
Introducing Vaucanson

Sylvain Lombardy1, Raphaël Poss2, Yann Régis-Gianas2, and Jacques Sakarovitch3

1 LIAFA, Université Paris 7, lombardy@liafa.jussieu.fr
2 LRDE, EPITA, {yann.regis-gianas,raphael.poss}@lrde.epita.fr

3 LTCI, CNRS / ENST, sakarovitch@enst.fr

Abstract. This paper reports on a new software platform dedicated to the compu-

tation with automata and transducers, called Vaucanson, the main feature of which

is the capacity of dealing with automata whose labels may belong to various algebraic

structures.

The paper successively shows how Vaucanson allows to program algorithms on au-

tomata in a way which is very close to the mathematical expression of the algorithm,

describes some features of the Vaucanson platform, including the fact that the very

rich data structure used to implement automata does not weight too much on the

performance and finally explains the main issues of the programming design that

allow to achieve both genericity and efficiency.

This paper reports on a new software platform dedicated to the computation with au-

tomata and transducers, which we have named Vaucanson 4. The present status of Vau-

canson is still fairly experimental and many of its functions are under active development.

However, the purposes, the design policy, and the implementation issues of the platform are

well-established by now, so that it has appeared that Vaucanson could be introduced to

the community5, with the undisguised aim that this software will be tried and tested and

that the authors will get some feedback.

The striking feature of automata is the versatility of the concept — a labelled oriented

graph — and its ability to modelize so many different kinds of machines simply by varying

the domain where the labels are taken. In the most general setting, these labels are polyno-

mials (or even rational series indeed) over a monoid M with multiplicity in a semiring K.

“Classical” automata are obtained when M is a free monoid A∗, when the multiplicity semir-

ing is the Boolean semiring B and when every label is a letter in A; transducers can be seen

as automata over a monoid A∗×B∗ with multiplicity in B as well as automata over A∗ with

multiplicity in P(B∗); automata over A∗ with multiplicity in (N, min, +) have been used in

order to represent jobshop problems, etc.

Many systems already exist which manipulate automata and related structures (expres-

sions, grammars, . . . ) but almost all these systems deal with automata the labels of which

are letters or words — with the notable exception of FSM which can compute with transduc-

ers and automata with “numerical” multiplicity. Most of these systems deal with automata

the label of which are letters, or words — with the notable exception of the FSM system

which can compute with transducers and automata with multiplicity. The main idea in de-

signing Vaucanson has been to take advantage of the most recent techniques in generic

4 Jacques Vaucanson (1709–1782), a French automaton maker, built the famous “flute player” and

“duck” automata.
5 Two of the authors of the paper (S. L. and J. S.) have written a LATEX macro package that has

also been coined Vaucanson. The latter name will soon be changed in order to avoid confusion.



programming in order to deal with automata the labels of which may be freely chosen in

any algebraic structure, with the capacity of writing independently (as far as they are inde-

pendent) the algorithms on the automata on one hand and the operations in the structure

on the other hand.

In the brief presentation that follows, we shall first show how the functions implemented

in Vaucanson allow to program algorithms on automata in a way which is very close to the

mathematical expression of the algorithm. The second part will describe some features of the

Vaucanson platform, including the fact that the very rich data structure used to implement

automata does not weight too much on the performance. The third part explains the main

issues of the programming design of the platform that allow to achieve both genericity and

efficiency.

1 Writing algorithms with Vaucanson

Another characteristic feature automata theory, when seen from a mathematical point of

view is that most statements are effective and that proofs are indeed algorithms — and

moreover, in many cases “good” proofs yield algorithms of “optimal” complexity. A first goal

that is aimed with Vaucanson is to give the possibility of writing programs for algorithms

on automata in a language that is as close as possible of the mathematical description of the

algorithm. We illustrate this capacity on an example that is not too well-known and that

we treat completely.

1.1 The universal automaton of a language

The universal automaton of a rational language L is a canonical automaton. It has been

introduced by Conway in 1971 [3]. This automaton can be used to find the smallest NFA

that accepts the language (cf. [1, 12]), or, to study properties of some regular languages (e.g.

star height [10, 9] or reversibility [8]).

