and integer k ≥ 1, let � denote the set of all π ⊆ VG

such that |π | = k, where it is understood that � depends on both k and VG . For
convenience, we will always assume that |VG | ≥ k. Denote by Gπ the vertex-
induced subgraph of G on the vertex set π ⊆ VG .

Definition 2.6. Let ε > 0 be a real, k ≥ 1 an integer, and φ, ψ two graph
properties. Then φ is (ε, k)-reducible to ψ if and only if for every graph G,

G |= φ =⇒ ∀π ∈ �, Gπ |= ψ,
G �|=ε φ =⇒ Pr

π∈�
[Gπ |= ψ] ≤ 1/3.

We say that φ is ε-reducible to ψ if there exists a constant k such that φ is
(ε, k)-reducible to ψ .

We can recast the testability of c-colorability and bipartiteness [Goldreich
et al. 1998; Alon and Krivlevich 2007] in terms of ε-reducibility.

THEOREM 2.7 [ALON AND KRIVLEVICH 2007]. For all c ≥ 3, ε > 0,

(1) c-colorability is (ε, O((c ln c)/ε2))-reducible to c-colorability;
(2) bipartiteness is (ε, O((ln4( 1

ε
) ln ln( 1

ε
))/ε))-reducible to bipartiteness.

Recently, Alon et al. [2000] showed that all first-order graph properties of type
∃∀ have an ε-tester. Their results can also be recast in terms of ε-reducibility, as
follows. Note, however, that in this result, the function f is a tower of towers.

THEOREM 2.8 [ALON ET AL. 2000]. There exists a function f : R+ → R+,
such that every first-order graph property of type ∃∀ with t bound variables
is (ε, O( f (t+1/ε)))-reducible to some graph property.

3. VERIFICATION OF GRAPH PROPERTIES

3.1 Context and Objectives

In order to extend the framework of model checking to include the use of prob-
abilistic abstractions, we would like to prove an analogue of Theorem 2.5 for
probabilistic abstractions based on ε-reducibility. We prove that with high prob-
ability, “sufficiently” incorrect programs (in a sense to be defined below) will be
rejected (ε-robustness). We also prove a reciprocal, which states that under a
certain condition (exactness), correct programs will never be rejected (sound-
ness).

A second goal is to extend the framework of model checking to include the
verification of programs purportedly deciding graph properties or properties
of finite structures. The standard model checking method is not adapted to
programs on inputs that are first-order structures such as graphs. We overcome
this by dealing with the specification of the program, and the property of the
graph, separately. The former is handled with standard tools of model checking.
The latter will reduce, as a result of the ε-reduction, to verifying a property on
constant size graphs, which can be carried out in constant time.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Probabilistic Abstraction for Model Checking • Article 20 / 9

We give an example of a very simple program for bipartiteness, together with
an abstraction, and show that the approximation operator A results in an exact
approximation of the transition system. Hence, this abstraction can be used to
verify the program. One might ask whether the relaxation brought about by
the use of property testing is in itself enough to beat the exponential lower
bounds on the original problem. We will show in Section 4 that this is not the
case, by giving a lower bound on the OBDD complexity of the relaxed version
of bipartiteness.

3.2 Handling First-Order Structures

Consider the following example of a formula we would like to verify, where P
is a program which is supposed to compute some boolean function on bounded
size graphs, and φ is a graph property:

The program P accepts only graphs that satisfy φ.

Suppose that G is an input variable of P , such that G is interpreted as a graph
G (with respect to some fixed encoding): this will be written as G = G. A state
s of the transition system M = 〈S, I, R〉 of P is a finite sequence of variables
(. . . , G, . . . ). For every graph G, we then define IG = {s ∈ I : G = G}. Formally,
what we would like to check is the following:

∀G((∀s ∈ IG M , s |= ∃ ((¬ack) U = (ack ∧ ret))) =⇒ G |= φ).

Note that on the right-hand side of the implication, φ is interpreted in a struc-
ture for G which does not include the transition system. This is because the stan-
dard model checking algorithms are not suited for programs with inputs that
are first-order structures. When there is no ambiguity, we will write M , G |= �

instead of ∀s ∈ IG , M , s |= �.
More generally, our framework applies to the following type of formulas:

∀G (M , G |= � =⇒ G |= φ), (1)

where the input includes the graph G and may also include auxiliary data, �

is a CTL∗ formula, and φ is a graph property.
Henceforth, we always assume a graph G to be an input variable in the

program. Since G is a bounded size graph and φ is a formula expressing a
property on G, we can determine whether G |= φ using an OBDD. Let sat(φ, G)
be such an OBDD. Then verifying (1) can be achieved by checking the validity
of ((¬IG ∨check(R, �)) =⇒ sat(φ, G)), where IG = I(G/G) (i.e., all occurrences
of the variable G are substituted for G).

For the graph properties that we consider, such as bipartiteness, the OBDDs
for G |= φ have exponential size. As we show in Section 4, the relaxation
brought about by property testing is not sufficient to reduce the OBDD size
of bipartiteness. We use ε-reducibility to construct probabilistic abstractions,
yielding smaller, even constant-size, OBDDs. Using such OBDDs, we are able
to guarantee that P approximately decides φ on all its inputs.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Article 20 / 10 • S. Laplante et al.

3.3 Probabilistic Abstractions

Definition 3.1. Let M be a transition system. A probabilistic abstraction of
M is a triple (H, M, μ), where H is a set of abstractions for M , M is a functional
which maps every h ∈ H to a transition system M̂ h = M(h) such that M �h M̂ h,
and μ is a probability distribution over H.

Let � be a CTL∗ formula on M , and ψ be a graph property. Then any prob-
abilistic abstraction of M induces the following probabilistic test, where we
require that Ĝh be interpreted as a graph, and the operator D (see Section 2.3)
is applied with respect to the chosen abstraction h.

Generic Test
(
(H, M, μ), �, ψ

)
(1) Choose an element h ∈ H according to μ.
(2) Accept if (and only if)

∀Ĝh (M̂ h, Ĝh |= D(�) =⇒ Ĝh |= ψ).

