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Abstract. Text on digitized historical maps contains valuable informa-
tion, e.g., providing georeferenced political and cultural context. The
goal of the ICDAR 2024 MapText Competition is to benchmark meth-
ods that automatically extract textual content on historical maps (e.g.,
place names) and connect words to form location phrases. The compe-
tition features two primary tasks—text detection and end-to-end text
recognition—each with a secondary task of linking words into phrase
blocks. Submissions are evaluated on two data sets: 1) David Rumsey
Historical Map Collection which contains 936 map images covering 80
regions and 183 distinct publication years (from 1623 to 2012); 2) French
Land Registers (created during the 19th century) which contains 145
map images of 50 French cities and towns. The competition received
44 submissions among all tasks. This report presents the motivation for
the competition, the tasks, the evaluation metrics, and the submission
analysis.

Keywords: Text detection - Text recognition - Historical maps.

1 Introduction: Motivation and Challenges

Maps tell stories of places, cultures, resources, and history. Digitized collections
of historical maps contain a wealth of information often locked in an unsearchable
raster format. This competition aims to raise awareness in the document analysis
community of some unique and difficult challenges in extracting useful textual
information from these cartographic artifacts (e.g., Figure [1f).

With a significant, if limited, body of classical approaches to text/graphics
separation applied to maps [9], only a few recent works have addressed the
specific problem of map text detection and recognition with modern ML tech-
niques [43126]38|3128]. The problem is similar to recent robust reading challenges
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Fig. 1. Querying word “Funen” from David Rumsey Map Collection website [4]. The
results reveal the complexities of map text: curved, rotated, widely-spaced, interleaved
with complex backgrounds, engraved, and handwritten.

in scene text [SYTIIRATITAI36]. However, the problem is also sufficiently differ-
ent from prior competitions; recognizing and linking text labels in maps presents
unique challenges, such as complex backgrounds, various font styles, and ex-
tremely wide character spacing. Successful solutions will significantly improve
the indexing and searchability of ever-growing digital map archives [2T//4].

Previously, the ICDAR 2021 Competition on Historical Map Segmentation [5]
spurred methods that can identify regions corresponding to the principal carto-
graphic area(s). Nevertheless, substantial advancement is still required to achieve
the overarching objective of effectively searching and indexing historical maps.
These tasks encompass steps such as word detection and recognition, as well as
the process of linking individual words into coherent phrases. The detection and
recognition tasks share similarities with the long line of prior robust reading
competitions. However, map text detection also presents distinctive challenges.
Rotated and strongly curved text is the norm on maps, rather than the exception,
which only the more recent robust reading competitions have targeted [T0J47].
Moreover, words can be highly spaced with complicated text-like distractors—
even other words—appearing between the characters, a scenario infrequent in
other reading domains.

The word linking task is similar to document layout analysis in that it re-
quires grouping words together to form higher-level structures such as phrases.
However, it is distinct in maps because semantics plays an unusually strong role:
the multiple words of a single place name (i.e., “New York City”) may not fall
on a single line. The ICDAR 2023 Competition on Hierarchical Text Detection
and Recognition [35] pushed the field forward by requiring scene text processing
systems to link words into lines and lines into paragraphs, yet the association
cues were generally more visual and geometric than semantic. Finally, in some
early modern maps such as French land registers (illustrated in Figure, hand-
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Fig. 2. Excerpt of French land register map with handwritten text. Even for a human,
unordered transcription is challenging (left), while a numerically-ordered transcription
is more straightforward (right).

written text is intrinsically ambiguous and may require the use of the context
(surrounding text) to be correctly transcribed.

In addition to the curved and rotated text prominent on many maps, Figure
highlights two of the additional primary challenges described above. The red
boxes with very widely spaced characters overlap other words and have text-
like graphical structures within. Moreover, the boxes are linked because they
correspond to a single toponym (“SOUTH CAROLINA”). However, although
the purple boxes are similarly situated geometrically, they should not be linked
because they correspond to two separate county names (“FLORENCE” and
“WILLTAMSBURG”). Although they do not form a place name, the cyan boxes
are linked as the label on the rail line (“ATL. COAST LINE”).

In sum, this competition report features: a rigorous definition of the tasks
of text detection, recognition, and linking on historical maps, along with pro-
posed metrics and evaluation protocols (Section ; two new public data sets
of historical maps with ground truth annotations: a large English one, cov-
ering a wide variety of years, scales, locations, and graphical styles, and a
smaller French one, focusing on early modern land registers and covering a
narrower style, location, and time (Section ; a description of participants’
methods (Section ; and an analysis of the results (Section . This compe-
tition continues running live on the Robust Reading Competition platform at
https://rre.cve.uab.es/?ch=28, and the data sets are available for download at
https://zenodo.org/communities/icdar-maptext.

2 Tasks and Evaluation

The competition consists of multiple inter-related tasks on historical maps in-
volving text detection and recognition at both the word and phrase levels. The
four primary competition tasks are 1) word detection 2) phrase detection (word
linking) 3) end-to-end word recognition and 4) end-to-end phrase recognition.
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Fig. 3. Word detection and linking (red, cyan) and non-linking (purple) examples.
Image credit: Rumsey Collection [4] Image 5028.054 (Rand McNally and Company,
South Carolina, 1924).

Each of these primary tasks consists of two evaluations, which differ only in
the data’s target scope. One evaluation covers a very wide range of maps (us-
ing the “Rumsey” data set), while the other involves data more narrowly tai-
lored to a specific place, time, and map style (using the “French land registers”
data set). In this way, the competition assesses general system performance,
as well as the ability to target a particular map collection. Section [3| details
that evaluation data; in this section, we elaborate on the four general tasks and
corresponding evaluation metrics. See the supplementary material for complete
details on the evaluation protocol, which puts ground truth polygons in corre-
spondence with detected polygons. The evaluation code is publicly available at
https://github.com /icdar-maptext/evaluation.