The main property of this automaton UL is that there is a morphism of any automaton

that accepts the language L into UL.

The states of this automaton are the (maximal) factorizations of the language, i.e. the

maximal pairs (X, Y ) of languages such that X.Y is a subset of L. A state (X, Y ) is initial

(resp. final) iff the empty word belongs to X (resp. to Y ). There is a transition labeled

by a between (X, Y ) and (X ′, Y ′) iff X.a.Y ′ is a subset of L. These factorizations can be

computed in the syntactic monoid, hence the universal automaton is finite and effectively

computable.

1.2 Construction of the universal automaton

We give here another construction (cf. [8, 14]), that does not require the computation of the

syntactic monoid.

Let D = <Q, A, δ, {i}, T > be a deterministic automaton that accepts L (for instance, the

minimal automaton), where Q is its set of states, A is the alphabet, δ the transition function

(p ∈ δ(p, a) means that there is a transition from p to q with label a), i is the initial state

and T is the set of final states.



– Compute the co-determinized automaton C of the automaton D. Let P be the set of

states of C. Every element of P is a subset of Q.

– Compute the closure under intersection of P . The result is a set R: every element of R

is a subset of Q.

– The universal automaton is UL = <R, A, η, J, U>, where:

– J = {X ∈ R | i ∈ X}: a state X is initial iff it contains the initial state of D;

– U = {X ∈ R | X ⊆ T}: a state X is final iff every element of X is final in D;

– η(X, a) = {Y ∈ R | ∀p ∈ X, δ(p, a)∩Y 6= ∅}: there is a transition from X to Y labeled

by a iff for every element of X , there is a transition labeled by a to some element of Y .

This algorithm is written in pseudo-language on Figure 1. J , U and η(X, a) (for every

state X and every letter a) are sets. In the pseudo-code and in the C++ program, they are

built incrementally.

This algorithm can be translated into a C++ function written with Vaucanson. The

code is given on Figure 2. In C++, there is no need for variables to deal with initial states,

final states or transition function of automata, since they are fields or methods of the au-

tomaton object.

1.3 Comments on the code

A good understanding of this paragraph may require some knowledge about C++.

– Vaucanson provides a lot of new types. Every type is designed by a word ending by

t, like usual automaton t, hstate t,. . .

– l. 3: the alias AUTOMATON TYPES EXACT describes the frame in which the function will be

defined and used. It fixes particulary some types. For instance, the automata we deal

with are here Boolean automata (without any multiplicity) on free monoid. This im-

plies definitions of particular names for types. For instance, automaton t is an alias for

usual automaton t. This is the reason why usual automaton tmust be used in the dec-

laration of function whereas, after line 3, one can declare t, c or u as automaton t. Like-

wise, alphabet t, states t are defined, what is used in some macros like for each state

that we will explain further.

– l. 4: d is an automaton, d.initial() is the set of its initial states (which has one element,

because d is deterministic). d.initial().begin() is a pointer on the first element of

this set and thus i is the initial state of d .

– l. 6: It holds co-determinized(D)=transposed(determinized(transposed(D)). the name of

the function is auto transpose to avoid any confusion with the transposition (or mirror

image) of words.

– l. 7: Every state of C is a subset of states of D. This relation must be made explicit: this

is done with subset c state, which is a map from every state of c to a subset of states

of d . This map is an optional parameter of determinize. Likewise, subset u state is

a map from every state of u to a subset of states of d .

– l. 11: The declaration of the variable u induces the creation of the automaton.

– l. 12: Some parameters of automata are dynamically defined. In general, it can be the

monoid of labels and the semiring where multiplicities stand. This line means that these

parameters are the same for u as for d. This assignement is more an assignement of types

than an usual assignement of values. In this particulary case, we only have to define the

alphabet since the other characteristics are induced by the type automaton t (defined

line 3).



