
Probabilistic verification and approximation

Richard Lassaigne1 and Sylvain Peyronnet1,2

1 Equipe de Logique,
UMR 7056 CNRS,

University Paris VII
lassaign@logique.jussieu.fr

2 EPITA Research and Development Laboratory (LRDE)
syp@lrde.epita.fr

Abstract. Model checking is an algorithmic method allowing to au-
tomatically verify if a system which is represented as a Kripke model
satisfies a given specification. Specifications are usually expressed by
formulas of temporal logic. The first objective of this paper is to give
an overview of methods able to verify probabilistic systems. Models of
such systems are labelled discrete time Markov chains and specifications
are expressed in extensions of temporal logic by probabilistic operators.
The second objective is to focus on complexity of these methods and
to answer the question: can probabilistic verification be efficiently

approximated? In general, the answer is negative. However, in many
applications, the specification formulas can be expressed in some pos-
itive fragment of linear time temporal logic. One will show how some
simple randomized approximation algorithms can improve the efficiency
of verification for probabilities acting on useful classes of formulas.

1 Introduction

Model checking has been successfully used to verify if the behavior of concur-
rent and reactive systems satisfy some correctness properties, which are usually
expressed in temporal logic. While many important system properties can be
studied in this framework, others such as reliability and performance, require
instead a probabilistic characterisation of the system.
In the case of classical model checking, time complexity is linear in the size of
the model and in the size of formula for CTL branching time temporal logic [7],
and exponential in the size of formula for LTL linear time temporal logic [23].
In many practical cases the representation of systems by Kripke models leads
to a “state explosion phenomenon” and symbolic representation methods of the
transition system and of the formula have been introduced to overcome this
problem. Ordered Binary Decision Diagrams (OBDDs)[5], or equivalently read-
once branching programs with an ordering restriction on the variables, provide
in many practical cases a compact representation of the transition relation and of
the formula to be checked. However, in some cases, such as integer multiplication,
the OBDD size is exponential [6].

For probabilistic verification, time complexity is in general polynomial in the size
of the model and polynomial or exponential in the size of the formula [8]. For
the same reason as in classical model checking, symbolic representation methods
have been generalized in the probabilistic framework. However, in spite of using
these techniques, for many examples the verification is limited to small values
of the characteristic parameters of the model. Thus it seems natural to wonder
whether some approximation algorithms could be useful for probabilistic veri-
fication. Unfortunately, there are serious complexity reasons to think that this
is not the case in general. Nevertheless, there exists some feasible algorithms to
approximate model checking of various classes of LTL formulas against proba-
bilistic transition systems. These randomized algorithms allows to approximate,
with very high confidence, satisfaction probability of such formulas and to de-
cide if this probability is greater than a given threshold. The main advantage
is to eliminate space complexity by using a Monte-Carlo method and efficiently
bounding sample size. Moreover this approach is highly parallelizable and can
be integrated in a classical probabilistic model checker.
Our main results are:

–]P -completeness of counting paths satisfying LTL formulas;
– non-approximability of computing associated probabilities;
– a randomized approximation scheme for computing probabilities of the form
p = Prob[ψ] for formulas ψ in some positive fragment of LTL and p ∈]0, 1[.

Section 2 is a review of the main classical results in probabilistic verification
and of the existing probabilistic model checkers. In section 3, we describe the
linear time framework for probabilistic verification and we show the hardness of
approximating probabilities for LTL formulas. In section 4, we give a randomized
approximation algorithm to compute such probabilities when we restrict the
specification language to some positive fragment of LTL and probabilities to
the open interval]0, 1[.

2 Classical probabilistic verification

2.1 Qualitative verification

The first application of verification methods to probabilistic systems consisted
in checking if temporal properties are satisfied with probability 1 by systems
modeled either as finite discrete time Markov chains or as Markov models en-
riched with nondeterministic behavior. In the following, the former systems will
be denoted by probabilistic sytems and the latter by concurrent probabilistic
sytems.
In [28], Vardi presented the first method to verify if a linear time temporal prop-
erty is satisfied by almost all computations of a concurrent probabilistic system.
This automata-theoretic method is expensive, as it is doubly exponential in the
size of the formula.
The complexity of this work was later adressed by Courcoubetis and Yannakakis

2

[8]. A new model checking method for probabilistic systems was introduced, the
complexity of which was proved polynomial in the size of the system and expo-
nential in the size of the formula. For concurrent probabilistic systems they pre-
sented an automata-theoretic approach which improved on the Vardi’s method
by a single exponential in the size of the formula.