The probability that the test rejects will be denoted by Rej((H, M, μ), �, ψ).
The distribution μ will be omitted when it denotes the uniform probability
distribution. To be useful in practice, a probabilistic abstraction should be both
ε-robust (programs are rejected with probability 2/3 if the relaxed specification
is false for some input) and sound (no correct programs are rejected), in which
case we say that it is an ε-abstraction. When this is the case, checking the
correctness of a program can be easily done on the abstracted model with high
confidence using Generic Test. Fix a confidence parameter 0<γ<1, and iterate
Generic Test O(ln 1/γ ) times. If the program is correct, Generic Test always
accepts; and if there is an instance on which the program is not correct with
respect to the relaxed specification, Generic Test rejects at least once with
probability at least (1−γ ).

Definition 3.2. Let M be a transition system, ε > 0, � be a CTL∗ formula,
and let φ, ψ be two graph properties. A probabilistic abstraction (H, M, μ) of
M is ε-robust with respect to (�, φ, ψ) if

(∃G (M , G |= � and G �|=ε φ)) =⇒ Rej((H, M, μ), �, ψ) ≥ 2
3

.

Definition 3.3. Let M be a transition system, � be a CTL∗ formula, and
let φ, ψ be two graph properties. A probabilistic abstraction (H, M, μ) of M is
sound with respect to (�, φ, ψ) if

(∀G (M , G |= � =⇒ G |= φ)) =⇒ Rej((H, M, μ), �, ψ) = 0.

Definition 3.4. Let M be a transition system, ε > 0, � be a CTL∗ formula,
and let φ, ψ be two graph properties. A probabilistic abstraction (H, M, μ) of
M is an ε-abstraction for (�, φ, ψ) if it is both ε-robust and sound with respect
to (�, φ, ψ).

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Probabilistic Abstraction for Model Checking • Article 20 / 11

3.4 Constructing ε-Abstractions

We now explain how to construct ε-abstractions based on ε-reducibility. Fix
ε > 0, and assume that φ is (ε, k)-reducible to ψ , for some k ≥ 1. We give a
generic proof of robustness of our probabilistic abstraction, and we isolate a
sufficient condition which implies soundness. Under this condition, we obtain
an ε-abstraction. From Definition 2.4, for any fixed k and any fixed vertex set
V , we let � be the set of all subsets π of V with |π | = k, and for any graph G
with VG = V , the vertex-induced subgraph on the vertex set π is denoted by
Gπ .

Since we relax φ with respect to ε, we can decompose our initial specifica-
tion (1) into the following family of reduced specifications:

{∀G (M , G |= � =⇒ Gπ |= ψ) : π ∈ �}.
For every π , the corresponding reduced specification can now be subject to

an abstraction hπ . Every corresponding abstracted variable v and constant d
will be denoted respectively by v̂π and d̂π . We require that the abstraction
of G be exactly Gπ , that is, Ĝπ = Gπ . Let M̂π be such that M �hπ

M̂π . We
define the (uniform) probabilistic abstraction (H, M) (also denoted by (�, M))
as H = {hπ : π ∈ �} and M(hπ ) = M̂π , for every π ∈ �. This leads to the
following test, derived from Generic Test for this family of abstractions:

Graph Test
(
(�, M), �, ψ

)
(1) Randomly choose a subset of vertices π ∈ �.
(2) Accept if (and only if)

∀Ĝπ (M̂π , Ĝπ |= D(�) =⇒ Ĝπ |= ψ).

We show that if � is an ∃CTL∗ formula and φ is ε-reducible to ψ , then our
probabilistic abstraction is ε-robust with respect to (�, φ, ψ). This, together
with its conditional reciprocal in Theorem 3.7, establishes the validity of the
method.

THEOREM 3.5. Let � be a ∃CTL∗ formula. Let ε > 0 be a real, k ≥ 1 an integer,
and let φ be (ε, k)-reducible to ψ . Let (�, M) be a probabilistic abstraction such
that Ĝπ = Gπ , for every π ∈ �. Then (�, M) is ε-robust with respect to (�, φ, ψ).

PROOF. Let G be such that M , G |= � and G �|= φε. By Theorem 2.5,
M̂π , Ĝπ |= D(�), for every π ∈ �. Moreover, by definition of (ε, k)-reducibility
we know that Prπ∈�

[
Ĝπ |= ψ

] ≤ 1/3. Therefore,

Pr
π∈�

[M̂π , Ĝπ |= D(�) =⇒ Ĝπ |= ψ] ≤ 1
3

.

We conclude by observing that the acceptance probability of Graph Test is
bounded above by the term on the left hand side of the inequality.

Having shown that the abstraction is ε-robust, we give a sufficient condition
for soundness: exactness.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Article 20 / 12 • S. Laplante et al.

Definition 3.6. Let M be a transition system, � be a CTL∗ formula, h be an
abstraction, and M̂ be such that M �h M̂ . Then the approximation M̂ is exact
with respect to � if and only if for every graph Ĝ:

M̂ , Ĝ |= D(�) =⇒ ∃H, Ĥ = Ĝ and M , H |= �.

The exactness property is a reciprocal to the Theorem 2.5 stated for ∃CTL∗

formulas in our context.

THEOREM 3.7. Let � be a ∃CTL∗ formula. Let ε > 0 be a real, k ≥ 1 an integer,
and let φ be (ε, k)-reducible to ψ . Let (�, M) be a probabilistic abstraction such
that Ĝπ = Gπ and M̂π is an exact approximation with respect to �, for every
π ∈ �. Then (�, M) is sound with respect to (�, φ, ψ).