Universel (A = <Q, A, δ, {i}, T >)
C := co-determinized(A)

P := states-of(C) (* ⊆ P(Q)*)

R := intersection-closure(P )

J := ∅ U := ∅

∀X ∈ R, ∀a ∈ A, η(X, a) := ∅

∀ X ∈ R (* ⇔ X state of U *)
if (i ∈ X) then J := J ∪ {X}

if (X ⊆ T ) then U := U ∪ {X}

∀ a ∈ A
if (∀ p ∈ X, δ(p, a) 6= ∅) then

∀ Y ∈ R

if (δ(X, a) ⊆ Y ) then

η(X, a) := η(X, a) ∪ Y
return U = <R,A, η, J, U>

Fig. 1. Construction of the universal automaton: the algorithm

1 usual automaton t universal(const usual automaton t& d)

2 {

3 AUTOMATON TYPES EXACT(usual automaton t);

4 hstate t i = *d.initial().begin();

5 map t subset c state;

6 automaton t t = auto transpose(t);

7 automaton t c = auto transpose(determinize(t, subset c state));

8 pstate t c states = image(subset c state);

9 pstate t u states(intersection closure(c states));

10

11 automaton t u;

12 u.series() = d.series();

13 map t subset u state;

14 for each const(pstate t, s, u states)

15 {

16 hstate t new s = u.add state();

17 subset u state[new s] = *s;

18 }

19 for each state(x, u)

20 {

21 if (is element(i, subset u state[x]))

22 u.set initial(x);

23 if (is subset(subset u state[x], d.final()))

24 u.set final(x);

25 for each letter(a, u.series().monoid().alphabet())

26 {

27 std::set<hstate t> delta ret;

28 bool comp = delta set(d, delta ret, subset u state[*x], *a);

29 if (comp)

30 for each state(y, u)

31 if (is subset(d ret, subset u state[*y]))

32 u.add letter edge(*x, *y, *a);

33 }

34 }

35 return u;

36 }

Fig. 2. Construction of the universal automaton: Vaucanson code



– l. 14: For every element of the closure u states, a state is created and one store the link

between the state and the corresponding subset.

for each const is a macro that takes three parameters, the first one is a type, the third

one is a container of this type and the second one is an iterator that handles every

element of that container. This line is equivalent to:

for ( pstate_t::iterator s = u_states.begin();

s != u_state.end();

s++)

– l. 19: for each state is a macro; the first parameter is an iterator of states and the

second is an automaton. This line is equivalent to:

for ( state_t::iterator x = u.states().begin();

x != u.states().end();

x++)

– l. 21-24: For every state, the initial and final properties are set.

– l. 25: From the automaton u, one can access to the “series” of u, and then, to the monoid

on which this series is build. Once the monoid is known, one can get the generators of

this monoid, i.e. the alphabet.

– l. 28: The result of delta set is true if and only if, for every element p of subset u state[*x],

there exists a transition labeled by *a. In this case, the set of the aims of transitions

labeled by *a whose origin is in subset u state[*x] is stored in delta ret.

– l. 32: A transition from x to y is created, with label a; actually, x, y and a are iterators,

and this is the reason why there is a star at the front of each of them.

2 Glimpses of the library

The purpose of this communication is not to be a user manual of Vaucanson and even not

list all its functionalities. We give here only few hints on what is to be found in the library.

2.1 Determinization for benchmarking

The determinization of automata (over A∗) is a basic algorithm found in every system. It is

known that this algorithm may imply a combinatorial explosion.

We consider the following family of automata: An is an automaton with n states:

0, 1, ..., n− 1 such that 0 is the only initial and the only final state, the alphabet is {a, b, c}

and the transition function δ (on the alphabet {a, b, c}) is defined by:

δ(0, q) = {1}, δ(0, b) = δ(0, c) = ∅,

∀i 6= 0, δ(i, a) = {i + 1 mod n}, δ(i, b) = {i}, δ(i, c) = {0, i}.

The following test has been run on a Xeon 2.4Ghz, 256Ko cache memory, 1Go RAM.



