
Milena: Write Generic Morphological Algorithms
Once, Run on Many Kinds of Images

Roland Levillain1,2, Thierry Géraud1,2, Laurent Najman2

1EPITA Research and Development Laboratory (LRDE), Le Kremlin-Bicêtre, France

2Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge (IGM),
Équipe A3SI, ESIEE Paris, Noisy-le-Grand Cedex, France

International Symposium on Mathematical Morphology (ISMM)

Groningen, The Netherlands – August 24 - 27, 2009

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 1



Intent

Context
Software solutions for Mathematical Morphology (MM).
Reusability, flexibility (and efficiency).

Aim of this talk
Think Generic!
Advertise about a generic software framework proposal.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 2



Genericity in MM at a Glance

Wouldn’t it be nice to be able to implement an algorithm like this?

for_all(p)
{

sup = input(p);
for_all(q)
sup.take(input(q));

output(p) = sup;
}

Go to full code

Generic code: works on every kind of compatible images.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 3



Genericity in MM at a Glance

Wouldn’t it be nice to be able to implement an algorithm like this?

for_all(p)
{

sup = input(p);
for_all(q)
sup.take(input(q));

output(p) = sup;
}

Go to full code

Generic code: works on every kind of compatible images.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 3



Observations and Reflections

Observations
Writing reusable MM software with good properties is hard.
Even harder if you want to preserve other traits such as
ease-of-use, efficiency, readability and flexibility.

Reflections
Where should we start if we wanted to achieve the (impossible)
goal of writing MM for all users and applications?
Idea: Start with a core component with good features, and then
build tools on top of it.
What core?

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 4



The Nature of the Core

This core shall be:
General enough to serve a reusable basis.
Good enough to be used as-is.
Accessible to all MM users.
Extensible.
Compatible with today’s systems.

→ A generic library.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 5



The Nature of the Core

This core shall be:
General enough to serve a reusable basis.
Good enough to be used as-is.
Accessible to all MM users.
Extensible.
Compatible with today’s systems.

→ A generic library.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 5



Implementing Mathematical Morphology Algorithms

Implementing Mathematical Morphology Algorithms

1 Implementing Mathematical Morphology Algorithms

2 Genericity in Mathematical Morphology

3 Milena

4 Epilogue

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 6



Implementing Mathematical Morphology Algorithms

A Very Simple Operator

Let’s consider the morphological dilation of an image I with a flat
structuring element B.
A mathematical definition:

δB(I)(x) = sup
h∈B

I(x + h)

where
I is a function D → V associating a point from the domain D to a
value from the set V .
B is a structuring element.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 7



Implementing Mathematical Morphology Algorithms

A Non Generic Implementation

for (unsigned int r = 0; r < input.nrows(); ++r)
for (unsigned int c = 0; c < input.ncols(); ++c) {
unsigned char sup = input(r, c);
if (input(r-1, c) > sup) sup = input(r-1, c);
if (input(r+1, c) > sup) sup = input(r+1, c);
if (input(r, c-1) > sup) sup = input(r, c-1);
if (input(r, c+1) > sup) sup = input(r, c+1);
output(r, c) = sup;

}

This solution makes a few hypotheses:
1 The image is 2-dimensional.
2 Points have nonnegative integers coordinates starting at 0.
3 Values have to be compatible with the 8-bit unsigned char type.
4 The values of the image form a totally ordered set.
5 The structuring element is based on the 4-connectivity.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 8



Implementing Mathematical Morphology Algorithms

A Non Generic Implementation

for (unsigned int r = 0; r < input.nrows(); ++r)
for (unsigned int c = 0; c < input.ncols(); ++c) {
unsigned char sup = input(r, c);
if (input(r-1, c) > sup) sup = input(r-1, c);
if (input(r+1, c) > sup) sup = input(r+1, c);
if (input(r, c-1) > sup) sup = input(r, c-1);
if (input(r, c+1) > sup) sup = input(r, c+1);
output(r, c) = sup;

}

This solution makes a few hypotheses:
1 The image is 2-dimensional.
2 Points have nonnegative integers coordinates starting at 0.
3 Values have to be compatible with the 8-bit unsigned char type.
4 The values of the image form a totally ordered set.
5 The structuring element is based on the 4-connectivity.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 8



Implementing Mathematical Morphology Algorithms

A Non Generic Implementation: Some Limitations

This code cannot handle (as-is) any of the following variations:
1 The input is a 3-dimensional image.
2 Its points are located on a box subset of a floating-point grid.
3 The values are encoded as 12-bit integers or as floating-point

numbers.
4 The image is multivalued (e.g., a 3-channel color image).
5 The structuring element represents an 8-connectivity.