Task 1: Word Detection

Although the end goal is recognizing text to enable searching and processing,
many systems begin with a stage that localizes the textual elements in the im-
ages. In robust reading for scene images, this task has been called text detection,
but it is sometimes known as text/graphics separation in the document analysis
community. Because map text is different from traditional documents (including
even engineering drawings) and scene text in some key ways, it is important
to measure the performance of state-of-the-art text detection systems in this
context and encourage new methodologies.

The goal of this task is to detect individual words on map images, i.e., gen-
erating bounding polygons that enclose text instances at the word level. Many
text instances may be straightforward to detect. However, due to the extreme
intra-word character spacing and other cartographic or printer artifacts, the task
of drawing a single polygon around a word remains challenging (see Figure |4)).
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Fig. 4. Word detection challenges. LEFT: Highly irregular baselines (red), very tight
spacing (purple and green), and interposed text (cyan). RIGHT: Printing and binding
artifacts (lavender). Image credits: Rumsey Collection [4] Image 1070.005 (U.S. Gen-
eral Land Office, Wisconsin, 1866); Image 5755.025 (Rand McNally and Company,
Nebraska, 1927).

As Long et al. [34] point out, the Panoptic Quality (PQ) metric [20] is attrac-
tive for text detection tasks because it combines the familiar F-measure (a.k.a,
F1 or H-mean) often used in detection evaluation with an average of IoU scores
that can promote methods with more precise localizations/segmentations. Al-
though a COCO-style mAP evaluation (averaging over several IoU thresholds)
has the same effect of rewarding methods with better localization, AP requires
prediction confidence scores to calculate the precision-recall curve.

As in many prior RRCs, the set of true positives in a one-to-one match-
ing protocol must have sufficient overlap between the ground truth word and
detection polygon,

TPper C {(g,d) € G x D [ 10U (g,d) > 0.5}, (1)

where G is the set of ground truth regions and D is the set of detected regions.

Following HierText [34)35], we use Panoptic Detection Quality (PDQ) to
evaluate word detection,

PDQ £ T x F, (2)
where the tightness T is the average IoU among true positive regions

S 1oU(g.d), (3)

(g,d)eTP

TP
and F represents the F-score, the harmonic mean between precision and recall:

I TP| o TP o 2PR

|TP| + |FP] ITP| + [FN]| P+R

pa
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Task 2: Phrase Detection (Word Grouping)

Downstream tasks typically involve processing over toponyms, rather than in-
dividual words. For this reason, and because phrases represent a semantically
coherent unit of text on the page, we want systems that can perform the layout
task of grouping together semantically associated text fragments. Nearly all such
groups on a map are the multiple parts of a single place name. However, other
groups might correspond to phrases labeling or explaining other map elements
(see Figure [3| and accompanying discussion in Section .

Much like the HierText competition [35], the words that must be linked into
a single group are treated as one unit for (joint) detection. Competition entries
give words (with their polygon boundaries) in a list belonging to a phrase.

The unions of the word polygons forming predicted and ground truth phrase
groups are used to calculate the IoU. The PDQ score at the phrase level is cal-
culated among corresponding unions; thus word order is ignored. This protocol
also allows some flexibility in word segmentation errors because the matching is
essentially many-to-many among words within the group. Unlike HierText, we
do not combine the scores across multiple levels, but instead evaluate tasks 1
and 2 independently.

Task 3: Word Detection and Recognition

The goal of this task is to jointly locate and recognize words on maps, as in
many previous robust reading competitions [I9TAT0IT3I35]. End-to-end map
text detection and recognition builds on the text detection task by attaching a
text transcription to each detected word polygon.

Given a map image, participants were expected to produce word-level text
detection and recognition results: a set of word bounding polygons and corre-
sponding transcriptions. As in prior RRCs, true positives must have matching
transcriptions in addition to meeting the IoU threshold:

TPRec C {(g,d) S G x D ‘ IOU (g,d) > 05 /\gtext = dtext} . (4)

We introduce the Panoptic Word Quality (PWQ) metric. It is identical to
PDQ, except that it uses TPRec; in this regard, PWQ is likewise useful as the
metric because it effectively combines a) localization accuracy (tightness), b) de-
tection quality (polygon presence/absence), and ¢) word-level recognition accu-
racy in a single measure. As the competition metric, PWQ gives strong preference
for well-localized, textually accurate detections.

Task 4: Phrase Detection and Recognition

While detection with phrase grouping is evaluated in Task 2, we measure the
overall end-to-end performance with a “grand challenge” of localized place name
search, i.e., end-to-end joint detection, linking, and recognition.

This task requires the detection and recognition of the entire label phrase.
Word polygons and transcriptions are grouped as an ordered list into phrases.
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Word recognition accuracy can be quite stringent, as measured by the PWQ
calculated with TPRrec . Therefore we also desire a metric that accounts for
character-level recognition accuracy by comparing the edit distance between
ground truth and predicted text. To this end, we propose the Panoptic Char-
acter Quality (PCQ) metric:

PCQ2T x F x C, (5)

where T x F' are as in the original PDQ metric, and C represents the average
complementary normalized edit distance [48] of each word’s text among the
matched true positive detections TPpe, as originally defined in Eq. ,

1
cél—W > NED(g,d). (6)
(g,d)ETP

Here NED is the standard normalized edit distance between the detected and
ground truth regions’ strings, each of which is taken as the space-separated
concatenation of the words in the group.

With its three factors T, F,C € [0,1], the product PCQ falls into the same
range. Thus, the PCQ combines a) localization accuracy (tightness), b) detection
quality, and c) character-level recognition accuracy into a single measure, free of
additional parameters.