0

1

2

3n-3

n-2

n-1

a

aa

a

a, c

c

cc

c

a

c

b, c

b, c

b, cb, c

b, c

b, c

Fig. 3. The automaton An

n 3 5 7 9 11 13 15 17 19

FSM 0.01 0.01 0.02 0.02 0.05 0.21 1.04 5.74 35.7

Time (s) AMoRE 0.02 0.02 0.03 0.13 0.55 2.62 12.0 57.4 ∗

Vaucanson 0.00 0.00 0.00 0.01 0.08 0.39 1.89 9.08 43.0

FSM 0.006 0.01 0.03 0.1 0.4 1.7 7.3 30.5 128

Space (MB) AMoRE 0.6 0.6 0.6 0.6 0.6 0.7 2.1 8.1 ∗

Vaucanson 0.015 0.04 0.1 0.4 1.7 7 29 116 437

2.2 Minimization of K-automata

In many semirings of multiplicities, it can be hard and sometimes even impossible to find

a smallest automaton that realizes a series. Yet, there exist some local conditions on the

states of an automaton that allow to merge some of them. The result of this process is an

equivalent K-automaton called the minimal K-covering (cf. [14]). This is not a canonical

automaton of the language. Two K-automata are bisimulation equivalent iff they have the

same minimal K-covering. This is a generalization of the well-known Nerode equivalence

involved in the minimization of DFAs. Vaucanson provides a generalized version of the

Hopcroft algorithm that computes this equivalence for an automaton A with multiplicity in

K and the corresponding minimal K-covering.

2.3 From automata to expression and back

Almost all systems computing with automata implement Kleene’s Theorem, that is compute

a rational (regular) expression equivalent to a given automaton and conversely. Vaucanson

library implements the so-called state elimination method. This method relies (as the other

methods indeed) on an ordering of the states of the automaton and the expression obtained

as the result depends on that ordering. A feature of the Vaucanson implementation is that

the ordering is a parameter of the algorithm and can also be computed via heuristics.

The transformation of an expression into an automaton has given rise to a very rich lit-

terature. Vaucanson implements three methods: the Thompson construction, the standard

automaton of an expression (also called position automaton or Glushkov automaton) and the

automaton of derived terms of an expression (also called partial derivatives or Antimirov

automaton). For the latter, Vaucanson implements the algorithm due to Champarnaud

and Ziadi [2].



2.4 Transducer computation

Vaucanson implements the two central theorems: the evaluation theorem and the com-

position theorem, with algorithms that correspond to the two mains proof methods: the

morphism realization and the representation realization and that are used according to the

type of the transducers (normalized, letter-to-letter, real-time).

2.5 Programming the algebraic structures

The definition of an automaton requires the definition of a semiring of multiplicities (or

weights) and a monoid of labels. Vaucanson allows the definition of any of these structures

– and every generic algorithm can be applied on the resulting automata. A few of them are

provided e.g. free monoids over any finite alphabet or product of monoids; this gives access

to transducers that can be considered as automata over a monoid A∗ ×B∗. Some semirings

are pre-defined too: the Boolean semiring, the usual numerical semirings (integers, floating

numbers) and tropical semirings (for instance (N, min, +) or (Z, max, +)).

A series over a monoid with multiplicity in a semiring is itself a semiring and can be used

as such. For instance, Rat(B∗) (the rational series over B∗ with Boolean coefficients) is a

semiring and automata over A∗ with multiplicity in this semiring are another representation

of transducers.

3 Design for genericity

The facilities exposed in the previous sections are not directly present in C++. A software

layer is necessary to yield an abstraction level powerful enough for genericity. Yet, abstrac-

tion should not imply poor efficiency so the way of implementing polymorphism has to be

carefully chosen.

This section points out the design issues involved in the development of the Vaucanson

library and its position confronted with the current known solutions of generic program-

ming. First, we describe what helps the writing of algorithms in the framework. Then, we

explain how we deal with the usual trade-off between genericity and efficiency. A new Design

Pattern (cf [7]) for this purpose is presented and constitutes the contribution in the generic

programming field.

3.1 A unified generic framework

We describe the framework for the writing of algorithm. It relies on how the object are

typed, how the types of algorithm inputs are specified and how Vaucanson can be adapted

to foreign environments.

Every Vaucanson object is an element of a set As in Java where every entity has

the Object type, every Vaucanson entity (automaton, series ...) is an instance of the

Element<S, T> class. Element<S, T> can be read like an element of a set S implemented

by the type T. An instance of the Element<S, T> class is always linked with an instance of

S and an instance of T. The S instance denotes the dynamic features of the set and the T

instance represents the value of the element.



