Available online at www.sciencedirect.com

scuENCE@DIRECT@ Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 328 (2004) 77—96
www.elsevier.com/locate/tcs

Introducing VAUCANSON
Sylvain Lombard§, Yann Régis-Gian&sJacques Sakarovitth

ALIAFA, Université Paris 7, 2 place Jussieu, F-75251 Paris, Cedex 05, France
bLRDE, EPITA, 14-16 rue Voltaire, F-94276 Le Kremlin-Bicétre Cedex, France
CLTCI, UMR 5141, CNRS / ENST, 46 rue Barrault, F-75634 Paris, Cedex 13, France

Abstract

This paper reports on a new software platform called@ANSONand dedicated to the computation
with automata and transducers. Its main feature is the capacity of dealing with automata whose labels
may belong to various algebraic structures.

The paper successively describes the main features ofADEANSON platform, including the
fact that the very rich data structure used to implement automata does not weigh too much on the
performance, shows howAJCANSON allows to program algorithms on automata in a way which is
very close to the mathematical expression of the algorithm and finally explains the main choices of
the programming design that enable to achieve both genericity and efficiency.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Automata implementation; Automata with multiplicity; Generic programming

0. Introduction

This paper reports on theadcansonN! software platform dedicated to the computation
with automata and transducérs.

* Corresponding author.
E-mail addressedombardy@liafa.jussieu.f{S. Lombardy)yann.regis-gianas@Irde.epita.fr
(Y. Regis Gianas)sakarovitch@enst.fd. Sakarovitch).
1The Vaucanson library can be downloaded from the URMhttp://vaucanson.Irde.epita.fr
2Two of the authors of the paper (S.L. and J.S.) have writtéfigXlmacro packaggl4] that had also been
coined \AucansoN. This name has been changed intw¥anson-G in order to avoid confusion.

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.07.007


http://www.elsevier.com/locate/tcs
mailto:lombardy@liafa.jussieu.fr
mailto:yann.regis-gianas@lrde.epita.fr
mailto:sakarovitch@enst.fr
http://vaucanson.lrde.epita.fr

78 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96

A striking feature of automata is the versatility of the concept—a labelled oriented
graph—and its ability to modelize so many different kinds of machines simply by varying
the domain where thiabelsare taken. In the most general setting, these labelpae
nomials(or evenrational seriesindeed) over a monoid/ with multiplicity in a semiring
K. “Classical” automata are obtained whéhis a free monoidd*, when the multiplicity
semiring is the Boolean semiririy and when every label is a letter Ay transducers can
be seen as automata over a mondidx B* with multiplicity in B as well as automata
over A* with multiplicity in P(B*); automata oveA* with multiplicity in @ may compute
probability of occurrences of words, those with multiplicity(id, min, +) have been used
in order to represent jobshop problems, etc.

Many systems already exist which manipulate automata and related structures (expres-
sions, grammars, ...) but almost all deal with automata the labels of which are letters or
words—with the notable exception of FS¥8] which can compute with transducers and
automata with “numerical” multiplicity?

The main idea in designingAWCANSON has been to take advantage of the most recent
techniques in generic programming in order to deal with automata the labels of which may
be freely chosen in any algebraic structure, with the capacity of writing independently (as far
as they are independent) the algorithms on the automata on the one hand and the operations
in the structure on the other hand.

In the brief presentation that follows, we shall first describe some features of the
VAUCANSON platform, including the fact that the very rich data structure used to imple-
ment automata does not weigh too much on the performance. In the second part, we show
how the functions implemented imJCANSON make it possible to program algorithms on
automata in a way which is very close to the mathematical expression of the algorithm. The
third part explains the main choices of the programming design of the platform that enable
to achieve both genericity and efficiency.

1. Glimpses of the library

The purpose of this paper is not to be a user manuahof¥NSON and even not to list
all its functionalities. We give here only few hints on what is to be found in the library and
on the way these functions have to be called in programmes. It will serve as an introduction
to the design of XUCANSON.

1.1. Description of automata

An automator? is defined as a 5-upk@, A, 6, I, T), whereQ is a finite set obtates A
a finite alphabet detters 7 andT the sets of initial and final states adidQ x A — P(Q)
the transition function.

3The FSA systenj22] may also compute with such objects but as it is based on Prolog, the description of
algorithms as well as the definition of automata is fairly different from the usage of the automata community.

4The reader is assumed to be familiar with the basic concepts and notations of automata theory, for which we
essentially follon[10].



S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96 79

Let us consider the following family of automatd, on the alphabetd = {a, b, ¢}:
A, =({0,1,...,n—1}, A, 0, {0}, {0} ), where the transition functiofis defined by

0(0,a) = {1}, 0(0,b) = 0(0,¢) =9,
and, for every different from 0O,

5G,a) = {i +1modn),  8G,b) ={i},  &G,c) ={0,i).

b,c \@D/\a‘

b,c
‘c\@§>

Fig.1gives apossible program for describidg. Some knowledge about C++is probably
useful for the understanding of the sequel of this paragraph.

e 1. 1: VAUCANSON provides a number aflassesthat istypesand methodsattached to
them, for dealing with objects involved in automata definition and computation. Every
type is designed by a word ending by, like automaton_t , hstate t ... These
names are actually shortcuts as the types depend on a number of parameters such as the
semiring of multiplicities. They are defined in files suchvasicanson_boolean_
automaton.hh  where the types are defined for automata with multiplicity in the
Boolean semiring, that is the classical automata. We shall see in S8¢taw a type is
defined in VAUCANSON.