2.2 Quantitative verification

The Courcoubetis and Yannakakis’s method [8] allows to compute the probabil-
ity that a probabilistic system satisfies some given linear time temporal formula.
A temporal logic for the specification of quantitative properties, which refer to
a bound of the probability of satisfaction of a formula, was given by Hansson
and Jonsson [14]. The authors introduced the logic PCTL, which is an exten-
sion of branching time temporal logic CTL with some probabilistic quantifiers.
A model checking algorithm was also presented: the computation of probabili-
ties for formulas involving probabilistic quantification is performed by solving a
linear system of equations.
A model checking method for probabilistic concurrent systems against PCTL
and PCTL∗ (the standard extension of PCTL) properties is given by Bianco
and de Alfaro [3]. Probabilities are computed by solving an optimisation prob-
lem over system of linear inequalities, rather than linear equations as in [14].
The algorithm for the verification of PCTL∗ is obtained by a reduction to the
PCTL model checking problem using a transformation of both the formula and
the probabilistic concurrent system. Model checking of PCTL formulas is shown
to be polynomial in the size of the system and linear in the size of the formula,
while PCTL∗ verification is polynomial in the size of the system and doubly
exponential in the size of the formula.

We mention model checking tools that were designed for the verification of quan-
titative properties. In general, these tools use extensions of OBDDs called Multi-
Terminal Binary Decision Diagrams (MTBDDs) to represent Markov transition
matrices. ProbVerus [13] uses PCTL model checking and symbolic techniques
to verify PCTL formulas on fully probabilistic systems. PRISM [10] is a prob-
abilistic model checker which allows to check PCTL formulas on fully or con-
current probabilistic sytems. The Erlangen-Twente Markov Chain Checker [15]
(E `MC2) supports model checking of continuous-time Markov chains against
specifications expressed in continuous-time stochastic logic (CSL). Numerous
classical protocols represented as probabilistic or concurrent probabilistic sys-
tems have been successfully verified by PRISM. But experimental results are
often limited by the exponential blow up of space needed to represent the tran-
sition matrice and to solve linear systems of equations or inequations.
In this context, it is natural to ask the question: can probabilistic verifica-

tion be efficiently approximated? In the following, we study some possible
answers for fully probabilistic systems and linear time temporal logic.

3

3 Probabilistic verification and approximation

In this section, we present the classical logical framework which allows to express
quantitative properties of probabilistic systems, the results of Courcoubetis and
Yannakakis and the hardness of approximating such probabilities.

3.1 Probabilistic verification

A Discrete Time Markov Chain (DTMC) is a pair M = (S, P) where S is a
finite or countable set of states and P : S×S → [0, 1] is a transition probability
function, i.e. for all s ∈ S,

∑

t∈S P (s, t) = 1. If S is finite, we can consider P as
a transition matrix.

Definition 1. A probabilistic transition system (PTS) is a structure M =
(S, P, s0, L) given by a Discrete Time Markov chain (S, P) with an initial state
s0 and a function L : S → P(AP) labelling each state with a set of atomic
propositions in AP .

A path σ is a finite or infinite sequence of states (s0, s1, . . . , si, . . .) such that
P (si, si+1) > 0 for all i ≥ 0. We denote by Path(s) the set of paths whose first
state is s.
In linear-time logic LTL, formulas are composed from the set of atomic propo-
sitionsby using the boolean connectives and the temporal operators X (next)
and U (until). The usual operators F (eventually) and G (always) can also be
defined. LTL formulas are interpreted over paths of a transition system M. A
path σ is a finite or countable sequence of states (s0, s1, . . . , si, . . .) such that
(si, si+1) ∈ R for all i ≥ 0. We note also σ(i) the (i + 1)th state of the path σ
and σi the path (σ(i), σ(i+ 1), . . .).

Definition 2. The interpretation of LTL formulas over paths is defined by:

– M, σ |= p iff p ∈ L(σ(0)).
– M, σ |= ¬φ iff M, σ 6|= φ.
– M, σ |= φ ∧ ψ iff M, σ |= φ and M, σ |= ψ.
– M, σ |= Xφ iff M, σ1 |= φ.
– M, σ |= φUψ iff there exists j ≥ 0 s.t. M, σj |= ψ and for all i < j

M, σi |= φ.