We use PCQ rather than PWQ to evaluate this challenging task. First, as
is often the case, we expect character error rates to be much lower than word
error rates. Using character errors at this level helps assess the overall degree of
recognition accuracy, particularly in the open-vocabulary setting. Second, errors
in word segmentation that are otherwise grouped correctly are not as heavily
penalized because the edit distance only counts the spaces when missing (an
under-segmentation) or extra (an over-segmentation).

The supplementary material contains additional important details of the eval-
uation protocol for this and all tasks.

3 Data Sets and Annotations

The competition comprises the combination of two data sources: human-annotated
selections from the David Rumsey Historical Map Collection and a series of
French land registers. This section provides an overview of these distinct data
sets. See the supplementary material for details on map selection, annotation,
and version history. All data sets are archived at Zenodo [29/336l[7].

David Rumsey Historical Map Collection This archive hosts an extensive set of
over 126,000 maps accessible online [4]. The catalog spans maps from the 16th
to the 21st century, encompassing regions from every continent, the Pacific, the
Arctic, and the entirety of the World. From this rich assortment, we select 936
representative maps for human annotation using style clustering. The sampled
maps cover 80 regions and 183 distinct publication years (from 1623 to 2012).
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Table 1. Data set statistics.

Rumsey French Land Registers

Train Validation Test Train Validation Test
Tiles 200 40 700 80 15 50
Map Sheets 196 40 700 37 9 49
Words 34518 5544 128457 8096 1801 7346
Label Groups 21205 3502 78582 7449 1661 6814
Illegible Words 1870 313 8116 563 217 450
Truncated Words 3582 628 14566 371 91 300
Valid Words 30563 4860 111821 7533 1584 6896
Average words per group 1.63 1.58 1.63 1.09 1.08 1.08
Fraction of valid words 0.89 0.88 0.87 0.93 0.88 0.94

Digitized map images can be on the order of 6K-15K pixels per dimension.
For the competition, we crop each map into 2K x 2K pixel tiles and select 1-2
tiles for annotation. The total number of annotated cropped tiles is 940. We split
the map tiles into 200 for training, 40 for validation, and 700 for testing. Four
maps have multiple tiles in training; all test tiles are from distinct maps and the
splits are also disjoint. Table [1| provides statistics for the data sets.

French Land Registers To complement the broad selection of maps from the
previous collection—which covers a diversity of scales, styles, geographical region
and historical period—we also provide another subset covering a very narrow
region and time. This second subset is composed of 19th century land registers
from approximately 50 French cities and towns, at a very large scale. (In a
cartographic context, a “large scale” map means it covers a relatively small area
in great detail.) These cadastral plans contain an important quantity of parcel
numbers, now-forgotten place names, and many other local details (in French)
relevant to the accurate delineation of parcels in order to identify owners and
compute taxes. The entire online collection consists of over 800 map sheets [IJ.

For the competition, map sheets were selected according to two criteria: we
used stratification to ensure a good representation of the different map types
(first or second campaign, geographic area), and we grouped the maps by the
city they represent to avoid any overlap between the training, validation, and test
sets in terms of geographic area. The resulting data set, summarized in Table
features more than 17,000 words from 145 different map sheets. Contrary to the
Rumsey data set, the French land registers images have a lower quality, both in
terms of resolution and contrast, and the text is mostly handwritten. However,
it contains fewer groups and many words represent numbers.

4 Competition Protocol and Participants

The competition is hosted on the well-established RRC platform (https://rrc.cve.
uab.es)), where competition results are standardized, archived, and future post-
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competition submissions can track progress in the field. This platform enables
the submission of predicted results computed by the participants themselves.
Thus, participants did not need to provide code or binaries for their predictions
to be accepted. However, we encouraged participants to provide links to papers,
data sets, models, and public codes if available. The competition was open to
all participants, with the following timeline: training and validation sets were
released on Feb. 2, 2024, and the test set was released on March 4, 2024. The
deadline for submitting results was May 6, 2024; participants had three months
to train their models using any open data sets (disjoint from the test set).
The remainder of the section lists the primary eight teams of participants.

MapTest Hongen Liu (Tianjin University)
Winner Task 2 (Rumsey & French), Task 3 (French), Task 4 (French)

This team participates in all four tasks on both map data sets and
adopts different approaches for each task. For task 1, their method
uses the PP-YOLOE-R [42] model pretrained on COCOTextV2 [41]
and finetuned on the target David Rumsey data set and French Land
Registers data set. For task 3, the model is the ABINet [I2] pre-
trained on the MJSynth [I7] and SynthText [I5] data sets and fine-
tuned on the target data sets. The linking solution is a heuristic-
based approach where text labels with heights larger than 50 pixels
are selected as linking candidates, and the linking is performed by
comparing the distance, bounding box height, and rotation angles.

MapText Detection Strong Pipeline Yu Xie and Ziyue Wang (Bilibili Inc.)

Winner Task 1 (Rumsey), Task 3 (Rumsey), Task 4 (Rumsey)

This team participates in all four tasks on both map data sets.
The method is built upon DeepSolo [46] network with ViTAEv2-
S [49] as the backbone followed by transformer-based encoder and
decoders. The encoder features are used to predict the Bezier center
curves for the bounding polygon, and the decoder features are used
to recognize the text. This method uses existing data sets as training
data: TextOCR [40], MLT17 [37] , TotalText [I1], ICDARI5 [18], and
ICDARI13 [19], which contain a total of 35,109 images.

DINO_MAP, DINO_MVIT, & ENSEM Rajat Kumar Singh, Himani Shrotriya,
Shivshankar Reddy, and Himanshu Bhatt

Winner Task 1 (French)

This team participates in task 1 on both map data sets and attempts
multiple approaches. DINO_MAP uses the MaskDINO [22] network,
which is an object-detection and instance segmentation fine-tuned
on both map data sets. DINO_MVIT uses the MViTv2 [25] model,
which is another object detection network strong at handling objects
in different scales (i.e., sizes). MViTv2 was applied to the Rumsey
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data set. ENSEM is an ensemble method of MaskDINO, MViTv2
and ViTDet [24], while the team notices that DINO_MAP gives the
best performance instead of the ensemble method. To handle maps
with dense text labels, their methods crop the input map into four
overlapping patches and merges the detected regions according to
the overlapping ratio.