PROOF. Fix π ∈ �. Let Ĝπ be a k-vertex graph such that M̂π , Ĝπ |= D(�).
From the exactness of M̂π , there exists a graph H such that Ĥπ = Ĝπ and
M , H |= �. Therefore, from the hypotheses we get H |= φ. The (ε, k)-reducibility
of φ to ψ implies that Hπ |= ψ , that is, Ĝπ |= ψ . Thus, for all π ∈ � and Ĝπ :

M̂π , Ĝπ |= D(�) =⇒ Ĝπ |= ψ. �

3.5 An ε-Abstraction for Bipartiteness

In this section, we give a short program for bipartiteness, and an ε-abstraction
for this program. We consider a function which, given a graph G and a coloring
Color (entered by the user), decides if Color is a bipartition for G. The graph
G is represented in the program in the natural way by the upper triangular
entries of a boolean matrix variable G and Color by a boolean array variable
Color.

FUNCTION CHECK-PARTITION

CONSTANT INTEGER n=10000

INPUT G : ARRAY[n,n] of BOOLEAN

VAR Color : ARRAY[n] of BOOLEAN

VAR u,v : INTEGER 1..n+1

1: get(Color)

2: u=2

3: WHILE u<=n DO {

v=1

4: WHILE v<=u-1 DO {

5: IF G[u,v]&&(Color[u]=Color[v]) RETURN false

v=v+1 }

u=u+1 }

6: RETURN true

3.5.1 Correctness Property. We want to verify that, for every input G, if
there exists an input value for Color for which the program accepts, then G
represents a bipartite graph. More formally, we want to verify the following
property:

∀G (M , G |= ∃
(
(¬ack) U = (ack ∧ ret)

) =⇒ G is bipartite). (2)

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Probabilistic Abstraction for Model Checking • Article 20 / 13

Note that ∃ ranges over all the possible initial values of Color which the user
can enter with the instruction get(Color). For each π we define the abstraction
which maps G to the subgraph Gπ , Color to the coloring on the subset of vertices
induced by π , and u, v refer to the vertices as follows: ûπ is u if u ∈ π , and is
min{w : ∀t (w ≤ t ≤ u =⇒ t �∈ π )} otherwise.

For this abstraction, we want to show robustness and soundness
(Corollary 3.9). Robustness is directly obtained from Theorem 3.5, and using
Theorem 3.7, we only need to prove the exactness of the abstraction.

LEMMA 3.8. For every π ∈ �, Aπ (M ) is exact with respect to the ∃CTL∗

formula of Equation (2).

PROOF. For the sake of clarity, the proof is in two parts. First, we prove that
the abstraction that only maps G �→ Gπ , and preserves the other variables,
is exact for every π . Then we show how it can be extended to the complete
abstraction.

First, let us represent the transition system of CHECK-PARTITION. For conve-
nience, we use a compact representation of relational expressions representing
the transition relation. Each line corresponds to a transition between two con-
trol points. The transition relation is represented by the disjunction of these
lines. We use ‘i �→ j :’ as an abbreviation for (PC = i) ∧ (PC′ = j ). On any
given line, for any pair (v, v′) of program variables, if v′ does not occur in the
relational expression, then the atomic proposition (v′ = v) is understood, but
omitted from the compact form. Furthermore, the expression (v′ = ∗) is used
when the value of v′ is unspecified, and it is the abbreviation for the formula
stating that all other variables do not change. This typically occurs after a get
instruction, and corresponds to a nondeterministic transition. The initial states
of the transition system of CHECK-PARTITION are (ack = false) ∧ (PC = 1). The
relational expression of the transition system of CHECK-PARTITION is given in
compact form by the disjunction of the following Boolean formulas.

1 �→ 2 :(Color’ = ∗)
2 �→ 3 :(u’ = 2)
3 �→ 4 :(u ≤ n) ∧ (v’ = 1)
3 �→ 6 :(u = n + 1)
4 �→ 3 :(v = u) ∧ (u’ = u + 1)
4 �→ 5 :(v ≤ u − 1)
5 �→ 5 :G[u,v] ∧ (Color[u] = Color[v]) ∧ (ack’ = true) ∧ (ret’ = false)
5 �→ 4 :((¬G[u,v]) ∨ (Color[u]�=Color[v])) ∧ (v’ = v + 1) (3)
6 �→ 6 :(ack’ = true) ∧ (ret’ = true)

We first suppose that only G is abstracted. Let Gπ denote the corresponding
abstraction of the variable G. We will show that there is a graph G0 such that if
there is an accepting path in the abstracted transition system when the graph
input is set to G, then there is an accepting path in the concrete system when
the graph input is set to G0. Indeed, G0 will be the restriction of G = (V , E)
to vertices in π , that is G0 = (V , E0) is the n-vertex graph whose vertices are

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Article 20 / 14 • S. Laplante et al.

defined by

(u, v) ∈ E0 ⇐⇒ (u, v) ∈ E and u, v ∈ π.

The operator A transforms only the relational expression part of transitions
5 �→ 5 and 5 �→ 4 into:

5
π�→ 5 :(∃H(Hπ = Gπ ) ∧ H[u, v]) ∧ (ack’ = true)

∧ (Color[u] = Color[v]) ∧ (ret’ = false)

5
π�→ 4 :(∃H(Hπ = Gπ ) ∧ ((¬H[u, v])

∨ (Color[u]�=Color[v]))) ∧ (v’ = v + 1) (4)

For instance in the first line, the expression ∃H (Hπ = Gπ )∧ H[u, v] is the result
of the approximation operator A on G[u,v].

The following fact will enable us to conclude.

(4) =⇒ (3)(G0/G). (5)

To prove this, observe that whenever the left-hand-side term of (5) is true for
some H, then it is still true for any subgraph K of H such that Kπ = Gπ , and
therefore for G0.

With (5), we can conclude that there exists an accepting path in the concrete
system with G = G0. To an accepting path σ in the abstract system corresponds
a unique coloring Color. Let τ be the path of the concrete system starting from
the initial state, defined by G = G0 and Color. The abstracted path τ̂ π of τ is in
fact σ . To prove that τ is an accepting path, observe that it is enough to prove
that whenever PC = 5, then the transition 5 �→ 4 is done. Since the transition
system is deterministic whenever PC �= 1, this is equivalent to Formula (3) being
true. By contradiction, assume that PC = 5 and (3) is false, then from (5) we get
that the abstracted path is rejecting. This concludes the proof since we assumed
that it is accepting.