We say that an LTL formula φ is universally valid in M, which we write M |=
∀φ, iff for all paths σ ∈ Path(s0), M, σ |= φ. An LTL formula φ is existentially
valid in M, which we write M |= Eφ, iff there a paths σ ∈ Path(s0) such that
M, σ |= φ.
For each structure M and state s, it is possible to define a probability measure
Prob on the set Path(s):
for any finite path π = (s0, s1, . . . , sn), the measure is defined by
Prob({σ/σ is a path and (s0, s1, . . . , sn) is a prefix of σ}) =

∏n

i=1
P (si−1, si).

This measure can be extended uniquely to the Borel family of sets generated by
the sets {σ/π is a prefix of σ} where π is a finite path.

4

In [28], it is shown that for any LTL formula φ, probabilistic transition system
M and state s, the set of paths {σ/σ(0) = s and M, σ |= φ} is measurable.
We denote by Prob[φ] the measure of this set. We say that the probabilistic
transition sytem M satisfy the formula φ if Prob[φ] = 1, i.e. if almost all paths
in M, whose origin is the initial state, satisfy φ.

Theorem 1. ([8])
The satisfaction of a LTL formula φ by a probabilistic transition sytem M can
be decided in time linear in size of M and exponential in size of φ, or in space
polylogarithmic in size of M and polynomial in size of φ.
The probability Prob[φ] can be computed in time polynomial in size of M and
exponential in size of φ.

The first part of the theorem is about qualitative properties, the second one con-
cerns quantitative properties. In the following, we study quantitative properties
and show,in the next subsection, that the problem of computing the number
of truth assignments satisfying a propositional formula in conjunctive normal
form (]SAT) can be reduced to the problem of counting finite paths satisfying
LTL formulas. Therefore it is unlikely to obtain an approximation algorithm for
computing Prob[φ] in general.

3.2 Counting problems and approximation

Intuitively, the class]P captures the problems of counting the numbers of solu-
tions to NP problems. The counting versions of all known NP -complete prob-
lems are]P -complete. The well adapted notion of reduction is parsimonious
reduction: it is a polynomial time reduction from the first problem to the second
one, recovering via some oracle, the number of solutions for the first problem
from the number of solutions for the second one.

No deterministic approximation algorithms are known for]P -complete prob-
lems. However, randomized versions of such approximation algorithms exist for
problems such as counting the number of valuations satisfying a propositional
disjunctive normal form formula (]DNF) [21] or network reliability problem
[19]. We introduce the notion of polynomial randomized approximation scheme
which is due to Karp and Luby [20]. Consider a counting problem and let #(x)
the number of distinct solutions for an instance x of this problem. We note |x|
the size of this instance.

Definition 3. A randomized approximation scheme (RAS) for a counting prob-
lem is a randomized algorithm A that takes an input x, a real number ε > 0 and
produces a value A(x, ε) such that for any x, ε > 0, and δ > 0:

Pr
(

|A(x, ε) − #(x)| ≤ ε.#(x)
)

≥ 1 − δ.

A randomized approximation scheme is said to be fully polynomial (FPRAS) [20]
if its running time is polynomially bounded in |x|, 1

ε
and log(1

δ
).

5

The probability Pr is taken over the random choices of the algorithm. We call ε
the error parameter and δ the confidence parameter. We remark that the error
parameter is a multiplicative parameter taking into account the size of #(x).
A probability problem is defined by giving as input a succinct representation of
a probabilistic system, a property x and as output the probability measure µ(x)
of the measurable set of execution paths satisfying this property.

Definition 4. A randomized approximation scheme for a probability problem is
a randomized algorithm A that takes an input x and a real number ε > 0 and
produces a value A(x, ε) such that for any x, ε > 0, and δ > 0:

Pr
(

|A(x, ε) − µ(x)| < ε.µ(x)
)

≥ 1 − δ.

If the running time of A is polynomial in |x|, 1

ε
and log(1

δ
), A is said to be fully

polynomial.

We consider the fragment L(F) of LTL in which F is the only temporal operator.