e 1. 2: The functions of the M\UCANSON library are contained in distinct modules. The
usual_algorithms.hh header module allows to import many common functions
such agleterminize

e 1. 3: The \AUCANSON library is totally contained in the namespagesn . This allows
easier access to the functions of the library in the program.

e 1. 4: Indicates that the types that will be used are those that have been created by the
macros invaucanson_boolean_automaton.hh

e 1.10:Theclasalphabet t isequipped with the methadsert thatallows to build
the alphabealpha .

e 1.12: The automatoan is created as an automaton over the alphalia . At this
stagean is “created” but is still empty.

e 1.14:The clasautomaton_t is equipped with the methaatld_state to define the
states, ...

e 1. 18: ...with the metho@dd_letter_edge to define the transitions, ...



80 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96

1 #include <vaucanson/vaucanson_boolean_automaton.hh>
2 #include <vaucanson/usual_algorithms.hh>

3 using namespace vcsn;

4 using namespace vcsn::boolean_automaton;

5int main()
6{
7int n = 10;

8 /* Definition of the alphabet */

9  alphabet_t alpha;

10 alpha.insert(’a’); alpha.insert(’b’); alpha.insert(’c’);
11 /* Definition of the automaton */

12  automaton_t an= new_automaton(alpha);

13  hstate_t p,xy;

14  p = an.add_state() ;X = p;

15  for(int i=1;i<n;i++)

16 {

17 y=an.add_state();

18 an.add_letter_edge(x, y, 'a’); an.add_letter_edge(y, y, 'b);
19 an.add_letter_edge(y, y, 'c’); an.add_letter_edge(y, p, 'C);
20 X=Y;

21}

22  an.add_letter_edge(x, p, 'a’);

23  an.set_initial(p); an.set_final(p);
24 automaton_t dn= determinize(an);
25}

Fig. 1. Programming the automatot),.

e 1. 23: ...and with the methodset_initial andset_final to define the initial
and final states.

e 1.24: An example of a call of aAlCANSON function over an automaton. The automaton
dn, of the same type aan, is created, and then the determinized automatoanofs
computed.

1.2. Determinization for benchmarking

The determinization of automata (ovét) is a basic algorithm found in every system.
It is known that this algorithm may imply a combinatorial explosion and this is the case
for the above example: the determinized automaton of (indeed the minimal deterministic
automaton equivalent tod,, has 2 states. We have comparedWcANSON with two other
systems: AMoR¢16] and FSM[18].°

5AMoRe is a software written in C, that allows to manipulate rational languages (given either through an
automaton or a rational expression); it computes, for instance, the syntactic monoid or the minimal automaton of
the language.
FSMis a C library that provides tools to manipulate (Boolean) automata as well as automata with multiplicity or
transducers; these tools are basic commands (minimization, determinization, etc.) that can communicate by files
or pipelines.



S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96 81

] [ n | 5 [ 7 [ 9 [ 11]13] 15[ 17 [ 19 |
AMORE 0.02] 003 | 013] 055|262 120 [ 574 | «
Time(s) FSM 0.01] 0.02 | 0.02 | 0.05| 0.21 | 1.04 | 5.74 | 357
VAUCANSON || 0.00 | 0.00 | 0.01 | 0.08 | 0.39 | 1.89 | 9.08 | 430
AMORE 06 [ 06|06 06]07][21]81] «
SpaceMB) FSM 0.01]003] 01 [ 04 | 17 [ 7.3 | 305 128
VAUCANSON |[ 004 | 0.1 | 04 | 1.7 | 7 | 29 | 116 | 437

Fig. 2. Results for the determinization of th, .

The determinization of thel,, has been run on a Xeon 2.4 Ghz, 256 Ko cache memory,
1 Go RAM. The results of this test are shown in Fg.

1.3. A word on data structures and implementation

VAUCANSON default implementation for automata is a graph data structure. The design
mainly focuses on providing fast structural and search operations.

First, the graph data structure is composed of many links between edges and states. Every
state is a four-tuple of lists: two double-linked lists of states representing its successors and
its predecessors, and two double-linked lists of edges representing incoming and outgoing
edges. An edge is a triple formed by the source state, the destination state and a label. The
label can be of any type: letter, polynom, abstract syntax tree denoting rational expression or
user defined. This data structure is very redundant and this explains the quantity of memory
used.

Second, MUCANSON makes use of the data structure implementations provided by the
C++ standard template library (STL). This allows to concentrate on the specific aspects
of dealing with automata and avoids the error prone work of reimplementing usual data
structures like double-linked lists, extensible arrays or balanced trees.

The efficiency—that is demonstrated in the above benchmark—is achieved not only by
the versatility of the structure but also by a tight control by t&&ANSON routines of
the organization of this data structure in order to maximize the contiguity of the stored
data in the memory. Thus, states and edges are handled by small integers which are offsets
in one memory chunk. This yields fast graph operations and direct conversion to matrix
representation.

Finally, and thanks to genericity, user-defined data structures closer to the requirements
of a particular application can be transparently substituted.

1.4. Programming the algebraic structures

The definition of an automaton requires the definition of a semiring of multiplicities
(or weights) and a monoid of labelsAVCANSON allows the definition of any of these
structures—and every generic algorithm can be applied on the resulting automata. A few



82 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96

of them are provided e.g. free monoids over any finite alphabet or product of monoids; this
gives access to transducers that can be considered as automata over a Arioralt.