Though less common, images with these features can be found in
fields like biomedical imaging, astronomy, document image analysis or
arts.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 9



Implementing Mathematical Morphology Algorithms

A Non Generic Implementation: More Limitations

What if. . .
. . . the domain D of I. . .

. . . is not an hyperrectangle (a “box”)?

. . . is not a set of points located in a geometrical space, but a 3D
triangle mesh?
. . . is a restriction (subset) of another image’s domain?

. . . the neighbors of a site are not expressed with a fixed-set
structuring element, but through a function associating a set of
sites to any site of the image?
. . . the values are not scalar, nor vectorial (e.g., diffusion tensors)?

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 10



Implementing Mathematical Morphology Algorithms

Back to the Generic Implementation

for_all(p)
{

sup = input(p);
for_all(q)
sup.take(input(q));

output(p) = sup;
}

where
p ∈ D
q ∈ win(p)

sup is a small object (accumulator) computing the supremum of a
set of values.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 11



Implementing Mathematical Morphology Algorithms

A Generic Implementation: Benefits

for_all(p)
{

sup = input(p);
for_all(q)
sup.take(input(q));

output(p) = sup;
}

A few remarks:
Small yet readable.
Not tied to specific image type, i.e, generic.
Example: dilating an image I where

D(I) = a Region Adjacency Graph (RAG) where each site is a
region of another image J.
V(I) = Rn (n-dimensional vectors expressing features from each
underlying region of J).
∀p, q browses the sites (i.e., regions) adjacent to p.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 12



Implementing Mathematical Morphology Algorithms

Introducing Genericity in MM

Main Idea
MM software should be generic [Köthe, 1999, Darbon et al., 2002,
d’Ornellas and van den Boomgaard, 2003].

Modus Operandi
Genericity is possible provided abstractions of concepts of the
domain are well defined.
In Object-Oriented Programming (OOP), these abstractions are
called interfaces.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 13



Genericity in Mathematical Morphology

Genericity in Mathematical Morphology

1 Implementing Mathematical Morphology Algorithms

2 Genericity in Mathematical Morphology

3 Milena

4 Epilogue

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 14



Genericity in Mathematical Morphology

A Generic Definition of the Concept of Image

Definition
An image I is a function from a domain D to a set of values V . The
elements of D are called the sites of I, while the elements of V are its
values.

For the sake of generality, we use the term site instead of point.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 15



Genericity in Mathematical Morphology

Abstractions in Generic Programming

With Generic Programming (GP):
Algorithms are no longer defined in terms of features specific to
an image type.

for (unsigned int r = 0; r < input.nrows(); ++r)
for (unsigned int c = 0; c < input.ncols(); ++c)
...

Instead, abstractions are used.

mln_piter(I) p(input.domain()); // ‘p’ is a site iterator.
for_all(p) // ∀p . . .
...

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 16



Genericity in Mathematical Morphology

The Image Abstraction

The interface of an image type includes:
Associated types.

typedef domain_t; // Type of the domain (site set).

typedef site; // Type of a site.

typedef piter; // Associated iterator type.

typedef value; // Type of a value.

typedef vset; // Type of the set of values.

Methods (services provided by the image).

value operator()(site p); // ‘ima(p)’ → value

bool has(site p); // Does ‘p’ belongs to ‘ima’?

vset values(); // Return the domain (D).
domain_t domain(); // Return the value set (V).

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 17



Genericity in Mathematical Morphology

Other Abstractions

Site Set Sets of sites must respect this interface.

typedef site; // The type of the sites.

typedef fwd_piter; // Forward iterator on the set’s sites.

typedef bkd_piter; // Backward iterator on the set’s sites.

bool has(psite p); // Does ‘p’ belongs to this set?

Also: Point Site, Delta Point Site, Site Iterator, Value,
Value Set, Value Iterator, Neighborhood, Window,
Weighted Window, Accumulator, Function, . . .

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 18



Genericity in Mathematical Morphology

Introducing Milena

Good News
The previous concepts can be translated to actual, working C++

code almost as-is.
They have been implemented as a library (core component).
Plus many, many more tools.

Milena
A generic and efficient C++ library [Géraud and Levillain, 2008].
Released within the Olena 1.0 platform.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 19



Milena

Milena

1 Implementing Mathematical Morphology Algorithms

2 Genericity in Mathematical Morphology

3 Milena

4 Epilogue

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 20



Milena

What is in Milena?

Abstractions
Data structures, in particular site sets.
Many image types (and their associated types), mostly built upon
classical site sets (domains). E.g.:

Box on a regular 2D grid→ image2d

Undirected graph→
{

image with values on vertices.
image with values on edges.