Theorem 2. The problem of counting finite paths satisfying L(F) formulas is
]P -complete.

The following result is due to Clarke and Sistla [27]: the problem of deciding
the existence of some path satisfying a L(F) formula in a transition system
is NP -complete. Their proof uses a polynomial time reduction of SAT to the
problem of deciding satisfaction for formulas of L(F). From this reduction, we
can obtain a parcimonious reduction between]SAT formula and counting finite
paths satisfying the associated L(F) formula.
Some consequence of this theorem is the]P -hardness of computing probabilities
of satisfaction for general LTL formulas. We remark that if there was a FPRAS
for approximating Prob[φ] for LTL formula φ, we could efficiently approximate
]SAT . We recall the randomized complexity class BPP which corresponds to
the useful class of two-sided error randomized algorithms. Let Σ be some finite
alphabet and Σ∗ be the set of strings over Σ.

Definition 5. The class BPP , for Bounded-error Probabilistic Polynomial time,
consists of all languages L that have a randomized polynomial time algorithm A
such that for any input x ∈ Σ∗,

– if x ∈ L then Pr
(

A(x) accepts
)

≥ 3

4
,

– if x 6∈ L then Pr
(

A(x) accepts
)

≤ 1

4

A polynomial randomized approximation scheme for]SAT could be used to
distinguish, for input x, between the case](x) = 0 and the case](x) > 0, thereby
implying a randomized polynomial time algorithm for the decision version SAT .

Corollary 1. There is no fully polynomial randomized approximation scheme
for the problem of computing Prob[φ] for LTL formula φ, unless BPP = NP .

As a consequence of a result of Jerrum and Sinclair [18],]P -complete problems
either admit an FPRAS or are not approximable at all. Therefore there are no
deterministic polynomial time approximation algorithms neither for]SAT nor
for computing Prob[φ] for the L(F) fragment of LTL.

6

4 Approximate probabilistic model checking

A first natural approach issue from bounded model checking, that is a method
designed by [4] to check properties expressed by LTL formulas against determin-
istic transition systems.

4.1 Probabilistic bounded model checking

Biere, Cimatti, Clarke and Zhu [4] present a symbolic model checking technique
using SAT procedures instead of BDDs. They introduce bounded model checking
(BMC), where the bound corresponds to the maximal length of a possible coun-
terexample. First, they give a correspondance between BMC and classical model
checking. Then they show how to reduce BMC to propositional satisfiability in
polynomial time.
The bounded model checking procedure works as follows. Given a transition
system M, an LTL formula φ and a bound k ∈ N, they construct a propositional
formula which is satisfiable if and only if there exists a path of length k which
is a counterexample to the specification expressed by φ. This procedure is well
adapted to finding a counterexample, if it exists, by incrementing the bound k.
Let us review more precisely what BMC is. Given a transition system M , an
LTL formula φ and a bound k, if we want to verify M |= ∀φ, we consider an
LTL formula ψ which is in positive normal form and is equivalent to ¬φ. Then
the translation of the formula ψ to a propositional formula is given in two parts:
the first component JMKk means for a sequence (s0, s1, . . . , sk) to be a path σ in
M and the second component JψKk forces σ to satisfy ψ. The following theorem
summarizes the results of [4] for bounded model checking of LTL formulas.

Theorem 3. [4]
Let ψ be an LTL formula and M be a transition system. Then M |= Eψ if
and only if there exists k = O(|M.2|ψ|) such that JMKk ∧ JψKk has a satisfying
assignment.

To check the initial property φ, one should look for the existence of a counterex-
ample to ψ for a given k, i.e. a satisfying assignment of JMKk ∧ JψKk. If one does
not find such a counterexample for k ≤ |S| × 2|ψ|, then the initial property is
true. We cannot hope to find a polynomial bound on k with respect to the size of
S and ψ, since the model checking problem for LTL is PSPACE-complete (see
[27]) and one could have a polynomial reduction to propositional satisfiability.
For practical verification of probabilistic protocols, quantitative properties have
often the following form: Prob[ψ] ≥ b for a treshold value b ∈ [0, 1]. We try
to check Prob[ψ] ≥ b by considering Probk[ψ] ≥ b, i.e. the probability mea-
sure restricted to the probabilistic space defined by execution paths of length
k. Following the BMC approach, we can associate to a formula ψ and length k
the propositional formula JMKk ∧ JψKk in such a way that a path of length k
satisfying ψ corresponds to an assigment satisfying JMKk ∧ JψKk. Determining
Probk[ψ] is thus reduced to a counting version of SAT. Unfortunately, not only
no efficient algorithms are known to solve such counting problems, but they are
believed to be strongly non-approximable by deterministic algorithms [24].