Some semirings are pre-defined too: the Boolean semiring, the usual numerical semirings
(integers, floating numbers) and min-plus (or max-plus) semirings (for inst&hewin, +)

or (Z, max, +)).

The set of series over a monoid with multiplicity in a semiring is itself a semiring and
can be used as such. For instanRat(B*) (the rational series oveB* with Boolean
coefficients) is a semiring and automata over with multiplicity in this semiring are
another representation of transducers.

1.5. From automata to expressions and back

Almost all systems computing with automata implement Kleene’s Theorem, that is
compute a rational (regular) expression equivalent to a given automaton and conversely.
VAUCANSON library implements the so-callestate elimination methodrhis method re-
lies (as the other methods indeed) on an ordering of the states of the automaton and the
expression obtained as the result depends on that ordering. A feature ofubeNsoON
implementation is that the ordering is a parameter of the algorithm and can also be computed
via heuristics.

The transformation of an expression into an automaton has given rise to a very rich
literature. \AUCANSONiIimMplements three methods: the Thompson construction, the standard
automaton of an expression (also calpbition automatoror Glushkov automatgrand
the automaton of derived terms of an expression (also gadlghl derivativeor Antimirov
automatoi). For the latter, YUCANSON implements the algorithm due to Champarnaud and
Ziadi[4].

1.6. Minimization ofiK-automata

In many semirings of multiplicities, it can be hard and sometimes even impossible to
find a smallest automaton that realizes a series. Yet, there exist some local conditions on the
states of an automaton that allow to merge some of them. The result of this process is an
equivalentiK-automaton called the minimé{-covering (cf.[21]). This isnota canonical
automaton of the series realized by theautomaton. Twd<-automata are bisimulation
equivalent iff they have the same minintélcovering. This is a generalization of the well-
known Nerode equivalence involved in the minimization of Boolean DFAs (e.d16%e
VAUCANSON provides a generalized version of the Hopcroft algorithm that computes the
minimal [K-covering of an automatad with multiplicity in K.

1.7. Transducer computation

VAUCANSON implements the two central theorems: the evaluation theorem and the com-
position theorem, with algorithms that correspond to the two mains proof methods: the
morphism realization and the representation realization and that are used according to the
type of the transducers (normalized, letter-to-letter, real-time).



S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96 83

2. Writing algorithms with VAUCANSON

Another characteristic feature of automata theory, when seen from a mathematical point
of view is that most statements agéfectiveand that proofs are indeedgorithms—and
in many cases, “good” proofs yield algorithms of “optimal” complexity. An interesting
feature of \AUCANSON s the possibility of writing programs for algorithms on automata in
alanguage that is as close as possible to the mathematical description of the algorithm. We
illustrate this ability by an example that is not too simple and that we treat completely.

2.1. Construction of the universal automaton

The universal automatdd; of a rational (regular) languageis an automaton canoni-
cally attached td.. It has been (implicitly) introduced by Conway [iB] in order to solve
some types of language equations. For sake of completeness, we give in Appendix A a brief
account on the definition and the propertieé/@f

The construction (implicitly) given by Conway takes place in the syntactic monoid of
the language. We give here another construction[{&,21) that does not require the
computation of the syntactic monoid and which is thus more efficient.

LetD = (Q, A, 4, {i}, T) be a deterministic automaton that accepidor instance, the
minimal automaton of.); sinceD is deterministic, for every statg and every letter:,

J(p, a) is either the empty set or a singleton. The constructian;othen goes as follow.
e Compute the co-determiniz€dautomatorC of the automatorD. Let P be the set of

states o’. Every element oP is asubsebf Q.

e Compute the closure under intersection of the fanfilyThe result is a familyR: every
element ofR is a subset 0oD.
e The universal automatonid¢, = (R, A, n, J, U), where:

J ={X € R|i € X}: X isinitial iff it contains the initial state oD;

U={X € R| X CT}: Xisfinal iff every element o is final inD;

n(X,a)={Y € R|Vp € X,d(p,a)NY # ¢} thereis atransition fron¥ to ¥ labelled

by a iff for everyelement ofX, there is a transition labelled byto some element df .

This definition ofy(X, a) is equivalent to:

)9 if 3p € X, 0(p,a) =0,
(X, a)= { {Y € R|6(X,a) C Y} otherwise

This algorithm is written in pseudo-language in Fddt can be translated into @ JCANSON

function (Fig.4), that is a C++ function written with primitives provided by thedCANSON

library. Notice that the variableg, U andp, that represent initial states, final states and tran-
sitions in the pseudo-code, are useless in C++ because they are members of the automaton
object. Opposite to the theoretical definition, these sets are built (both in the pseudo-language
algorithm and in the ¥UCANSON program) incrementally.

6 An automaton is co-deterministic if its transposed automaton is deterministic; the co-determinized automaton
is obtained by a subset construction, like the determinized automaton.



84 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96

Universal (p = (Q, A, s, {i}, T))
¢ := co-determinized(p)
P = states-of(c) (* € P(Q)*)
R :=intersection-closure(P)
J =0 U:=90
VX € R,Va € A, n(X,a):=0

V X € R (* & X state of *)
if (i € X)thenJ :=J U {X}
if (X € T)thenU :=U U {X}

YacA
if (¥ p € X,s(p,a) # 0) then
VYeR
if (6(X,a) CY)then
;1(X, a) = 11(X, u) uY
returny = (R, A, n. J, U)

Fig. 3. Construction of the universal automaton: the algorithm.