MapTextSpotter Jialiang Li, Canhui Xu, Cao Shi, and Yucai Qu (Qingdao
University of Science and Technology)

This team participates in task 1 and 3 on the Rumsey map data set.
The novel proposed model MapTextSpotter utilizes a Transformer-
based decoder model to predict text Bezier curve points and char-
acter classification in parallel. The point and character queries are
designed to incorporate spatial and semantic text distribution in his-
torical maps. The approach also employs a Large Language Model
to enhance the recognition precision.

DS-LP Siyuan Huang (Beijing University of Posts and Telecommunications)

This team participates in all four tasks on both map data sets. For
detection and recognition, their approach uses the DeepSolo++ [45]
network with a ViTAEv2-S [49] backbone. The weights are initial-
ized from DeepSolo [46] and fine-tuned on the competition data sets.
To reduce the number of overlapping polygons, their method applies
Non-Maximum Suppression (NMS) post-processing on the output of
DeepSolo++. For linking, the team designs a novel network called
LayoutPointer, which is a relation extraction model based on Lay-
outLMv3 [16], to predict relationships between text boxes.

MapText Using EasyOCR/TrOCR Pengyu Chen, Xuezi Bi, Quanzhi Xi-
ang and Junxian Li (University of South Carolina; Sun Yat-sen University;
University of Science and Technology of China; Beihang University)

This team participates in task 1 and 3 on the Rumsey map data set.
For the map detection problem (task 1), they employ the CRAFT [2]
model embedded in EasyOCR. The method outputs a rectangle
bounding box with four vertices for each text label. For the recogni-
tion problem (task 3), the method crops out the text label patches
using the predicted bounding boxes and then feeds the patches to
the TrOCR [23] to recognize the text.

MapDet Yize Yang, Chaolang Li, Jingyu Li, Pengwen Dai (Sun Yat-sen Uni-
versity)

This team participates in task 1 on both map data sets. Their text
detection model is based on DBNet [27], with additional modules
designed to enhance the learning of boundary regions and text. They
incorporate auxiliary modules for multi-scale and multi-view learning
for text recognition.
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Fig. 5. Example results for Task 1 on the Rumsey data set. Blue regions are predic-
tions for the entitled submission. Green indicates valid ground truth words, while red
indicates cropped or ignored words. Consult the supplementary material for many ad-
ditional examples from all tasks and data sets.

Baseline TESTR Checkpoint MapText Competition Organizers

We adopt an existing text spotting model, TESTR [50], to detect
and recognize text instances on maps. The model is built upon De-
formable DETR, [5I] and uses dual decoders for text-box control
point regression and character recognition, respectively. We use exist-
ing model weights to generate baseline results for both data sets. The
model was pretrained on SynthText and multiple human-annotated
scene image data sets and finetuned on the TotalText data set.

5 Results and Discussion

This section reports the quantitative results for each task of the competition on
the two data sets. It also offers some insights with qualitative analysis.

5.1 Results for Task 1: Word Detection

Table 2] presents results for task 1 on both data sets. As the table shows, the best
method for the Rumsey data set is the “MapText Detection Strong Pipeline”,
while the best method for the French Land Register data set is “DINO_MAP”.
In both cases, the “DINO_MAP” method is closely followed by “MapTest” which
exhibits a better detection performance (higher F-score), but a weaker tightness.
The ranking of “DINO_MAP” indicates that with proper fine-tuning, the general
object detection models can achieve quite good performance on text detection
tasks. However, the main limitation of such an approach is that it does not sup-
port end-to-end spotting and requires a separate recognition step to get the final
text labels. As confirmed by qualitative results (provided in the supplementary
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Table 2. Results for task 1 (isolated word detection). Values expressed in percentage.
For all metrics, higher is better.

Rank Method name Det. Quality Tightness FScore Precision Recall
1 MapText Dete...Strong Pipeline 76.1 82.7 92.0 94.2 89.9
2 DINO_MAP 73.4 84.0 87.3 87.2 87.5
3 MapTest 73.1 81.8 89.3 90.5 88.2
B 4 DINO_MVIT 72.4 83.6 86.7 89.2 84.2
é 5 MapTextSpotter 70.6 81.4 86.7 92.6 81.5
= 6 ENSEM 64.3 85.6 75.1 94.4 62.3
~ 7  Baseline TESTR Checkpoint 55.1 79.6 69.3 71.9 66.9
8 DS-LP 53.8 71.6 75.2 71.8 78.9
9 MapText Using EasyOCR 42.7 73.2 58.3 69.3 50.4
10 MapDet 32.7 69.2 47.2 53.6 42.2
1 DINO_MAP 64.7 72.2 89.7 88.7 90.8
2 MapTest 64.2 69.9 91.9 90.8 93.0
S 3 ENSEM 52.0 71.4 72.9 90.8 60.9
g 4 DS-LP  44.1 65.0  67.8 648 710
= 5 MapText Dete...Strong Pipeline 42.3 69.3 61.1 82.5 48.5
6 MapDet 35.7 65.3 54.7 70.1 44.8
7  Baseline TESTR Checkpoint 20.6 70.5 29.2 86.4 17.6

material), the “MapText Detection Strong Pipeline” is very sensitive to the low
quality of the French Land Register data set, especially regarding small text sizes
and low contrast text. This suggests that its training material may lack some
challenging elements of this sort. Also, it should be noted that in terms of raw
detection quality, the baseline method “Baseline TESTR Checkpoint” offers a
decent performance as an annotation assistance. Indeed, for both data sets its
tightness is high, indicating that little modification to the shapes is needed to
match the ground truth. However, while the precision is perhaps acceptable on
the French Land Register data set (86.4%), it is much lower for Rumsey (71.9%),
and many false positives would need to be manually discarded.