7

4.2 A positive fragment of LTL

For many natural properties, satisfaction on an execution path of length k implies
satisfaction by any extension of this path. Such properties are called monotone.
We consider a subset of LTL formulas which allows to express only monotone
properties and for which we can deduce corresponding bounds on satisfaction
probabilities.

Definition 6. The essentially positive fragment (EPF) of LTL is the set of
formulas constructed from atomic formulas (p) their negations (¬p), closed under
∨, ∧ and the temporal operators X,U .

These formulas include nested compositions of U but do not allow for negations
in front. Nevertheless, this fragment can express various classical properties of
protocols as accessibility, livelock freeness and convergence. If φ is a formula of
the EPF fragment, we can use a BMC-like framework to verify whether φ is true
on a path σ of length k. The monotonicity of the property defined by an EPF
formula gives the following result.

Proposition 1. Let ψ be an LTL formula of the essentially positive fragment
and M be a probabilistic transition system. Then the sequence (Probk[ψ])k∈N

converges to Prob[ψ].

A first idea is to approximate Probk[ψ] and to use a fixed point algorithm to
obtain an approximation of Prob[ψ]. This approximation problem is believed
to be intractable for deterministic algorithms. In the next section, we give a
randomized approximation algorithm whose running time is polynomial in the
size of a succinct representation of the system and of the formula.

4.3 Randomized approximation scheme with additive error

We show that we can approximate the satisfaction probability of an EPF for-
mula with a simple randomized algorithm. As in many applications randomized
approximation with additive error is sufficient and gives simple algorithms, we
first explain how to design it. Then we will use the estimator theorem [21] and
an optimal approximation algorithm [9] in order to obtain randomized approxi-
mation scheme with multiplicative error parameter, according to definition 4.
We generate random paths in the probabilistic space underlying the Kripke
structure of depth k and compute a random variable A which additively ap-
proximates Probk[ψ]. Our approximation will be correct with confidence (1− δ)
after a polynomial number of samples in 1

ε
, log 1

δ
. This result is obtained by us-

ing Chernoff bounds [25] on the tail of the distribution of a sum of independent
random variables.
The main advantage of the method is that we can proceed with just a suc-
cinct representation of the transition system, that is a succinct description in an
input language, for example Reactive Modules [2]. Thus eliminating the space
complexity problem.

8

Definition 7. A succinct representation, or diagram, of a PTS M = (S, P, s0, L)
is a representation of the PTS, that allows to generate algorithmically, for any
state s, the set of states t such that P (s, t) > 0.

The size of such a succinct representation is subtantially lower than the size of
the corresponding PTS. Typically, for Reactive Modules, the size of the diagram
is polylogarithmic in the size of the PTS.
The following function Random Path uses this succinct representation to gen-
erate a random path of length k and to check the formula ψ:

Random Path

Input: diagramM, k, ψ
Output: samples a path π of length k and check formula ψ on π
1. Generate a random path π of length k (with the diagram)
2. If ψ is true on π then return 1 else 0

Consider now the random sampling algorithm GAA designed for the approximate
computation of Probk[ψ]:

Generic approximation algorithm GAA
Input: diagramM, k, ψ, ε, δ
Output: approximation of Probk[ψ]
N := 4 ln(2

δ
)/ε2

A := 0
For i = 1 to N do A := A + Random Path(diagramM, k, ψ)
Return A/N

Theorem 4. The generic approximation algorithm GAA is a fully polynomial
randomized approximation scheme (with additive error parameter) for computing
p = Probk[ψ] whenever ψ is in the EPF fragment of LTL and p ∈]0, 1[.