2.2. Comments on the code

A good understanding of this paragraph may require some knowledge about C++.

e 1. 3:d is an automatond.initial() is the set of its initial states (which has one
element, because is deterministic).d.initial().begin() is a pointer on the
first element of this set. This pointer is dereferenced by the * andithigghe initial
state ofd. The variabld is used at line 20 to decide whether a state of the automaton
u is initial.

e 1.5: It holdsco-determinize(D)=transposed(determinize(transposed(D))).

e 1. 6: Every state of is a subset of states @. This relation must be made explicit:
this is done withsubset_c_state  , which is a map from every state ofto a sub-
set of states ofl. This map is an optional parameter @éterminize . Likewise,
subset_u_state (line 13) is a map from every state ofto a subset of states df.

e 1.7:pstate_t isashortcutfostd::set<std::set<hstate t>> ,C_states
andu_states are thus families of subsets of stateglof

e 1. 10: Declaration of the variable and creation of an automaton of the same type as
automatord, cf. Section 3.

e 1. 13:for_all_const is a macro with three parameters, the first one is a type, the
third one is a container of this type and the second one is an iterator that handles the
elements of that container.

This line is equivalent to:
for ( pstate_t::const_iterato r s = u_states.begin();
s I= u_states.end(); s++)

e 1. 14-17: For every element of the closurestates , a state is created and the link
between the state and the corresponding subset is stored.

e 1.18:for_each_state is a macro; the first parameteiis an iterator of states—and
thus a pointer—and the second one is an automaton. This line is equivalent to:
for ( state_t::const_iterato r x = u.states().begin();

x 1= u.states().end(); x++)



S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96 85

1 automaton_t universal(const automaton_t& d)

2{

3  hstate_t i = *d.initial().begin();

4  map_t subset c state ;

5 automaton_t t = transpose( d);

6 automaton_t c = transpose(determinize( t, subset c_state ));
7  pstate_t c_states = image( subset_c_state );

8  pstate_t u_states = intersection_closure( c_states );
9

10  automaton_t  u(d.set);

11  map_t subset u_state

12

13  for_all_const(pstate_t, S, Uu_states )

14 {

15 hstate_t new_s = u.add_state();

16 subset_u_state [new_s] = * s;

17}

18  for_each_state( X, U)

19 {

20 if (is_element( i, subset u_state [* x])

21 u.set_initial(* X);

22 if (is_subset( subset_u_state [* x], d.final()))

23 u.set_final(* X);

24 for_each_letter( a, u.series().monoid().alphabet())

25 {

26 stdi:set  <hstate t > delta_ret ;

27 bool comp = delta_set( d, delta_ret , subset u_state [* x], * a);
28 if ( comp)

29 for_each_state( y, u)

30 if (is_subset( d_ret , subset u_state [*y])
31 u.add_letter_edge(* X, *y, *a)

32 }

33 }

34 return  u;

35}

Fig. 4. Construction of the universal automaton: the&anson code.

e 1.20-23: For every state, the property of being initial or terminal is set.

e 1.24: From the automatan one can access to the “series’ugfand then, to the monoid
on which this series is build, and, at last, to the alphabet.

e 1. 27: The result ofdelta_set is true if and only if, for every elemenp of
subset_u_state[* x] , there exists a transition labelled bg. In this case, the set
of the aims of transitions labelled Bya whose origin is irsubset_u_state[* x]
is stored indelta_ret

e 1.31:Atransition front x to*y is created, with labefa .

3. Design for genericity

The facilities exposed in the previous sections are not present in the standard C++. The
kernel of VAUCANSON is a software layer that yields an abstraction level powerful enough



86 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96

for genericity. Then polymorphism has beenimplemented in a way such that this abstraction
level does not spoil efficiency.

This section points out the design issues involved in the development oftltaMSON
library and its position confronted with the current known solutions of generic programming.
First, we describe what helps the writing of algorithms in the framework. Then, we explain
how we deal with the usual trade-off between genericity and efficiency. A new Design Pattern
for this purpose is presented and constitutes the contribution in the generic programming
field.

3.1. A unified generic framework

The VAUCANSON kernel consists in a typing system and a object-oriented layer. The
design arguments are given in Sect®a

3.1.1. The/AUCANSON typing system

A typing system is meant to forbid the programmer to do invalid operations between
incompatible values. In the object-oriented field, the point is to determine, if it exists,
the most precise method to call w.r.t the types of object instances that receive a particular
messagé€3]. Therefore, one of the goals of typing is to retrieve the most precise information
about the variables manipulated by the programmer.

The VAUCANSON type system has been designed to manage moreover structures whose
exact type depends on parameters that are known only at run-time. Let us consider for
instance the definition of the scalar product betweenrnvaimensional vectordn a static
type system, if the dimension of the vectors is not known at compile-time, the programmer
is forced to relax the input specification using a less precisewgp@rdenoting any vector.

From then on, the dimension of the vector is implementeddetanot as gart of the type

If nothing is provided by the system, the type checking is done manually by the programmer
(or not done). Dependent type systd2i3,2] are intended to overcome this defect and carry
dynamic information (i.e. values) into types. By that way, types may depend on computed
values. The YUCANSON typing system is as an ad hoc implementation of a dependent type
system.