5.2 Results for Task 2: Phrase Detection (Word Grouping)

Table [3] presents results for task 2. As expected, this task is more challenging
than task 1, especially regarding the Rumsey data set, which contains a higher
number of groups. We confirmed this by evaluating the scores obtained by re-
moving the links from the ground truth, and evaluating it against the ground
truth. On task 2, such “linkless” evaluation gives a Detection Quality of 56.1%
for the Rumsey data set and 93.9% for the French Land Register data set, ef-
fectively showing that the Rumsey data set is more challenging for this task.
On the Rumsey data set, the “MapTest” and the “MapText Detection Strong
Pipeline” methods are the best, with a very close Detection Quality. We also
note the resilience of the “DS-LP” approach, whose performance is remarkably
stable on the French land registers. Indeed, qualitative analysis reveals a very
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Table 3. Results for task 2 (grouped word detection). Values expressed in percentage.
For all metrics, higher is better.

Rank Method name Det. Quality Tightness FScore Precision Recall
B 1 MapTest 41.9 74.4 56.3 44.2 77.8
g 2 MapText Dete...Strong Pipeline 41.5 75.4 55.1 43.2 75.8
é 3 Baseline TESTR Checkpoint 35.5 75.0 47.3 37.8 63.2
4 DS-LP 35.0 69.7 50.2 39.4 69.4
=1 MapTest 59.8 68.6 87.1 83.7 90.9
S 2 DS-LP 43.3 64.9 66.7 63.1 70.8
é 3 MapText Dete...Strong Pipeline 30.7 68.8 44.6 44.2 45.0
4 Baseline TESTR Checkpoint 14.6 68.7 21.2 58.7 13.0

promising linking performance on this data set. In the future, a precision/recall
evaluation directly over links may be even more informative.

5.3 Results for Task 3: Word Detection and Recognition

Table [4] presents results for task 3. On the Rumsey data set, the best method
is the “MapText Detection Strong Pipeline,” apparently benefiting from both a
solid detection of isolated words and a good recognition rate. The second-best
method on this data set, “MapTest”, is the best on the French Land Register
data set by a large margin, exhibiting the strongest detection and recognition
rates. The drop in performance of the “MapText Detection Strong Pipeline”
on the French Land Register data set is likely due not only to its poorer de-
tection performance, but heavily compounded by transcription inaccuracy. As
mentioned in the introduction, text recognition is very challenging on both data
sets because of the multiple clues required to disambiguate how a word should

Table 4. Results for task 3 (word detection with perfect transcription). Values ex-
pressed in percentage. For all metrics, higher is better.

Rank Method name Det. Quality Tightness FScore Precision Recall
1 MapText Dete...Strong Pipeline 60.1 84.2 71.3 76.0 67.2
B 2 MapTest 52.3 83.8 62.5 63.3 61.7
z 3 MapTextSpotter 41.1 82.8 49.6 53.0 46.6
= 4 DS-LP 379 72.5 52.3 49.9 54.9
~ 5 Baseline TESTR, Checkpoint 27.8 84.6 32.9 34.1 31.8
6 Recognition ...uned from TrOCR 12.2 78.5 15.5 18.5 13.4
o1 MapTest 40.1 70.7 56.7 56.0 57.3
s 2 DS-LP 26.1 65.7 39.7 38.0 41.6
é 3 MapText Dete...Strong Pipeline 8.6 71.0 12.2 16.5 9.7
4 Baseline TESTR Checkpoint 2.2 74.7 2.9 8.6 1.8
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Table 5. Results for task 4 (joint grouped word detection and transcription). Values
expressed in percentage. For all metrics, higher is better.

Rank Method name Char. Quality Char. Acc. Tightness F'Score Precision Recall
5 1 MapText Dete...Strong Pipeline 33.1 79.7 75.4 55.1 43.2 75.8
g 2 MapTest 32.0 76.3 74.4 56.3 44.2 77.8
é 3 DS-LP 28.6 81.6 69.7 50.2 39.4 69.4
4 Baseline TESTR Checkpoint 26.2 74.0 75.0 47.3 37.8 63.2
=1 MapTest 51.0 85.3 68.6 87.1 83.7 90.9
S 2 DS-LP 37.1 85.6 64.9 66.7 63.1 70.8
L%) 3 MapText Dete...Strong Pipeline 17.1 55.7 68.8 44.6 44.2 45.0
4 Baseline TESTR Checkpoint 6.0 41.5 68.7 21.2 58.7 13.0

be transcribed. While the performance of leading methods is encouraging, such
integration is likely one of the next big challenges to be solved.

5.4 Results for Task 4: Phrase Detection and Recognition

Table [5] presents results for task 4. Despite decent character accuracies on the
Rumsey data set, group detection strongly penalizes the methods, as shown by
the low detection quality. The two best methods on this data set are “MapText
Detection Strong Pipeline” and “MapTest”, the former having a slight advantage
due to better recognition quality. On the French Land Register data set, the
“MapTest” method is benefiting from a very high recognition quality, leading to
better performance overall. As for task 2, we studied the impact of the links on
the evaluation, and found similar drops in performance between tasks 3 and 4.

Table [6] summarizes the results on both data sets for each task. The supple-
mentary material illustrates example results for all methods, tasks, and data.

Table 6. A summary of the results for both data sets, Rumsey (R) and French Land
Register (FLR), for each task.