4.4 Randomized approximation scheme with multiplicative error

We use a generalization of the zero-one estimator theorem [21] to estimate the
expectation µ of a random variableX distributed in the interval [0, 1]. The gener-
alized zero-one estimator theorem [9] proves that if X1, X2, . . . , XN are random

variables independent and identically distributed according to X , S =
∑N

i=1
Xi,

ε < 1, and N = 4(e− 2). ln(2

δ
).ρ/(ε.µ)2, then S/N is an (ε, δ)-approximation of

µ, i.e.:
Pr

(

µ(1 − ε) ≤ S/N ≤ µ(1 + ε)
)

≥ 1 − δ

where ρ = max(σ2, εµ) is a parameter used to optimize the number N of exper-
iments and σ2 denotes the variance of X .
In [9], an optimal approximation algorithm,running in three steps, is described.

– using a stopping rule, the first step outputs an (ε, δ)-approximation µ̂ of
µ after expected number of experiments proportional to Γ/µ where Γ =
4(e− 2). ln(2

δ
)/ε2;

9

– the second step uses the value of µ̂ to set the number of experiments in
order to produce an estimate ρ̂ that is within a constant factor of ρ with
probability at least (1 − δ);

– the third step uses the values of µ̂ and ρ̂ to set the number of experiments
and runs the experiments to produce an (ε, δ)-approximation of µ.

We obtain a randomized approximation scheme with multiplicative error by ap-
plying the optimal approximation algorithm OAA with input parameters ε, δ
and the sample given by the function Random Path on a succinct representa-
tion of M, the parameter k and the formula ψ.

Theorem 5. The optimal approximation algorithm OAA is a fully polynomial
randomized approximation scheme (with multiplicative error parameter) for com-
puting p = Probk[ψ] whenever ψ is in the EPF fragment of LTL and p ∈]0, 1[.

Thus a randomized approximation of Prob[ψ] can be computed by an iterat-
ing fixed point algorithm with the following stopping condition: (Probk+1[ψ] −
Probk[ψ]) < ε/2.

Corollary 2. The fixed point algorithm defined by iterating the optimal approxi-
mation algorithm OAA is a randomized approximation scheme for the probability
problem p = Prob[ψ] whenever ψ is in the EPF fragment of LTL and p ∈]0, 1[.

4.5 APMC: an implementation

In 2003, we start the design, together with Thomas Hérault (University of Paris
XI), of a tool that implements the approximation method, with additive error,
described in this paper. This tool [16], called APMC for Approximate Proba-
bilistic Model Checker, was freely available [1] under GPL (Gnu Public License)
and is under permanent development. APMC is now a probabilistic distributed
model checker that uses a client/server computation model in order to speed up
the verification process by distributing the Random Path function on a cluster
of workstations (extensive tests with hundreds machines were done). The tool
is easy to use since it is provided with a graphical user interface to enter the
model, formula and the approximation parameters.
Since 2003, numerous experiments were done, such as the verification of vari-
ous probabilistic distributed algorithms (mutual exclusion, dining philosophers,
leader election...) and of the IEEE 802.3 CSMA/CD protocol (part of the ether-
net protocol) [11]. We also released the core computation engine of APMC into
a self-sufficient library, which is now fully integrated into the state-of-the-art
probabilistic model checker PRISM [10].

5 Related work

Similar sampling methods have been used for statistical model checking. In [30],
a procedure is described for verifying properties of discrete event systems based

10

on Monte-Carlo simulation and statistical hypothesis testing. In [26], a statis-
tical method is proposed to model checking of black-box probabilistic systems
against specifications given in a sublogic of continuous stochastic logic (CSL).
These approaches differ strongly from ours by using statistical hypothesis testing
instead of randomized approximation schemes.
Recently, in [12], a randomized algorithm for probabilistic model checking of
safety properties expressed as LTL formulas was given. This approximation
method uses the optimal approximation algorithm of [9] and is complemen-
tary of our since safety properties are equivalent to the negation of properties
expressed by the essentialy positive fragment of LTL.

6 Conclusion

In this paper, we first adressed the general problem of approximating the prob-
abilistic verification of any linear time temporal formula against probabilistic
systems. We showed that, even for a simple fragment of LTL, satisfaction prob-
abilities of such formulas are non-approximable unless some unlikely complex-
ity conjecture holds. Nevertheless, we presented a randomized approximation
scheme for the quantitative verification of positive LTL formulas, using an opti-
mal approximation algorithm [9]. We started the design of such methods in 2002
[22], and to our knowledge, it was the first time that such randomized approxi-
mation methods were used for probabilistic verification. The main advantage of
this approximation method is to eliminate the space complexity problem due to
the state explosion phenomenon that occurs in the representation of protocols
as probabilistic transition systems.