In VAUCANSON, there are three categories of entity: pre-types, types and elements. A
pre-typedenotes a static information, that is a property known at compile-timigpa
is a pre-type completed with dynamic information, that is values known at run-time. An
elementis a variable whose type is &UCANSON type. For instancejector of integerss a
pre-type ,n-dimensional vector of integeis a type, au-tuple of integers is an element of
typen-dimensional vector of integersee monoids a pre-typeA* is a type (free monoid
over the alphabet), a sequence of letters dfis an element of typd *.

A very important feature of M\UCANSON typing system is that an element is not charac-
terized only by its MMUCANSON type but also by the way it is implemented.

Section3.1.2describes how these different entities are emulated in C++. Se&ibrg
and 3.2 show how to take benefit of this type system to enhance genericity and algorithm
input specification. Sectior&1.4and3.1.5discuss the implementation design.



S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96 87

VAUCANSON C++ Examples

Pre-types Classes FreeMonoid, Matrix
FreeMonoid Astar(A);

Types Pre-typesmstancesMatriX matrix2(2);
Type:s Element<FreeMonoid, string> w(Astar);
Elements s, t)Value:t Element<Matrix, int**> m(matrix2);

Fig. 5. The VMucanson type system.

3.1.2. Embedding in C++

As Pascal or C, C++ has a static type system. This means that types are not directly
accessible at run-time. The specification of types during evaluation is made possible by
using some C++-variables AUCANSON provides a specific hierarchy of C++-classes for
that purpose; these classes are theGANSON pre-types. A C++variable of such class
when instantiated at run-time by some dynamic information becomes@\WsoN type
This is summarized in the first two lines of Fig.

The last line shows the two components that characterizaUEANSON elementx.

The C++-type ofx is an instance ofhe parametrized clasElement ; the parameters
are the static information on the elementthat is on one hand theAdCANSON pre-type
and on the other hand the C++-type of its implementation. The instantiatierreduires
as a constructor parameter the value of the C++-variable that represemubeNgoN
type of x.

Concretely, the programmer has to declare a C++ instance of a pre-type, to complete it
with a dynamic value if necessary so as to obtain a type. Itis then possible to declare some
variables over this type. For instance, a natural declaration of two wordsdw, over
the alphabeta, b} is:

“let A be the alphabdiz, b} and letw1, w2 be two elements of typa* ”.

This statement becomes the followingdCANSON program which defines two words of
the free monoid over the alphabet »} implemented in two different ways:

/I The variable 'A’ is a value denoting {a, b}.

alphabet_t A;

A.insert(’a’); A.insert(’b");

/I The variable Astar is a Vaucanson type denoting {a,b}*.
/I FreeMonoid is a pre-type which must be

/I completed by an alphabet value.

FreeMonoid Astar(A);

/I The variables w_1 and w_2 are of Vaucanson type Astar.
/I Their C++-type is the class Element instantiated with

/I the FreeMonoid pre-type and two different implementations.
Element<FreeMonoid, std::string> w_1(Astar);
Element<FreeMonoid, const char*> w_2(Astar);

Once the variablesv_1 and w_2 are declared, they can take a value; it can be
noticed that there is an implicit conversion of a value of typato anElement whose



88 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96
implementation type i§".

w_1l = "aa"; w_2 = "ab"

/I The two variables have the same type: they can be
/I compared.

return wl == w2,

3.1.3. Writing generic algorithms within this framework

Given a \AUCANSON types, an element of type has a well-defined interface whatever
its implementation: this is the basis of genericity. Therefore, an algorithm can mix elements
implemented by different ways transparently, just by specifying that the implementations
can be different. For instance, a generic algorithm which computes the product of two
automata could be prototyped by:

template <class T1, class T2>
Element<Automata, T1>
product(Element<Automata, T1>, Element<Automata, T2>);

Besides, the implementation parameter allows a choice between different algorithm versions
depending on the underlying data structure. For example, an element of series can be
implemented as a rational expression (i.e. a tree) or, if its support is finite, as a finite map.
The constant term is computed differently according to the chosen implementation. More
subtle specifications can be done and are described in S&cfich

3.1.4. Implementation definition

The data structure benefits are application dependant (from a time or space complexity
point of view) and their choices should be done independantly from the algorithm that is
used. Even if some algorithms may @ecializedo take account of a particular feature of
a data structure (see Secti®2.2), general algorithms are written using general interfaces.
This policy of encapsulation induces the reusability of code.

In VAUCANSON, an implementation is adapted to thaOZANSON type requirements
using binding operators. For example, the adaptation of the C++ integer type as an element
of the (Z, max +) semiring consists in the definition of the binding operatmpsadd ,
op_mul , op_identity andop_zero . Most of the binding operators provide default
behaviour based on assumption about implementation. Then, sometimes, the adaptation of
an implementation can be done without any binding code, for instance, to define the semiring
(Z,+, x) implemented by C++ integers. Thanks to binding operators, implementation
are not necessarily C++ classes. They can be Builtins or C structures from foreign
libraries.

3.1.5. Object oriented layer

The previous sections have described the kernelsafddNsSON. To simplify the basic
usage of the library, a layer composed of shortcuts for object construction is provided.
Moreover, the richness of the object services is as important as the generality of the type



S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96 89

system to make the writing of algorithm easier. We illustrate what we call a “rich” service
by describing how thé function is declared in MUCANSON.