As a set, the S attribute represents the concept handled by the element. Because it is

always linked to its set, an element can retrieve all the algebraic information it was built

from. For example, in the algorithm (Figure 2), u.set().series().monoid().alphabet()

returns the alphabet on which the automaton u is defined. This encapsulation enables shorter

function prototypes and then, better readability.

Given a set S, an element of S has a well defined interface whatever its implementation.

Therefore, an algorithm can mix elements implemented by different ways transparently, just

by specifying that the implementations can be different. For instance, a generic algorithm

which computes the product of two automata could be prototyped by:

template <class T1, class T2>

Element<Automata, T1>

product(Element<Automata, T1>, Element<Automata, T2>);

Finally, the implementation parameter allows a choice between different algorithm ver-

sions depending on the underlying data structure. For example, a serie can be implemented

as a finite map or as a rational expression. The constant term is computed differently ac-

cording to the chosen implementation.

Focus on weighted automata services Thanks to our generic design, the design issues

are centered on the general algebraic concepts (weighted automaton, general series ...).

Although algebraic objects (alphabet, monoid, semiring and series) do not involve particular

problems, the design decisions about the automaton object are essential according to an

algorithmic and an ergonomic point of view.

As emphasized in [11], the δ function (the successor function) is a crucial primitive

because it is a general mechanism with a real algorithmic effect and which depends both

on the implementation and on the concept. The δ function must act as a glue between

algorithms and data structures conveying only necessary information. Indeed, too rich a δ

can lead to inefficiency whereas too poor a δ implies clumsy use. As a consequence, the

Vaucanson library provides a large variety of δ functions depending on algorithm needs.

The user can choose between states or edges as results. In order to obtain them, she also

has the choice between container, output iterator or read-only access begin/end iterator

couple. Finally, a criterion defines what kind of successors has to be retrieved. One can

choose to return all output transitions, transitions whose labels match a particular letter or

a user condition passed as an function-object.

Extending Vaucanson with a new automaton implementation does not necessarily imply

the definition of all of these δ. Indeed, many default implementations are automatically

deduced from the others.

Interaction with external libraries Initiated by the Standard Template Library (STL),

the iterator concept is a common ground between C++ libraries. It is an abstract way

of defining the generic traversal of data structures. Vaucanson implements it to manage

interoperability with STL. Vaucanson algorithms and data structures are highly based

on STL, so, a lot of development effort is saved, avoiding the development of well known

structures such as list, bit vector or red-black tree.

Furthermore, importing new data structure from an external library to use it as imple-

mentation of some element can be done easily. The user has just to specify the foreign C or



C++ type as implementation. Next, only a small set of external functions must be written

to explain how the foreign implementation will fill the concept requirements. Then, linking

with C/C++ external libraries is made natural and simple.

3.2 Polymorphism using C++ templates

Let us now introduce the considerations about genericity which have led to our framework.

Object-Oriented languages enable reusability based on contracts defined by abstract

classes. Yet, in practice, the late binding to abstract services is too expensive and leads too

bad performance for intensive computing. The generative power of C++ template allows

the static resolution of abstract services. This results in high-level C++ programs whose

speed is comparable to dedicated low-level C programs. The STL has initiated this trend

and demonstrates its relevancy by its popularity.

STL approach As mentioned in [13], the writing of generic algorithms is made easier by

using primitive services common to all library data structures. For example, the iterator

concept uses the presence of a begin()/end()method couple in every container to abstract

its traversal. An algorithm which is generic w.r.t. the container concept is parameterized by

a free type variable C. The code is written assuming that an instance of C will be a container.

Yet, parameterization à la STL does not provide any constraints to ensure that parame-

ters really fill the requirement. Moreover, this general typing leads to overloading problems,

like prototyping two algorithms with the same name and arity. As a consequence, fine grained

specialization is unavailable. Concretely, this means that writing a generic algorithm for a

particular class of automata is not allowed.