Task 1 Task 2 Task 3 Task 4
Method Name R FLR. R FLR R FLR R FLR
MapTest 3 2 1 1 2 1 2 1
MapText [...| Pipeline 1 5 2 3 1 3 1 3
DINO_MAP 2 1
DINO_MVIT 4
MapTextSpotter 5 3
DS-LP 8 4 4 2 4 2 3 2
ENSEM 6 3
Baseline TESTR |...] 7 7 3 4 5 4 4 4
MapText [...] EasyOCR 9 6
MapDet 10 6
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6 Conclusion and Final Ranking

This competition featured a robust reading task on historical maps, a new chal-
lenging visual content. The nature of such documents—with multiple text sizes
and orientations, the paramount importance of visual clues, surrounding context,
as well as some common sense required to read the text—makes the new public
data sets good targets for the most advanced architectures. We also introduced
new evaluations grounded on solid theoretical and experimental studies.

Thanks to the participants of this competition, to whom we express our
sincere gratitude, we were able to collate an initial set of baseline methods for
the main challenges and draw some general conclusions.

First, some methods have excellent detection performance for isolated words,
but performance remains highly dependent on training, as the best ranking meth-
ods are not the same across data sets. In particular, some approaches do poorly
with small text while others are more stable. The best methods produce complex
polygons matching any text orientation. From a visual point of view, detection
and segmentation quality are very high, and it may only be a matter of tuning
architectures and training on more data to reach human performance.

On the other hand, grouping distant related words is a challenging task.
Capturing the faint semantic relation between these components involves ad-
vanced skills for humans, who rely on visual appearance, spatial organization,
and toponomy. The link prediction task therefore remains largely unsolved, even
if we must acknowledge the impressive performance of the DS-LP approach and
MapTest on the French Land Registers.

Finally, transcription is far from being solved for these documents. While
some images yielded a high level of automated transcriptions, many in this data
set are challenging. Greater success may require advanced contextualization to
read elements accurately (i.e., relating toponym fragments, or jointly recognizing
a sequence of plot numbers to better disambiguate their transcriptions).

The winners of the MapText competition are MapTest, MapText Strong
Pipeline, and DINO_-MAP. MapTest and MapText Strong Pipeline participated
in all tasks on both data sets and had the best overall performance among all
performers. DINO_MAP participated in task 1 and ranked place 1 and 2 for the
French Land Registers and Rumsey data set, respectively. Also, we highlight
DS-LP for its strong second-place rankings for task 2, task 3, and task 4 on the
French Land Registers data set.

We encourage the reuse of the public material (data sets and evaluation
code), as well as browsing the supplementary material containing qualitative
results from the competition, via our Zenodo community at https://zenodo.org/
communities/icdar-maptext.
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Supplementary Material

This supplementary appendix gives additional details relevant to the competition
data, evaluation, and results. Section [A] describes the data set construction and
annotation processes as well as a synopsis of the published versions. Section [B]
details the evaluation protocol used in the competition, which differs in a few
subtle but important ways from several related prior competitions. Section [C]
graphically displays the quantitative competition results, while Section |D| pro-
vides a variety of qualitative competition result visualizations for all submissions,
tasks, and data sets.

A Data Set Details

A.1 Rumsey Data Set Acquisition

Our procedure for selecting the most representative maps involved training a
vision foundation model (e.g., ResNet) in a self-supervised manner with a con-
trastive learning objective. We further decomposed the cropped map images
into patches and trained the model to embed image features such that patches
cropped from the same image are close and patches from two distinct images
are far away from each other. Subsequently, we clustered the maps into 1,000
groups. This clustering approach enables us to identify the most distinctive maps
within the collection. Specifically, maps closest to the center of each cluster can
be considered as representing the unique styles encapsulated by that cluster. We
then randomly cropped map tiles of size 2K x 2K pixels and manually removed
the tiles with low quality, little to no text, or extensive non-Latin characters.

A.2 Annotation Protocol

All the map annotations are performed by human annotators. For one map
image, the annotators were instructed to perform text detection, recognition
and linking annotations concurrently. Both data sets share the same ground
truth and submission format.

Words Each word instance requires a bounding polygon and the transcrip-
tion, with all annotations applied at the word level, regardless of inter-character
spacing. For instance, if characters such as “L”, “A”, “K”, and “E” are widely
spaced, they are still annotated as “LAKE”, even when the spacing is several
times larger than the height of the character. If a word is cut off at the map crop
boundary, we treat it as an ignore case in the evaluation metrics, similar to the
difficult case in previous ICDAR competitions for blurry and tiny text labels.
Illegible words are also ignored in the evaluations.
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Groups Words belonging to one location phrase or other structural label group
are gathered together into a reading-order sequence.

Character Set Because of the worldwide nature of the maps involved, the files
are provided in UTF-8 encoding. However, the Latin alphabet (with diacritics),
numbers, and punctuation are primarily to be expected.

A.3 Version History

The initial version (1.0) of the training and validation data for both evaluations
(Rumsey [30] and IGN French Land Registers [8]) was released on February 2,
2024. As one might expect from a human annotation process with several stages
and a wide scope, some issues were discovered by both competition participants
and organizers along the way. As a result, the competition data sets underwent
a few minor revisions during and shortly after the contest period. Here we sum-
marize the various versions for clarity and transparency.

Rumsey Data Set It was reported that the images in the Rumsey data had
been published with reversed color channel order (i.e., BGR format) and revision
1.1 was quickly published on February 19 to correct it [31]. It was subsequently
discovered that: i) some images had missing groups (for Task 2 and 4) due to
inconsistencies in the raw annotations; ii) several words were incorrectly linked
into groups; and iii) some keypoints in the text bounding polygons were not
following the correct order. Once again, we quickly addressed these deficiencies
and published revision 1.2 on April 23 [32]. Both updates were announced on
the contest web site for participants.

After the competition window closed, organizers discovered that some tran-
scription markup (e.g., superscript and subscript tags) had inadvertently re-
mained in the published ground truth. The training data had only one such
instance, while twenty-five words were affected in the validation data. A post-
competition revision 1.3 has since been published on June 7, which can and
should be used for future benchmarking [29]. With only a single training in-
stance affected (among 34.5K words), the impact on competitors and compar-
isons should be negligible. Importantly, the same corrections were made with
the held out ground truth test data used for this report and all evaluations (past
and ongoing) on the RRC server. (The difference in test performance typically
amounts to a hundreth of a percent on Task 4 character accuracy.)