As emphasized ifill], the ¢ function the successor functidris a crucial primitive
because it is a general mechanism with a real algorithmic effect and which depends both on
the implementation and on theWCcANSONtype. Thed function must act as a glue between
algorithms and data structures conveying only necessary information. Indeed, to@rich a
can lead to inefficiency whereas too pood anplies clumsy use. As a consequence, the
VAUCANSON library provides a large variety @ffunctions depending on algorithm needs.

First, 6 functions allow to handle either states (successors or predecessors) or transitions
(outgoing or incoming ones).

Second, it is possible to choose the way the result is stored: containers, output iterator or
read-only access begiend iterator couple.

Finally, a criterion can be given to describe which outgoing (or incoming) transitions have
to be considered: for instance, every outgoing transition, transitions labelled by a given
letter, or any user condition.

/I Store the output edges of 's’ w.r.t the letter 'a’ in
/I the list I'.

a.letter_deldac(l, s, 'a’, delta_kind::edges());

/I Store the successors of ’'s’ in the bitset 'b’.
a.deltac(b, s, delta_kind::states());

/I Retrieve incoming transitions of ’'s’ whose label is a
/I monome.

/I rdeltac is the reverse transition function.

a.rdeltac(l, s, is_a _monome, delta_kind::edges());

Extending VAUCANSON with a new automaton implementation does not necessarily im-
ply the definition of all of thesé functions. Indeed, many default implementations are
automatically deduced from the others.

3.2. Polymorphism using C++ templates

Object-Oriented languages enable reusability based on contracts defined by abstract
classes. Indeed, abstract classes define abstract services that can be expected from con-
crete classes instance. The choice of the concrete classes to instantiate is done at run-time
and this implies that the abstract services calls are resolved at run-time too.

Yet, in practice, this late binding to abstract services is too expensive and leads too bad
performance for intensive computing mainly because it breaks a potential code inlining. The
generative power of C++ template allows the static resolution of abstract services by closing
the object recursivity w.r.t. the self type. This ability, illustrated by the STL, allows to write
high-level C++ programs whose speed is comparable to dedicated low-level C programs.

3.2.1. STL approach

As mentioned if19], the writing of generic algorithms is made easier by using primitive
services common to all library data structures. For example, the iterator concept uses the
presence of aegin()/end() method couple in every container to abstract its traversal.



90 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96

An algorithm which is generic w.r.t. the container concept is parametrized by a free type
variableC. The code is written assuming that an instanc€ wfill be a container.

Yet, parametrization a la STL does not provide any constraints to ensure that parameters
really fill the requirement. Moreover, this general typing leads to overloading problems, like
prototyping two algorithms with the same name and arity. As a consequence, fine grained
specialization is unavailable. Concretely, this means that writing a generic algorithm for a
particular class of automata is not allowed.

template <class BooleanAutomaton>
void minimization(const BooleanAutomaton& automaton);

template <class WeightedAutomaton>
void minimization(const WeightedAutomaton& automaton);

/I BooleanAutomaton and WeightedAutomaton are mute variables,
/I so the following function call is ambiguous:

automaton_t a;

minimization(a);

The main explanation is that STL lost the subclassing relation between objects because
of a non constrained universal type quantification. TR&&ANSON design solved this
problem by making a step further in generic programming that consists in implementing a
generic object framework with static dispatch using C++-templ@&3. These program-

ming methods entail a stronger typing, which enables a finer specialization power and solves
the overloading problem.

3.2.2. Beyond classical use of templates

One classical object hierarchy is not enough to obtain extensibility and specialization
power in our framework. The current section will describe a new design pattern we developed
to allow a higher genericity.

One more time, the main issue is to bound as precisely as possible the domain of an
algorithm. Using only one object hierarchy would yield a one dimensional discrimination.
Yet, a fine grained specialization would require the hierarchy to be a directed acyclic graph
(with multiple inheritance).

To simplify the object organization, we define two components to characterize an ob-
ject. We notice that abstraction and implementation are quite orthogonal for at least two
reasons. First, the writing of a general algorithm focusses on the mathematical concept
(the general interface of anyAJCANSON variable of a particular MUCANSON type).
Implementation constraints are taken into account afterwards. Second, algorithm special-
ization should depend on implementation and @&ANSON type symmetrically.

Because of this orthogonality, it is easier to design the implementation and the concept
separately. Design patterns for this purpose are the clagsi@abe [9] or more recently
the GENERIC BRIDGE[7] (Figs. 6 and 7).

However, there remain two problems for us from a specialization point of view. First, these
design patterns are asymmetric, privileging concept upon implementation. Then, we cannot



S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96 91

Set c—1 Implementatior

Fig. 6. UML diagram of the Bridge design pattern.

r————————=—-= 1
|

Implementation »—I

Type

Fig. 7. UML diagram of the Generic Bridge design pattern.

define an algorithm that only works for a particular set ofimplementations whatever the con-
cept. Moreover, a concept cannot be manipulated independantly from the implementation;
therefore it is difficult to compare two concepts simply for equality or for subsumption.