In the general case, G, Color, u and v are abstracted. We will show that there
is a graph G0 and a coloring Color0 such that if there is an accepting path in the
abstracted transition system when the graph input is set to G and the coloring
input to Color, then there is an accepting path in the concrete system when
the graph input is set to G0 and the coloring input to Color0.

The operator A transforms the transition 5 �→ 4 into:

5
π�→ 4 :

(∃H ∃COLO R ∃r ∃s ∃t (Hπ = Gπ ∧ ̂COLO R
π =

Ĉolor
π ∧ r̂π = ûπ ∧ ŝπ = v̂π ∧ t̂π = ŝ + 1

π

)

∧ ((¬H[r, s]) ∨ (COLO R[r]�=COLO R[s])) ∧ (s′ = t)
)

(6)

We will first prove an analogue of (5), that is

(6) =⇒ (3)(G0/G)(Color0/Color)(u0/u)(v0/tv), (7)

where G0 is defined as above, Color0 is any coloring that coincides with the
restriction of the coloring to vertices in π and u0, v0 are such ûπ = û0

π and
v̂π = v̂0

π . Since there is an accepting path in the abstracted transition system,
there always exists a graph H such that Hπ = Gπ , a coloring COLOR such that

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Probabilistic Abstraction for Model Checking • Article 20 / 15

̂COLO R
π = Ĉolor

π

, and r and s such that r̂π = ûπ and ŝπ = v̂π , so the system
makes the transition 5

π�→ 4. Observe that the transition is also made when
H is set to G0. Notice also that only the indices of Color that appear in π are
relevant for this transition. Moreover, the only relevant values of the vertex
counters are those corresponding to vertices in π (these values are unchanged
by the abstraction). Therefore (7) is true.

As in the first case, to an accepting path σ in the abstract system corresponds
a coloring Ĉolor

π
. Define Color0 as above. Let τ be the path of the concrete

system starting from the initial state, defined by G = G0 and Color = Color0.
The abstracted path τ̂ π of τ , where consecutive duplicates are removed, is in
fact σ . Again, we can prove that τ is an accepting path using (7).

Since the size of π is fixed, our abstraction induces a constant size OBDD.
By Lemma 3.8, Theorems 2.7, 3.5, and 3.7, we know that our probabilistic
abstraction is an ε-abstraction, so Graph Test can be used for checking the
validity of (2).

COROLLARY 3.9. Let ε > 0. Using the previous probabilistic abstraction,
Graph Test on CHECK-PARTITION satisfies the following:

(1) If CHECK-PARTITION satisfies specification (2), then Graph Test always ac-
cepts;

(2) If there exists a graph G which has distance more than ε from any bipartite
graph, but which is accepted by CHECK-PARTITION for some coloring Color,
then Graph Test rejects with probability at least 2/3;

(3) The time complexity of Graph Test is exponential in poly(1/ε) and does not
depend on n, the input size.

3.5.2 Other Temporal Properties. In the previous example, we used for �

the basic correctness property, i.e. ∃
(
(¬ack) U(ack ∧ ret)

)
. We could use other

temporal properties such as:

— ∃((v < n) U (v = n))
— ∃(F(v = n))
— ∃(F(u = n + 1))

All these temporal formulas are equivalent to the program’s termination prop-
erty, hence the previous abstraction satisfies both the robustness and soundness
properties of Corollary 3.9.

On the other hand, a property such as

— ∃(Fu ≥ n)

is not equivalent to the termination property as we may miss the last iteration
for u = n and v = 1, . . . n − 1. We may terminate without checking the corre-
sponding last O(n) edges of the graph. There are non bipartite graphs which
are ε-bipartite that will pass the Graph Test for any ε. The method is not
guaranteed to detect an error, because the distance to bipartiteness O(n) is too
small, always less than εn2.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Article 20 / 16 • S. Laplante et al.

Finally a property such as

— ∃
(
Fu ≥ 9

10 · n
)

is not verified as we may miss the last iterations for u = � 9
10 ·n�, � 9

10 ·n�+1, . . . n.
However, it will be detected with ε = 1

10 because of the robustness property. The
soundness property is not useful since we only want to find errors.

3.6 General Application

The proposed method generalizes model checking to programs with first-order
structures U of a class K such as finite graphs as inputs. We clearly distinguish
the temporal property � applied to the transition system with the correctness
property φ on the class of finite inputs U and we verify that:

∀U ((∀s ∈ IU M , s |= � =⇒ U |= φ)

If we have a tester for the property φ, then φ is (ε, k)-reducible to some
ψ , as it is proved in Goldreich and Trevisan [2003]. We can then look for an ε-
abstraction for various �s. We would then need to formally verify the relaxation
of the property, in time depending only on ε.

4. LOWER BOUND FOR APPROXIMATE BIPARTITENESS

In the previous sections we have shown that probabilistic abstractions can be
used to reduce the transition system size, for the problem of ε-bipartiteness.
Prior to this work, it was known that bipartiteness does not admit small
OBDDs [Hajnal et al. 1988]; however, it was not known whether a small OBDD
could be constructed for the relaxed version of the problem. Had this been
possible, then standard model checking techniques would have sufficed for
the verification of ε-bipartiteness. In this section we show that this is not the
case.

4.1 Overview

The proof that any OBDD for bipartiteness has exponential size is based on
communication complexity. In a communication complexity game, each player
is given an input, say, player I is given x and player II is given y , and their
goal is to compute some function f (x, y). To compute f , the players follow a
protocol, in which each player alternately sends a message to the other player,
and at the end of the protocol, one of the players outputs the value of f (x, y).
The complexity of a function is the total size of the messages exchanged for the
worst-case input of the best protocol. There is no limit on the computational
power of the two players. When there is just one message from Player I to
Player II, we use the term one-way communication complexity.