The public test data contains only images; its single version (1.0) was pub-
lished March 4 [33].

IGN Data Set It was reported that coordinates of the ground truth polygons
sometimes exceeded the dimensions of the accompanying image tile; this behav-
ior was caused by a rounding in the transformation from the original full map
image domain to the cropped version. Revision 1.1 was published on April 17
and announced the competition web site [7].
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As with the Rumsey data, the public test data contains only images; its single
version (1.0) was published March 4 [6].

B Evaluation Protocol

Evaluation follows a traditional one-to-one matching strategy between ground
truth words and detected words. That is, the fundamental precursor to calculat-
ing the competition metrics is to place ground truth elements (words or groups
of words forming a phrase) in correspondence with detected elements. However,
this competition protocol differs from most prior RRC protocols in a few key
ways:

1. Rather than using a greedy search to pair ground truths and detections, we
use a metric-specific full optimization framework for matching.

2. Rather than discount detections that overlap (many-to-one) with “don’t
care” regions before matching, such detections participate in the match pro-
cess with only one-to-one matches allowed.

3. Rather than sequentially apply geometric and textual constraints in the end-
to-end task, the constraints are applied jointly in the match optimization.

These differences were proposed by Weinman et al. [44], which analyzes their
benefits. The remainder of this section lays out the details of the evaluation
protocol, which precedes calculation of the competition metrics.

The entire official evaluation code is publicly available at https://github.
com /icdar-maptext /evaluation.

B.1 Optimization Framework

Because ground truth polygons may overlap significantly with one another, con-
ventional means for determining the correspondence between predicted detec-
tions and ground truth (e.g., greedy [14/10] and self-consistent [35]) can be in-
sufficient [44]. Maintaining the one-to-one matching restriction, we therefore use
a full weighted bipartite matching algorithm to determine the maximal set of
true positives TP from among valid candidates

TPpe; C {(g.d) € G x D | ToU (g,d) > 0.5}, (S1)

where G is the set of ground truth regions and D is the set of detected regions.
The algorithm ensures that when there are multiple correspondence candidates,
the true positive assignments maximize the total IoU score [44].

Formally, given a scoring function ¢ : G x D — R, bipartite linear sum

|Gl x| D
Z2

assignment finds the X € with entries x4q maximizing the sum

Z Y (g,d) Tgd (S2)

(9,d)eGxD


https://github.com/icdar-maptext/evaluation
https://github.com/icdar-maptext/evaluation
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with constraints EgeG Tgq < land ) ,cprgqa < 1foralde DandgeG,
respectively [44]. Each z49 = 1 in the matrix represents a correspondence.

Some ground truth regions are marked as a “don’t care” (e.g., because it is
illegible or truncated as part of the map tile cropping). Because such regions are
annotated at the level of individual words (rather than covering multiple words),
these “don’t care” words can participate in the optimizing matching process
described above. Their participation likewise ensures only one-to-one matches
between detections and “don’t care” regions. Any such matches are discounted
from evaluation; they do not count as true positives. Conversely, unmatched
“don’t care” ground truth words do not count as false negatives. Any other
unmatched detections count as false positives, and unmatched ground truth
words count as false negatives. The standard alternative of most previous RRCs
allows many-to-one matches with “don’t care” regions, which can artificially
inflate precision.

B.2 Task-Specific Evaluations

This section details specifics of the evaluation protocol for each task. While all
tasks utilize the same basic optimization framework denoted by Eq. , the
underlying objects (G and D) and match weights ¢ (g, d) may differ across tasks.

Task 1: Word Detection For this task, sets G and D represent individual
words. Since PDQ £ F x T is the competition metric, we want to select corre-
spondences that maximize not only the number of true positives for F', but also
their tightness (IoU) for T. To that end, we use the match score function

IoU (gvd) if IoU (g,d) >0.5AN—1 (g)
b (g,d) = | € if 10U (g,d) > 0.5 A I (g) (S3)
-1 otherwise,

where predicate I(g) represents whether g is a “don’t care” word to be ignored.
The very small value of € > 0 allows detections to be matched with “don’t care”
ground truth items (and later discounted) while still preferring matches with
valid ground truths. For scoring with the competition metrics,

TP = {(g,d) € G x D | 2gq = 1 A~I (g)}. (S4)

Using this 1 to determine the correspondences that establish TP has a beneficial
effect on final PDQ scores [44].
Task 3: Word Detection and Recognition As in prior RRCs, true positives

must have matching transcriptions in addition to meeting the IoU threshold:

TPrec C {(9,d) € G x D | 10U (g,d) > 0.5 A grext = diext ) - (S5)
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However, unlike prior RRCs we use the optimization framework (described for

Task 1) to jointly enforce the two constraints; the traditional sequential process-

ing that prioritizes geometry can mismatch textual correspondences, particularly

when significant numbers of detections and ground truth elements overlap [44].
The match score function is thus

TIoU(g,d) if ToU (g,d) > 0.5 A gtext = diext A 1 (g)
P (g,d) =< € if IoU (g,d) > 0.5 A I (g) (S6)
-1 otherwise.

The resulting set of true positives for metric calculation is also calculated using

Eq.[54

Task 2: Phrase Detection (Word Grouping) For this task, submissions
come in the form of individual words grouped into sets corresponding to phrases.
Thus, rather than finding correspondences between individual words, the evalu-
ation finds correspondences between these unordered groups.

At a high level, the unions of the word polygons among the words forming
predicted and ground truth phrase groups are used to calculate the IoU, and the
maximizing correspondences are then found as for Task 1.