Second, itdoes not allow subclassing w.r.t the two parameters because template arguments
are invariant. In the following example, an element of series cannot be passed to the function
is_zero even if theSeries class inherits from th&emiring class.

template <class T>
bool is_zero(const Element<Semiring, T>& e)

{
}

return e.set().zero() == e€;

/I e must be a weight.
is_zero(e);

3.2.3. TheELEMENT/METAELEMENT design pattern

To solve all these problems, theMcaNsON library uses a new design pattern which we
have called EEMENT/METAELEMENT [20]. The main idea is to enable de-construction of
an object w.r.t its two components and to use them for typing purpose. For instance, the
VAUCANSON type of the object can be used as an argument to make the function signature
more precise, this feature can be applied in the previous example

/I Specialization of type 4.
template <class S, class T>
bool is_zero(const Semiring& s, const Element<S, T>& e)

{
}

/I e can be a semiring weight but also a series.
is_zero(e.type(), e);

return e == s.zero();



92 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96

Concept

Subclass
ofC

Implementation

]
Subclasses of |

Fig. 8. Different type boundings of algorithm input. (1) are fixed; (2) all implementations ands fixed; (3)
all concepts and is fixed; (4) all sub-classes dfandc is fixed; (5) all sub-classes @f andi is fixed; (6) all
sub-classes af and!.

As another example, the following piece of code shows the procedure signature for the
determinization algorithm specialized to any table-based automaton implementation:

/I Specialization of type 6.
template <class S, class T>
Element<S, T> determinize(const Automata& s,
const Table& i,
const Element<S, T>& a)

{
n..

}

/I The algorithm call takes the form:
determinize(a.type(), a.value(), a);

Fig. 8 sums up the different kinds of specialization that are usefulAndANSON. Each
specialization kind corresponds to a boundary of the input types into the type domain.
More generally, the specifications of FRjare expressible:

/I Type 1. the concept and value type are fixed.
void algorithm_impl(const S1& s, const T1& v,
const Element<S1, T1>& e);

/I Type 2: concept fixed, generic implementation for any
/I value type.
template <class T>



S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96 93

: Set |

Implementatior}
MetaEIerhéﬁF """"

Fisa

Element Implementatio

Fig. 9. UML diagram of the EEMENT/METAELEMENT design pattern.

void algorithm_impl(const S1& s, const T& v,
const Element<S1, T>& e);

/I Type 3: value type fixed, generic implementation for any
/I concept.
template <class S>
void algorithm_impl(const S& s, const T1& v,
const Element<S, T1>& e);

/I Type 4: generic implementation for any sub-concept of S1.
template <class S, class T>
void algorithm_impl(const S1& s, const T& v,

const Element<S, T>& e);

/I Type 5: generic implementation for any value sub-class
/I of T1.
template <class S, class T>
void algorithm_impl(const S& s, const T1& v,
const Element<S, T>& e);

/I Type 6: generic implementation for any sub-class

/I of (S1,T1).

template <class S, class T>

void algorithm_impl(const S1& s, const T1& v,
const Element<S, T>& e);

Element is a generic class associating &)¢ANSON type and an implementation. The
role of MetaElement is to define the interaction between these two componentshioat is,
the data structure implements tii@uCANSON type A kind of multi-methods with static
dispatch (the binding operators) is also used to allow default implementation and special-
ization of n-ary methods. The pattern is illustrated in Fgising the Unified Modelling
Language. Its effective implementation involves some C++ meta-programming techniques
which will not be explicited in this paper. For further technical information, the interested
reader is referred tf20].



94 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96

K

Fig. 11. The universal automaton bHf.A1). The dashed lines aeetransitions. The universal automatbfy of
L(A,) is given by the forward closure of this automaton: there is a transition, ¢) in U1 if, on the figure, there
are a state, a transition(p, a, r) and a path o-transitions fronr to g.

Appendix A. On the universal automaton of a language

The universal automatadd;, of a rational (regular) languageis an automaton canoni-
cally attached td.. One can consider that it is a slight transformation of the “factor matrix”
introduced by Conway iff5] in order to solve some types of language equations. This
automatorif;, can also be used to find the smallest NFA that accets. [1,17]), or—as
was done by two of the authors—to study some propertids(efg. star heighitL5,13]or
reversibility[12]) at least wherl. belongs to some subfamilies of the rational languages.

The automatoid{;, is the smallest automaton such that there maphismfrom any
automaton that accepts the langudgento U{;. This property characterizes it but is not
constructive.

The states of this automaton are the (maximal) factorizations of the language, i.e. the
maximal pairg H, K) of languages such thaf.K is a subset of.. A state(H, K) is initial
(resp. final) iff the empty word belongs 8 (resp. toK). There is a transition labelled lay
from (H, K)to (H', K') iff H.a.K' is a subset of.. These factorizations can be computed
in the syntactic monoid, hence the universal automaton of a rational language is finite and
effectively computable.

The automaton can be built without computing the syntactic monoid. Actually, every state
p of the minimal automatod corresponds to a (non necessarily maximal) factorization
(Hp, K,), whereH, is the set of words that label a path from the initial statedafo p



S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96 95

andK , is the set of words that label a path frgmto any terminal state ofl. It holds (cf.
[12,21) that every maximal factorization is a combination of these basic factorizations;
more precisely, for every maximal factorizatiol, K), there exists a subséX’ of states of
Asuchthatd = |J,co Hp andK = (1), Kp. More, the subset®’ that give exactly

all the maximal factorizations of the language are the intersections of the states of the co-
determinized automaton od. The initial and terminal states and the transitions are then
given by the following rules:

— P is initial if it contains the initial state of the minimal automatgain

— P is terminal if it is a subset of the set of terminal statesAof

— (P, a, Q) is atransition if, for every in P, there is a transitiop, a, ¢) in A such that
gisinQ.