Giving a lower bound on the communication complexity suffices to give a
lower bound on OBDD size. Assume we are given an minimal size OBDD for a
function f , whose width is w, and which examines the variables in the order
x1, . . . , xn. If player I is given the first half of the variables, and the second player
is given the second half, then there is a communication protocol that computes

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Probabilistic Abstraction for Model Checking • Article 20 / 17

f using log(w) bits of communication: player I sends player II the state of
the OBDD after the first half of the variables are scanned. Player II can then
complete the evaluation of the OBDD from this state and output the value of f .
By this argument, any lower bound on the one-way communication complexity
of the function implies an exponentially-scaled lower bound on OBDD width,
provided the lower bound still holds regardless of the way the variables are
shared among Player I and Player II.

In the remainder of this section, we show how the communication complexity
lower bound of Hajnal et al. [1988] can be adapted to yield a lower bound on
OBDD size for the relaxed version of bipartiteness. This establishes that in the
case of bipartiteness, reducing the size of the OBDD cannot be achieved solely
by relaxing the exactness of the result. The argument presented in the confer-
ence version of this paper was only partially correct for small ε = O(1/n2). We
present a new graph construction which generalizes and simplifies the argu-
ment based on the graphs of Hajnal et al. [1988].

The ε-bipartiteness problem is the following partial boolean function.

Definition 4.1 (ε-bipartiteness). Let ε > 0 be a real. The ε-bipartiteness
problem in V is a partial function f on graphs G on V :

f (G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if G is bipartite,
0 if G has distance more than ε from any bipartite

graph,
⊥ (undefined) otherwise.

We say that an OBDD solves a partial function f if its output agrees with
f whenever f is defined. The rest of this section is devoted to proving the
following theorem.

THEOREM 4.2. For every sufficiently small ε > 0, any OBDD that solves the
ε-bipartiteness problem for graphs with n vertices has width 2�(n).

The rest of the paper is devoted to the proof of this theorem. It follows directly
from Propositions 4.3 and 4.5, and Lemmas 4.8 and 4.12 (see Section 4.2.3 for
the outline of the proof).

4.2 Preliminaries and Notation

4.2.1 Communication Complexity. To establish the lower bound on OBDD
size, we will use techniques from communication complexity. The disjoint union
of sets A and B will be written A∪̇B. In a communication complexity protocol,
two players each have part of an input string, and they wish to compute a
function on this joined input. Let f : {0, 1}N → {0, 1} be such a Boolean func-
tion which two players wish to compute. Usually this function is total, that
is, defined on every input. However in this paper we consider functions that
may be partial, that is, undefined (denoted ⊥) on some of the inputs. Each
player gets a part of the input according to some partition of the input bits
as follows. Let R∪̇Y be a partition of the N input variables into two equal
parts. Player 1’s input x corresponds to the variables of R, Player 2’s input

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Article 20 / 18 • S. Laplante et al.

y corresponds to the variables of Y . When a partition of the input bits is
fixed, we may write f as a 2-argument function f R:Y (x, y), where it is un-
derstood that the first argument is Player 1’s input and the second argument
is Player 2’s input. Often when there is no ambiguity, the superscript R : Y is
dropped.

Note that for the bipartiteness problem, the inputs are graphs, so an input
variable corresponds to a pair of vertices of the graph. This is why we will
consider partition R, Y of the complete graph on V , for some set of vertices V .
If an edge variable is set to 1, this means the edge is in the graph, and if it is
set to 0, then the edge is not in the graph.

In a one-way communication protocol for f , Player 1 sends one message to
Player 2, who outputs the value of f R:Y (x, y). The communication κ R:Y

→ (P; x, y)
incurred by a one way-communication protocol P on input x, y for the partition
R, Y is the number of bits of the message sent by Player I. The one-way commu-
nication complexity of f for a partition R, Y is denoted κ R:Y

→ ( f ), and is the min-
imum, over all one-way communication protocols P for f , of max{κ R:Y

→ (P; x, y)},
where the maximum is over all x, y : |x| = | y | = N such that f R:Y (x, y) �= ⊥.
The one-way communication complexity for the best-case partition of variables
is κbest

→ ( f ) = minR∪̇Y {κ R:Y
→ ( f )}, where R : Y ranges over all partitions with

|R| = |Y | ± 1.
Let f be a (possibly partial) Boolean function whose variables are parti-

tioned according to R, Y . In the usual setting, where f is a total function, the
communication matrix associated of f is the matrix representation M R:Y

f of
f , that is (M R:Y

f )x, y = f R:Y (x, y). For partial functions, we let (M R:Y
f )x, y = 


whenever f R:Y (x, y) = ⊥. When R, Y is clear from the context, we drop the
superscript R : Y .

The lower bound on the width of OBDDs that compute f is related to the com-
munication matrix of f by the following proposition. We state the result for one-
way communication complexity, which can be easily derived from Kushilevitz
and Nisan [1997], and which remains true for partial functions using the fol-
lowing notion. We say that two lines are unambiguously distinct if on some
column, one line contains a 0 and the other contains a 1.

PROPOSITION 4.3 (FOLLOWS FROM KUSHILEVITZ AND NISAN [1997, PAGE 144]).

(1) If there exists an OBDD of width at most w that solves f , then κbest
→ ( f ) ≤

log w.
(2) Let M f be the communication matrix of f whose variables are partitioned

according to R, Y . Then κ R:Y
→ ( f ) ≥ log(l ), where l is the number of pairwise

unambiguously distinct lines in M f .

4.2.2 Reductions in Communication Complexity. Informally, a communi-
cation problem reduces to another if the communication matrix of the first prob-
lem appears as a submatrix of the second problem’s communication matrix. We
give a formal definition below. In Section 4.4.2, we will show that the half-
set disjointness problem, defined in Section 4.3, reduces to the ε-bipartiteness
problem.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Probabilistic Abstraction for Model Checking • Article 20 / 19

Definition 4.4. Let f : {0, 1}n × {0, 1}n → {0, 1} and g : {0, 1}m × {0, 1}m →
{0, 1} be two boolean functions. Then g reduces to f (written g ≤ f ) if there
exists two functions hx , hy : {0, 1}m → {0, 1}n such that

g (x, y) �= ⊥ =⇒ g (x, y) = f (hx(x), hy ( y)).