Acknowledgements. We would like to thank Thomas Hérault for his strong
participation in the development of APMC, and Radu Grosu for his private
communication.

References

1. APMC Website. http://apmc.berbiqui.org
2. R. Alur and T.A. Henzinger. Reactive modules. In Proc. of the 11th IEEE Sympo-

sium on Logic in Computer Science, pp. 207-218, 1996.
3. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic

systems. Proc. FST&TCS, LNCS, 1026:499-513, 1995.
4. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without

BDD’s. In Proc. of 5th TACAS , LNCS, 1573:193–207, 1999.
5. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, C-35(8):677–691, 1986.
6. R.E. Bryant. On the complexity of vlsi implementations and graph representations

of boolean functions with application to integer multiplication. IEEE Transactions

on Computers, 40(2):205–213, 1991.
7. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Transactions on Pro-

gramming Languages and Systems, 8(2):244–263, 1986.

11

8. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM, 42(4):857–907, 1995.

9. P. Dagum, R. Karp, M. Luby and S. Ross. An optimal algorithm for Monte-Carlo
estimation. SIAM journal of computing, 29(5):1484–1496, 2000.

10. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic
model checking of concurrent probabilistic processes using MTBDDs and the kro-
necker representation. In Proc. of Int. TACAS, LNCS, 1785, 2000.

11. M. Duflot, L. Fribourg, T. Herault, R. Lassaigne, F. Magniette, S. Messika, S. Pey-
ronnet, and C. Picaronny. Probabilistic model checking of the CSMA/CD protocol
using PRISM and APMC. In Proc. of the 4th AVoCS, ENTCS, 2004.

12. R. Grosu. Private communication. 2005.
13. V. Hartonas-Garmhausen, S. Campos, and E. Clarke. Probverus: Probabilistic

symbolic model checking. In 5th International AMAST Workshop, ARTS’99, LNCS
1601, 1999.

14. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal

Aspects of Computing, 6:512–535, 1994.
15. H. Hermans, J.P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov chain model

checker. In Proc. of Int. TACAS, LNCS 1785, 2000.
16. T. Herault, R. Lassaigne, F. Magniette and S. Peyronnet. Approximate Proba-

bilistic Model Checking. In Proceedings of Fifth International VMCAI’04, LNCS,
2937:73–84, 2004.

17. W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58:13-30, 1963.

18. M.R. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal of

Computing, 18:1149–1178, 1989.
19. D.R. Karger. A randomized fully polynomial time approximation scheme for the

all terminal network reliability problem. SIAM journal on computing, 29:492–514,
1999.

20. R.M. Karp and M. Luby. Monte-Carlo algorithms for enumeration and reliability
problems. In Proceedings of the 24th Annual IEEE Symposium on Foundations of

Computer Science, 56–64, 1983.
21. R.M. Karp, M. Luby and N. Madras. Monte-Carlo algorithms for enumeration and

reliability problems. Journal of Algorithms, 10:429–448, 1989.
22. R. Lassaigne and S. Peyronnet. Approximate Verification of Probabilistic Systems.

In Proc. of the 2nd joint PAPM-PROBMIV, LNCS, 2399:213–214, 2002.
23. O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs

satisfy their linear specification. Proceedings of the 12th POPL, ACM CS Press,
p.97-107, 1985.

24. C.H. Papadimitriou Computational Complexity Addison Wesley, 1994.
25. A. Rényi. Probability Theory. North-Holland, Amsterdam, 1970.
26. K. Sen, M. Vishanathan, and G. Agha. Statistical model checking of black-box

probabilistic systems . In Proc. of the 16th Int. Conf. Computer Aided Verification,
LNCS, 3114:202–215, 2004.

27. A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal
logics. Journal of the ACM, 32(3):733–749, 1985.

28. M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state pro-
grams. Proc. 26th FOCS, pp. 327–338, 1985.

29. V.V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.
30. H. L. S. Younes and R. G. Simmons. Probabilistic Verication of Discrete Event

Systems using Acceptance Sampling. In Proc. of the 14th International Conference

on Computer Aided Verification, LNCS, 2404:223–235. 2002.

12