The co-determinized automaton of the automatiar(Fig. 10) is drawn on the same figure.
The states of the co-determinized automatoraf@}, {3}, {1, 3}, {1, 2} and{1, 2, 3}. The
closure of this set under intersection contains one mor¢Xefig. 11 shows the resulting
universal automaton.

References

[1] A. Arnold, A. Dicky, M. Nivat, A note about minimal non-deterministic automata, Bull. EATCS 47 (1992)
166-169.

[2] L.Augustsson, Cayenne alanguage with dependent types, Internat. Conf. on Functional Programming, 1998.

[3] G. Castagna, Object-Oriented Programming: A Unified Foundation, Progress in Theoretical Computer
Science Series, Birkhauser, Basel, 1997.

[4] J.-M. Champarnaud, D. Ziadi, Canonical derivatives, partial derivatives and finite automaton constructions,
Theoret. Comput. Sci. 289 (1) (2002) 137-163.

[5] J.H. Conway, Regular Algebra and Finite Machines, Chapman and Hall, London, 1971.

[6] J. Darbon, T. Géraud, A. Duret-Lutz, Generic implementation of morphological image operators, Internat.
Symp. on Mathematical Morphology VI (ISMM'2002), April 2002, pp. 175-184.

[7] A. Duret-Lutz, T. Géraud, A. Demaille, Design patterns for generic programming in C++, Proc. Sixth
USENIX Conf. on Object-Oriented Technologies and Systems (COOTS'01), USENIX Association, 2001,
pp. 189-202.

[8] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, S. Schénherr, On the design of CGAL, the computational
geometry algorithms library, Technical Report 3407, INRIA, April 1998.

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Abstraction and Reuse of Object-Oriented
Design, Lecture Notes in Computer Science, Vol. 707, 1993, pp. 406-431.

[10] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley,
Reading, MA, 1979.

[11] V. Le Maout, Cursors, Proc. of CIAA 2000, Lecture Notes in Computer Science, Vol. 2088, 2001, pp. 195-207.

[12] S. Lombardy, On the construction of reversible automata for reversible languages, Proc. of ICALP’'02,
Lecture Notes in Computer Science, Vol. 2380, 2002, pp. 170-182.

[13] S. Lombardy, J. Sakarovitch, Star height of reversible languages and universal automata, Proc. of LATIN'02,
Lecture Notes in Computer Science, Vol. 2286, 2002, pp. 76—89.

[14] S. Lombardy, J. Sakarovitch, Vaucanson-G, A package for drawing automata and graphs,
http://www.liafa.jussieu.fr/ ~lombardy/Vaucanson-G/ , 2002.

[15] S. Lombardy, J. Sakarovitch, On the star height of rational languages, a new presentation for two old results,
in: M. Ito, T. Imaoka (Eds.), Proc. of Words, Languages & Combinatorics Ill, World Scientific, Singapore,
2003, pp. 266—285.

[16] O. Matz, A. Miller, A. Potthoff, W. Thomas, E. Valkema, The Program AMoRi&p://www-i7.
informatik.rwth-aachen.de/d/research/amore.html , RWTH Aachen, 1995.


http://www.liafa.jussieu.fr/lombardy/Vaucanson-G/
http://www-i7.informatik.rwth-aachen.de/d/research/amore.html
http://www-i7.informatik.rwth-aachen.de/d/research/amore.html

96 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77—-96

[17] O. Matz, A. Potthoff, Computing small nondeterministic finite automata, Proc. of TACAS'95, BRICS
Notes Series, 1995, pp. 74-88.

[18] M. Mohri, F.C.N. Pereira, M. Riley, General-purpose Finite-State Machine Software Tools,
http://www.research.att.com/sw/tools/fsm/ , AT&T Labs—Research, 1997.

[19] D.R. Musser, A.A. Stepanov, Algorithm-oriented generic libraries, Software Pract. Exper. 24 (7) (1994)
623-642.

[20] Y. Régis-Gianas, R. Poss, On orthogonal specialization in C++: dealing with efficiency and algebraic
abstraction in Vaucanson, Proc. of POOSC’2003, Darmstadt, July 2003.

[21] J. Sakarovitch, Eléments de théorie des automates, Vuibert, 2003. English translation: Element of Automata
Theory, Cambridge University Press, to appear.

[22] G.van Noord, Finite State Automata Utilitiéstp://odur.let.rug.nl/ ~vannoord/Fsa/ ,2000.

[23] H. Xi, F. Pfenning, Dependent types in practical programming, Proc. of POPL'1999, 1999, pp. 214-227.


http://www.research.att.com/sw/tools/fsm/
http://odur.let.rug.nl/vannoord/Fsa/

	Introducing VAUCANSON
	Introduction
	Glimpses of the library
	Description of automata
	Determinization for benchmarking
	A word on data structures and implementation
	Programming the algebraic structures
	From automata to expressions and back
	Minimization of KKKK -automata
	Transducer computation

	Writing algorithms with VAUCANSON
	Construction of the universal automaton
	Comments on the code

	Design for genericity
	A unified generic framework
	The VAUCANSON typing system
	Embedding in C++
	Writing generic algorithms within this framework
	Implementation definition
	Object oriented layer

	Polymorphism using C++ templates
	STL approach
	Beyond classical use of templates
	The ELEMENT/METAELEMENT design pattern


	On the universal automaton of a language
	References