As for standard reductions, the following proposition holds for one-way com-
munication complexity.

PROPOSITION 4.5. Let f : {0, 1}n ×{0, 1}n → {0, 1} and g : {0, 1}m ×{0, 1}m →
{0, 1} be two boolean functions. If g ≤ f then κ→(g ) ≤ κ→( f ).

4.2.3 Outline of the Proof. We now give the outline of the proof of Theo-
rem 4.2. We find l = 2�(n) such that

log(l ) ≤ κ→(half-set disjointness)

by giving a lower bound on the number of distinct lines in the communica-
tion matrix of the half-set disjointness problem (Lemma 4.8). When ε > 0 is
sufficiently small, for any R, Y , the inequality

κ→(half-set disjointness) ≤ κ R:Y
→ (ε-bipartiteness)

holds by virtue of the reduction half-set disjointness ≤ ε-bipartitenessR:Y , for
all coloring R, Y , (Lemma 4.12). By definition of κbest

→ , this implies that

log(l ) ≤ κbest
→ (ε-bipartiteness).

By Proposition 4.3, if an OBDD for ε-bipartiteness has width w, then

κbest
→ (ε-bipartiteness) ≤ log(w).

This allows us to conclude that w ≥ l = 2�(n).

4.3 Half-Set Disjointness

We introduce the half-set disjointness problem, an auxiliary problem which we
will use to derive our lower bound. In Section 4.4 we will show that it reduces
to the ε-bipartiteness communication matrix, for sufficiently small ε. Then, it
will suffice to show a lower bound for the one-way communication complexity
of the half-set disjointness problem.

Definition 4.6 (Half-Set Disjointness Problem). Let S be a finite set. The
half-set disjointness problem in S is a partial function g on subsets T1, T2 ⊂ S
of size �|S|/4�:

g (T1, T2) =

⎧⎪⎨⎪⎩
1 if T1 ∩ T2 = ∅,
0 if |T1 ∩ T2| ≥ |T1|/2,
⊥ otherwise.

For the half-set disjointness problem, we only consider one partition of the
input variables: the input of Player 1 is (an encoding of) some subset T1, and
the input of Player 2 is (an encoding of) some subset T2. The corresponding
communication matrix is M , whose rows and columns are labeled by subsets

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Article 20 / 20 • S. Laplante et al.

T1, T2 ⊂ S of size |S|/4. The number of rows and columns is
( |S|
�|S|/4�

)
. We show

that M has an exponential number of unambiguously distinct lines. First we
state a usefull technical result.

PROPOSITION 4.7. Let S be a finite set. There exist at least �2|S|/64� distinct
subsets Ti ⊂ S of size �|S|/4� such that every pair Ti �= Tj satisfies |Ti ∩ Tj | ≤
|Ti|/2.

PROOF. We use a probabilistic argument to obtain a large family of sets that
have the required property. Let m = �|S|/4�. Assume that |S| ≥ 64, i.e., m ≥
16, otherwise the proposition is trivial. First we bound above the probability
Pr

[|T1 ∩ T2| > m/2
]

when T1, T2 ⊂ S are chosen uniformly at random with
|T1| = |T2| = m. Fix any T1 ⊂ S of size m. Then Prx∈S [x ∈ T1] = |T1|/|S| ≤ 1/4.
When T2 ⊂ S is chosen uniformly at random among sets of size m, the size of
T1∩T2 is a hypergeometric random variable on m trials. Therefore, we can apply
a Chernoff-Hoeffding bound [Janson et al. 2000, Theorem 2.10, p. 29][Hoeffding
1963] to obtain the following inequality

Pr
T2⊂S,|T2|=m

[|T1 ∩ T2| > m/2] ≤ e−m/8.

Since the resulting upper bound is established for any T1 ⊂ S of size m, it is
still valid for a random T1. Therefore,

Pr
T1,T2⊂S,|T1|=|T2|=m

[|T1 ∩ T2| > m/2] ≤ e−m/8.

Let N ≥ 2 be any integer. By using the union bound we get that

Pr
Ti⊂S,|Ti |=m,i=1,... ,N

[∃i �= j : |Ti ∩ Tj | > m/2] ≤
(

N
2

)
e−m/8.

Therefore if the right hand side term is less than 1, there necessarily exists a
family T1, . . . , TN of subsets that have requiered property. To conclude, observe
that if N ≤ 2|S|/64 this condition is indeed satisfied.

LEMMA 4.8. Let S be a finite set. The communication matrix of the half-set
disjointness problem in S has at least �2|S|/64� unambiguously distinct lines.

PROOF. Let N = �2|S|/64�, m = �|S|/4�, and T1, . . . , TN ⊂ S be the family of
sets from Proposition 4.7. Fix i �= j . Since |Ti ∩ Tj | ≤ m/2, there exists a subset
T ⊂ S of size m such that Ti ∩ T = ∅ and |Tj ∩ T | ≥ |T |/2. By construction,
the lines Ti and Tj of the communication matrix of the half-set disjointness
problem in S, that is g , are unambiguously distinct because g (Ti, T ) = 1 and
g (Tj , T ) = 0.

4.4 Reduction to ε-Bipartiteness

This section is devoted to reducing half-set disjointness to ε-bipartiteness, for
any sufficiently small ε > 0.

Since the goal is to obtain a lower bound on the one-way communication
complexity for the best-case partition of variables (κbest

→ ), we must prove the
reduction for any partition of the input variables R, Y . For the ε-bipartiteness

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Probabilistic Abstraction for Model Checking • Article 20 / 21

problem, the variables in the communication problem are pairs of vertices: the
variable is 1 whenever the corresponding edge is in the graph, and 0 otherwise.
Each player is given half of the edge variables according to some partition R, Y
of the complete graph. The input of the communication protocol is the graph
formed by the union of edges given to each player.