The main explanation is that STL lost the subclassing relation between objects be-

cause of a non constrained universal type quantification. The Vaucanson design solved this

problem by making a step further in generic programming that consists in implementing a

generic object framework with static dispatch using C++-templates [6, 4]. These program-

ming methods entail a stronger typing, which enables a finer specialization power and solves

the overloading problem.

Beyond classical use of templates One classical object hierarchy is not enough to obtain

extensibility in our framework. The current section will describe a new design pattern we

developped to allow a richer genericity.

One more time, the main issue is to bound as precisely as possible the domain of an

algorithm. Using only one object hierarchy would yield a one dimensional discrimination.

Yet, a fine grained specialization would require the hierarchy to be a directed acyclic graph

(with multiple inheritance).

To simplify the object organization, we define more components to characterize an object.

We notice that abstraction and implementation are quite orthogonal for at least two reasons.

Firstly, when writing a general algorithm, people should only focus on the mathematical

concepts. Implementation constraints are taken into account afterwards. Second, algorithm

specialization should depend on implementation and concept symmetrically.

Because of this orthogonality, it is easier to design the implementation and the concept

separately. Design patterns for this purpose are the classical bridge [7] or more recently

the generic bridge [5]. However, there remain two problems for us: first, it is asymmetric,



privileging concept upon implementation; second, it does not allow subclassing w.r.t the two

parameters because template arguments are invariant.

To solve all these problems, the Vaucanson library uses a new design pattern called

Element/MetaElement. The main idea is to enable de-construction of an object w.r.t

its two components and to use them for typing purpose. Element is a generic class asso-

ciating a concept class and an implementation one. The role of MetaElement is to define

the interaction between these two components that is, how the data structure implements

the concept. A kind of multi-methods with static dispatch is also used to allow default im-

plementation and specialization of n-ary methods. The pattern is illustrated in the figure

4 using the Unified Modelling Language. Its effective implementation involves some C++

meta-programming techniques which will not be explicited in this paper.

Implementation
Set

MetaElementMetaElement

Implementation
Set

Element ImplementationSet

Fig. 4. UML diagram of the Element/MetaElement design pattern.

References

1. A. Arnold, A. Dicky, and M. Nivat, A note about minimal non-deterministic automata, Bull ot

the EATCS 47 (1992), 166–169.

2. J.-M. Champarnaud and D. Ziadi, Canonical derivatives, partial derivatives and finite automa-

ton constructions, Theor. Comp. Sci. 289 (2002), no. 1, 137–163.

3. J.H. Conway, Regular algebra and finite machines, Chapman and Hall, 1971.

4. J. Darbon, T. Géraud, and A. Duret-Lutz, Generic implementation of morphological image

operators, Int. Symp. on Mathematical Morphology VI (ISMM’2002), April 2002, pp. 175–184.

5. A. Duret-Lutz, T. Géraud, and A. Demaille, Design patterns for generic programming in C++,

Proc. of the 6th USENIX Conf. on Object-Oriented Technologies and Systems (COOTS’01),

USENIX Association, 2001, pp. 189–202.
6. A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr, On the design of CGAL,

the computational geometry algorithms library, Tech. Report 3407, INRIA, April 1998.

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: Abstraction and reuse of

object-oriented design, LNCS 707 (1993), 406–431.

8. S. Lombardy, On the construction of reversible automata for reversible languages, Proc. of

ICALP’02, LNCS 2380 (2002), 170–182.

9. S. Lombardy and J. Sakarovitch, Star height of reversible languages and universal automata,

Proc. of LATIN’02, LNCS 2286 (2002), 76–89.

10. , On the star height of rational languages, a new presentation for two old results, World

Scientific (to appear).
11. V. Le Maout, Cursors, Proc. of CIAA 2000, LNCS 2088 (2001), 195–207.

12. O. Matz and A. Potthoff, Computing small nondeterministic finite automata, proc. of

TACAS’95, BRICS Notes Series, 1995, pp. 74–88.
13. D.R. Musser and A.A. Stepanov, Algorithm-oriented generic libraries, Software - Practice and

Experience 24 (1994), no. 7, 623–642.
14. J. Sakarovitch, Éléments de théorie des automates, Vuibert, 2003.