More formally, let G; and D; represent a set of words in the ground truth and
detections, respectively, with g;; € G; and d;; € D; representing the individual
words. We define the geometric regions

g; e Ugij Vi (S?)
J

di &\ Jdi; Vi (S8)
J

so that G = {¢;} and D = {d;} become the sets over which correspondences are
found.

If any word in the ground truth group is marked as a “don’t care,” the entire
group is treated as a “don’t care” and handled as described in Task 1:

I(g) = {1 it 35 1gi) (59)

0 otherwise.

Task 3 uses the same optimization process and match score function
for Task 1, but applied to these groups G and D, which are comprised of the
combined regions g; and d;.

Task 4: Phrase Detection and Recognition As with Task 3, both geometry
and strings are used to determine the correspondences between lists of detected
words and lists of ground truth words. For geometry, we use the same strategy
as Task 2, where unions of the polygons in each list of detected and ground truth
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words become input to the IoU calculation. However, because the competition
metric PCQ does not require exact string matches, we also use the NED to pro-
mote string match quality in determining the correspondences. In the bipartite
graph, the edge weight ¥ (g,d) between a ground truth group g and detected
group d is given by

ToU (g,d) (1 = NED (g,d)) if IoU (g,d) > 0.5 A —I (g)
Y (g,d) =qe if IoU (g,d) > 0.5 A I (g) (S10)
-1 otherwise,

where predicate I(g) represents whether there is a “don’t care” word in g to be
ignored, as defined by Eq. (S9). Using this ¢ to determine the correspondences
that establish TP has a beneficial effect on final PCQ scores [44].

C Graphical Submission Ranking

This section features ranking summaries as visual bar plots for fast comparison:

— results for task 1 are shown in Figure
— results for task 2 are shown in Figure [S2]
— results for task 3 are shown in Figure
— results for task 4 are shown in Figure [S4]

MapText Dete...Strong Pipeline dino_map
dino_map
MapTest MapTest
dino_mvit ensem
MapTextSpotter
DS-LP
ensem
Baseline TESTR Checkpoint MapText Dete...Strong Pipeline
ps-LP MapDet
MapText Using EasyOCR
MapDet Baseline TESTR Checkpoint
0 25 50 75 100 0 25 50 75 100
Det. Quality Det. Quality

Fig. S1. Final ranking overview for task 1 on the Rumsey (left) and French Land
Register (right) data sets. Methods are sorted by descending Detection Quality (%).

D Example Results

This section provides illustrations of select example predictions from each system
on every task and data set. Additional examples are permanently archived at
https://zenodo.org/communities/icdar-maptext.


https://zenodo.org/communities/icdar-maptext
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MapTest

MapText Dete...Strong Pipeline

Baseline TESTR Checkpoint

DS-LP

25 50 75
Det. Quality

100

MapTest

DS-LP

MapText Dete...Strong Pipeline

Baseline TESTR Checkpoint

o

25 50 75
Det. Quality

100

Fig. S2. Final ranking overview for task 2 on the Rumsey (left) and French Land
Register (right) data sets. Methods are sorted by descending Detection Quality (%).
Compared to task 1, words are grouped and must be detected as a whole.

MapText Dete...Strong Pipeline

MapTest

MapTextSpotter

DS-LP

Baseline TESTR Checkpoint

Recognition ...uned from TrOCR

o

25 50 75
Det. Quality

100

MapTest

DS-LP

MapText Dete...Strong Pipeline

Baseline TESTR Checkpoint

o

25 50 75
Det. Quality

100

Fig. S3. Final ranking overview for task 3 on the Rumsey (left) and French Land
Register (right) data sets. Methods are sorted by descending Detection Quality (%).
Compared task 1, words have to be recognized perfectly to be considered as detected,

and only for matching words the detection quality is considered.

MapText Dete...Strong Pipeline

MapTest

DS-LP

Baseline TESTR Checkpoint

MapTest

DS-LP

MapText Dete...Strong Pipeline

Baseline TESTR Checkpoint

0 25 50 75
Char. Quality

100 0 25 50 75
Char. Quality

100

Fig. S4. Final ranking overview for task 4 on the Rumsey (left) and French Land
Register (right) data sets. Methods are sorted by descending Character Quality (%), the
product of detection quality and transcription quality (character accuracy). Compared
to other tasks, words are grouped and must be detected and recognized as a whole.
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Every image contains a comparison of the raw predictions of each submission
with the ground truth. Each figure provides examples of map tiles that are
easiest, hardest, and randomly selected. For each task, the selection of easy and
hard images is based on the submissions’ mean performance on the task’s main
evaluation metric:

Task 1: Panoptic Detection Quality for isolated words (Figures [S5| and ;
Task 2: Panoptic Detection Quality for word groups (Figures [S7] and [S8));

Task 3: Panoptic Recognition Quality for isolated words, which constrains matches
between the ground truth and predictions to have exactly the same transcrip-
tion (Figures|S9|and ; and

Task 4: Panoptic Character Quality for word groups, which combines both tight-
ness and character-level accuracy with detection quality (Figures and.

Refer the main paper for formal definitions of the metrics.
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Fig. S5. Example results for Task 1 (word detection) on the Rumsey data set. Blue regions are predictions for the entitled submission.
Green indicates valid ground truth words, while red indicates cropped or ignored words. Top—BoTTOM: Easiest, hardest, random.
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-- Ground Truth --

Fig. S7. Example results for Task 2 (phrase detection/word grouping) on the Rumsey data set. Phrase groups have the same color with
links drawn between successive group members. Top-BoTTOM: Easiest, hardest, random.
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Baseline TESTR Checkpoint HopTest

Fig. S9. Example results for Task 3 (word detection and recognition) on
with overlaid transcription. (Ground truth transcriptions including “##+#”
random.

MapTextspoter Recogniton .uned from TIOCR Hapext Dee. msé :E__._u

the Rumsey data set. Phrase groups have the same color
indicate an ignored word.) ToP—BOTTOM: Easiest, hardest,
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