Hajnal et al. [1988] give a reduction from a property on partitions to con-
nectivity and exact bipartiteness. They prove an �(n log n) lower bound on the
communication complexity of the property on partitions. We give a reduction
from half-set disjointness to ε-bipartiteness, using some of their techniques.
Our goal is to construct a class of graphs with many triangles, so that it is
necessary to remove ε · n2 edges for it to become bipartite.

4.4.1 Multitriangle Graphs. When we refer to bipartite graphs H, we will
use the notation H = (A, B, E), where A∪̇B denotes a partition of the vertex
set of H for which the set of edges E satisfies E ⊆ A × B.

Definition 4.9. Let H = (A, B, E) be a bipartite graph with |A| = |B| = r.
Then H is dense if every vertex has degree at least r/3.

If G = (V , E) is a graph and A∪̇B ⊆ V , then G|(A,B) denotes the bipartite
graph induced by G on A × B. Using Szemerédi’s regularity lemma, [Hajnal
et al. 1988] prove a stronger version of the following. To get this result apply
[Hajnal et al. 1988, Lemma 9] with parameters 0 < ε < 1/12 and γ = 1/2.

LEMMA 4.10. There exists 0 < α < 1 and n0 a positive integer such that for
every partition R, Y of the edges of the complete graph K = (V , R∪̇Y ) on n ≥ n0
vertices V , the following holds: there exist subsets V 1

0 , V 2
0 , V1, V2 ⊆ V each of

size r ≥ αn such that

(1) V 1
0 and V1, V 2

0 and V2, V1 and V2 are respectively disjoint,

(2) r/3 ≤ |V 1
0 ∩ V 2

0 | ≤ r,
(3) (V , R)|(V 1

0 ,V1) and (V , Y )|(V 2
0 ,V2) are dense.

In the remainder of the proof, we will set A = V1, B = V 1
0 ∩ V 2

0 and C = V2.
Notice that if T1 and T2 are two subsets of B, then there are many triangles
connecting vertices of T1 ∩ T2, vertices of A, and vertices C. We relate the size
of the intersection of T1 and T2 to the number of triangles, and finally on the
number of edges that must be removed for the graph to become bipartite. The
construction of the following lemma is illustrated by Figure 1.

LEMMA 4.11. There exists 0 < α < 1 and n0 a positive integer such that for
every partition R, Y of the complete graph on n ≥ n0 vertices V , the following
holds: there exist subsets A∪̇B∪̇C ⊆ V , and a graph G = (V , E) such that:

(1) |A| = |C| ≥ αn and |B| ≥ αn/3,
(2) E ⊆ (A × B)∪̇(B × C)∪̇(C × A) and G|(A,C) is a complete bipartite graph,
(3) G|(A,B) is a subgraph of (V , R) and G|(C,B) is a subgraph of (V , Y ),
(4) for every subset T1, T2 ⊆ B, the graph GT1,T2 = (V , E∩((T1×A)∪̇(T2×B)∪̇(A×

C))) is bipartite if T1 ∩ T2 = ∅, and has distance at least α|T1 ∩ T2|/(9n) from
any bipartite graph

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Article 20 / 22 • S. Laplante et al.

B

T

A

2

T1

C

R Y

Fig. 1. An instance of GT1,T2 with |T1 ∩ T2| �= ∅.

PROOF. Let α, n0 be suitable for Lemma 4.10, and assume n ≥ n0. Apply
Lemma 4.10 to the complete graph on V with partition R, Y to obtain sets
V 1

0 , V 2
0 , V1, V2 of size r = αn.

Let A = V1, C = V2 and B = V 1
0 ∩ V 2

0 . Note that |B| ≥ r/3 = αn/3 by
Property (2) of Lemma 4.10. We now let G be the graph obtained by merging
the complete bipartite graph from A and C, the edges in R between A and B,
and the edges in Y between C and B. This graph satisfies Properties (1), (2)
and (3) of the Theorem.

We now prove Property (4). Let T = T1 ∩ T2. If T = ∅ then GT1,T2 is clearly
bipartite, thus we consider only the case T �= ∅. We first show that GT1,T2

contains at least |T |×r2/9 triangles. By Property (3) of Lemma 4.10, the vertices
of T are connected to at least r/3 vertices of A. The same is true for C. Since
GT1,T2 |(A,C) is a complete bipartite graph, we have (at least) the required number
of triangles. Now, observe that removing an edge in GT1,T2 removes at most r
triangles. Thus GT1,T2 is at distance at least |T |r/(9n2) ≥ α|T |/(9n) from the
family of bipartite graphs.

4.4.2 ε-Bipartiteness and Half-Set Disjointness. The goal of this section is
to complete the proof of a lower bound on the best-case partition communication
complexity for the relaxed bipartiteness problem, by giving the reduction from
the half-set problem to ε-bipartition problem, whenever ε > 0 is sufficiently
small. What remains to be shown is that for any partition R, Y of the edges of
the complete graph on n vertices, any instance of the half-set disjointness can
be mapped to an instance of ε-bipartiteness. The key ingredient in the proof is
the family of multitriangle graphs.

LEMMA 4.12. There exists ε0 > 0 and n0 a positive integer such that for every
0 < ε < ε0 and n ≥ n0 the following holds: for every partition R, Y of the
complete graph on n vertices V , there exists an integer m = �(n) such that the
half-disjointness problem in any set S of size m is reducible to the ε-bipartition
problem in V for the partition R, Y .

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Probabilistic Abstraction for Model Checking • Article 20 / 23

PROOF. Applying Lemma 4.11 for a sufficiently large n, we obtain 0 < α < 1,
subsets A∪̇B∪̇C ⊆ V , and a graph G = (V , E) that satisfy Properties (1)–(4) of
Lemma 4.11. We let m = |B| and identify B with S. For every pair of subsets
T1, T2 ⊆ S of size �|S|�/4, let T = T1 ∩ T2. Set ε0 = α2/216. Then the following
holds for evey 0 < ε < ε0:

(1) the set of edges in R (respectively the edges in Y ) in GT can be computed
from T1 (respectively T2).