Many auxiliary tools to make it easy to use and write algorithms
(macros, accumulators, functions, etc.).
Algorithms, in particular (but not only) in the field of on MM.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 21



Milena

Site Sets

Convey a lot of structural and topological information.
Classical cases: hyperrectangles (boxes) on regular
n-dimensional grids.
But also: unstructured site sets based on usual data structures:

Arrays.
Sets.
Priority queues.
Hybrid containers.
etc.

(Undirected) Graphs.
Complexes.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 22



Milena

Site Sets: Complexes

Definition
A simplicial complex is “a set of simplices”, where a simplex is the
simplest manifold that can be created using n points.

A 0-simplex ≡ a point.
A 1-simplex ≡ a line segment.

A 2-simplex ≡ a triangle.
A 3-simplex ≡ a tetrahedron.

Figure: A simplicial 3-complex. Figure: A simplicial 2-complex (mesh).

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 23



Milena

Site Sets: Complexes (cont.)

Ideal framework to process mesh-based “images”.

Figure: Triangle mesh,
seen as a simplicial
2-complex.

Figure:
Watershed-based
segmentation using
curvature computed on
edges [Meyer, 1991,
Cousty et al., 2008].

.

Figure: Skeleton using
breadth-first thinning
based on simple point
characterization
[Couprie and Bertrand,
2009].

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 24



Milena

Site Sets: More

Milena’s implementation of complexes is flexible enough to
implement many structures: cubical complexes, simplicial
complexes, etc.
Providers can add new structures (either generic or not) to Milena
and benefiting from the framework of the library (reuse algorithms,
accumulators, etc.).
Milena introduces no actual additional
(run time/space/development) cost in itself.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 25



Milena

Even More: Morphers

Morphers: lightweight objects producing an image from an image.
Kind of a function on an image.
Example: Dilation by a 4-c structuring element:
dilation(ima, win_c4p());

Likewise, but restricting the domain of ima to the subset s:
dilation(ima | s, win_c4p());

Dilation of the red channel of an RGB color image:
dilation(red << rgb_ima, win_c4p());

Many morphers provided by Milena: wrapping an image (torus),
stacking several images, taking a 2D slice from a 3D volume,
applying a geometrical transformation, etc.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 26



Milena

Even More: Morphers

Morphers: lightweight objects producing an image from an image.
Kind of a function on an image.
Example: Dilation by a 4-c structuring element:
dilation(ima, win_c4p());

Likewise, but restricting the domain of ima to the subset s:
dilation(ima | s, win_c4p());

Dilation of the red channel of an RGB color image:
dilation(red << rgb_ima, win_c4p());

Many morphers provided by Milena: wrapping an image (torus),
stacking several images, taking a 2D slice from a 3D volume,
applying a geometrical transformation, etc.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 26



Milena

Even More: Morphers

Morphers: lightweight objects producing an image from an image.
Kind of a function on an image.
Example: Dilation by a 4-c structuring element:
dilation(ima, win_c4p());

Likewise, but restricting the domain of ima to the subset s:
dilation(ima | s, win_c4p());

Dilation of the red channel of an RGB color image:
dilation(red << rgb_ima, win_c4p());

Many morphers provided by Milena: wrapping an image (torus),
stacking several images, taking a 2D slice from a 3D volume,
applying a geometrical transformation, etc.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 26



Milena

Even More: Morphers

Morphers: lightweight objects producing an image from an image.
Kind of a function on an image.
Example: Dilation by a 4-c structuring element:
dilation(ima, win_c4p());

Likewise, but restricting the domain of ima to the subset s:
dilation(ima | s, win_c4p());

Dilation of the red channel of an RGB color image:
dilation(red << rgb_ima, win_c4p());

Many morphers provided by Milena: wrapping an image (torus),
stacking several images, taking a 2D slice from a 3D volume,
applying a geometrical transformation, etc.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 26



Milena

A Simple Milena Processing Chain

A generic code:

closed = morpho::closing::area(ima, nbh, lambda);
wshed = morpho::watershed::flooding(closed, nbh, nb);

Go to full code

Inputs:
ima Input image (e.g, image2d<int>, image3d<float>,

complex image, etc.).
nbh Neighborhood (e.g., c4, c26,

adjacent vertices neighborhood, etc.).
lambda Value of the criterion (integer).

Applicable to many different image types as-is.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 27



Milena

Results (2D Image, 6-connectivity)

Figure: “Classical”
image, with
6-connectivity.

Figure: Magnitude of the
gradient.

Figure: Result of the
image processing chain
on the magnitude of the
gradient.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 28



Milena

Results (Cubical 2-Complex)

Figure: Magnitude of the
gradient computed on
the edges of a cubical
2-complex.