(2) if T = ∅ then GT is bipartite,
(3) if |T | ≥ |T1|/2 then GT has distance at least ε0 > ε from any bipartite graph.

This concludes the reduction.

4.5 Improving the Lower Bound

The lower bound presented in this section is not optimal for very small ε. In
particular, when ε = 0, the lower bound of Hajnal et al. [1988] is 2�(n log(n)). It
is possible to carry out an argument similar to the one in Hajnal et al. [1988],
based on partitions of S instead of two intersecting subsets. A lower bound
for connectivity can also be proved using these techniques. A sketch of the
proof is given in the conference version of this paper. The theorem in the pro-
ceedings claims a general lower bound of 2�((1−2

√
ε)n log((1−2

√
ε)n)), which is only

valid for ε = 3DO( 1
n2 ), and it is still possible to prove a general lower bound of

2�(n log(n)).

5. CONCLUSION

We introduced a method to approximate model checking, based on property
testing. If the property of a Kripke structure is testable, one can very efficiently
distinguish between structures that satisfy the property and structures which
are ε-far from satisfying the property, that is, the time complexity of the verifi-
cation is independent of the size of the structure and only depends on ε. If the
Kripke structure is implicitely given by a program with inputs, we showed how
we can define an ε-abstraction on the program which will efficiently decide if
the program is correct or far from being correct.

In a classical model-checking situation, a Kripke structure and a temporal
property are given. The property is defined in some logical language and has a
finite representation, but the Kripke structure could be finite but very large, or
infinite, given in the form of a program. We propose to first study whether the
property is testable and then to look for the ε-abstraction based on the tester for
the finite representation of the Kripke structure. Many hard properties have
testers, and therefore it may be possible to approximately verify properties
which seem out of reach for exact verification techniques.

We took the example of bipartiness on graphs, and showed how the clas-
sical tester can lead to a practical ε-abstraction to test a concrete program
(Section 3.5). This method generalizes to any property testable by a one-sided
tester, as [Goldreich and Trevisan 2003] shows that those properties are ε-
reducible.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.



Article 20 / 24 • S. Laplante et al.

Lastly, we showed an exponential lower bound for OBDDs for ε-bipartiness
and therefore the relaxation of the property is still hard for classical model
checking.

ACKNOWLEDGMENTS

We would like to thank Wenceslas Fernandez de La Vega for the proof of
Proposition 4.7, Lokam V. Satyanarayana for discussions in Section 4, Miklos
Santha for many comments, and the referees for improving the presentation.

REFERENCES

ALON, N. AND KRIVLEVICH, M. 2007. Testing k-colorability. SIAM J. Discrete Math. To appear.
ALON, N., FISCHER, E., KRIVELEVICH, M., AND SZEGEDY, M. 2000. Efficient testing of large graphs.

Combinatorica 20, 451–476.
BLUM, M. AND KANNAN, S. 1995. Designing programs that check their work. J. ACM 42, 1, 269–291.
BLUM, M., LUBY, M., AND RUBINFELD, R. 1993. Self-testing/correcting with applications to numer-

ical problems. J. Comp. Sys. Sci. 47, 3, 549–595.
BRYANT, R. 1986. Graph-based algorithms for Boolean function manipulation. IEEE Trans.

Comput. 35, 8, 677–691.
BRYANT, R. 1991. On the complexity of VLSI implementations and graph representation of

Boolean functions with application to integer multiplication. IEEE Trans. Comput. 40, 2, 205–
213.

BRYANT, R. 1992. Symbolic Boolean manipulation with ordered binary decision diagrams. ACM
Comput. Surv. 24, 3, 293–318.

CLARKE, E., EMERSON, E., AND SISTLA, A. 1986. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. Prog. Langs. Sys. 8, 2, 244–263.

CLARKE, E., GRUMBERG, O., AND LONG, D. 1994. Model checking and abstraction. ACM Trans. Prog.
Langs. Sys. 16, 5, 1512–1542.

CLARKE, E., GRUMBERG, O., AND PELED, D. 1999. Model Checking. MIT Press.
GOLDREICH, O., GOLDWASSER, S., AND RON, D. 1998. Property testing and its connection to learning

and approximation. J. ACM 45, 4, 653–750.
GOLDREICH, O. AND RON, D. 1999. A sublinear bipartiteness tester for bounded degree graphs.

Combinatorica 19, 335–373.
GOLDREICH, O. AND RON, D. 2002. Property testing in bounded degree graphs. Algorithmica 32, 2,

302–343.
GOLDREICH, O. AND TREVISAN, L. 2003. Three Theorems Regarding Testing Graph Properties. RSA:

Random Structures Algorithms 23.
HAJNAL, A., MAASS, W., AND TURÁN, G. 1988. On the communication complexity of graph properties.

Proceedings of the 20th ACM Symposium on the Theory of Computing. pp. 186–191.
HOEFFDING, W. 1963. Probability inequalities for sums of bounded random variables. J. Am. Stat.

Assn. 58, pp. 13–30.
JANSON, S., LUCZAK, T., AND RUCIŃSKI, A. 2000. Random Graphs. Wiley-Interscience Series in De-

screte Mathematics and Optimization. John Wiley.
KUSHILEVITZ, E. AND NISAN, N. 1997. Communication Complexity. Cambridge University Press.
MCMILLAN, K. 1993. Symbolic Model Checking. Kluwer Academic Publishers.
RUBINFELD, R. AND SUDAN, M. 1996. Robust characterizations of polynomials with applications to

program testing. SIAM J. Comput. 25, 2, 23–32.
SZEMERÉDI, E. 1978. Regular partitions of graphs. In Éditions du CNRS, Problèmes combinatoires

et théorie des graphes, pp. 399–401.

Received April 2003; revised October 2004; accepted October 2005

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 20, Publication date: August 2007.