Figure: Result of the
image processing chain.

Figure: Extension of
labels to 2-faces
(squares) for
visualization purpose.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 29



Milena

Results (Graph)

Example of data clustering using MM methods.

Figure: Vertices of a
graph.

Figure: Distance-based
magnitude computed on
the edges of the
triangulation of the
graph.

Figure: Result of the
image processing chain
on this magnitude.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 30



Epilogue

Epilogue

1 Implementing Mathematical Morphology Algorithms

2 Genericity in Mathematical Morphology

3 Milena

4 Epilogue

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 31



Epilogue

The Present: Olena 1.0

The latest version of Milena ships with the Olena 1.0 platform,
released July 14, 2009.

http://olena.lrde.epita.fr

We invite you to download and try it.
Olena is Free Software released under the GNU General Public
License (GNU GPL).
There is much more to say about Milena, in particular about
efficiency.
Send questions and comments to: olena@lrde.epita.fr.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 32

http://olena.lrde.epita.fr
mailto:olena@lrde.epita.fr


Epilogue

The Future

We are actively working on making the library easier to install,
learn and use.
Milena is the heart of the platform we are developing. We are
working on adding

GUIs,
bridges to other languages (starting with Python),
command-line tools,
etc.

while retaining as many advantage from Milena’s core features as
possible (namely genericity and efficiency).

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 33



Epilogue

Thank You!

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 34



Epilogue

Milena: Write Generic Morphological Algorithms
Once, Run on Many Kinds of Images

1 Implementing Mathematical Morphology Algorithms

2 Genericity in Mathematical Morphology

3 Milena

4 Epilogue

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 35



Epilogue

Bibliography I

Couprie, M. and Bertrand, G. (2009).
New characterizations of simple points in 2d, 3d, and 4d discrete
spaces.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(4):637–648.

Cousty, J., Bertrand, G., Najman, L., and Couprie, M. (2008).
On watershed cuts and thinnings.
In Proceedings of the 14th IAPR International Conference on
Discrete Geometry for Computer Imagery (DGCI), pages 434–445,
Lyon, France.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 36



Epilogue

Bibliography II

Darbon, J., Géraud, Th., and Duret-Lutz, A. (2002).
Generic implementation of morphological image operators.
In Mathematical Morphology, Proceedings of the 6th International
Symposium (ISMM), pages 175–184, Sydney, Australia. CSIRO
Publishing.

d’Ornellas, M. C. and van den Boomgaard, R. (2003).
The state of art and future development of morphological software
towards generic algorithms.
International Journal of Pattern Recognition and Artificial
Intelligence, 17(2):231—255.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 37



Epilogue

Bibliography III

Géraud, Th. and Levillain, R. (2008).
A sequel to the static C++ object-oriented programming paradigm
(SCOOP 2).
In Proceedings of the 6th International Workshop on
Multiparadigm Programming with Object-Oriented Languages
(MPOOL’08), Paphos, Cyprus.

Köthe, U. (1999).
Reusable software in computer vision.
In Jähne, B., Haussecker, H., and Geißler, P., editors, Handbook of
Computer Vision and Applications, volume 3: Systems and
Applications, pages 103–132. Academic Press, San Diego, CA,
USA.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 38



Epilogue

Bibliography IV

Meyer, F. (1991).
Un algorithme optimal de ligne de partage des eaux.
In Actes du 8e Congrès AFCET, pages 847–857,
Lyon-Villeurbanne, France. AFCET.

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 39



Epilogue

Full Code of the Dilation

template <typename I, typename W>
mln_concrete(I)
dilation(const I& input, const W& win)
{

mln_concrete(I) output;
initialize(output, input);
mln_piter(I) p(input.domain());
mln_qiter(W) q(win, p);
for_all(p)
{

accu::supremum <mln_value(I)> sup = input(p);
for_all(q) if (input.has(q))
sup.take(input(q));

output(p) = sup;
}

return output;
}

Go to simplified code

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 40



Epilogue

Actual Code of the Illustrations

template <typename L, typename I, typename N>
mln_ch_value(I, L)
chain(const I& ima, const N& nbh, int lambda, L& nb)
{

mln_concrete(I) closed =
morpho::closing::area(ima, nbh, lambda);

return morpho::watershed::flooding(closed, nbh, nb);
}

Go to simplified code

R. Levillain, T. Géraud, L. Najman (EPITA, UPE) Write Generic Algorithms Once, Run on Many Kinds of Images ISMM’09 41


	Implementing Mathematical Morphology Algorithms
	Genericity in Mathematical Morphology
	Milena
	Epilogue

