
Program Templates:

Expression Templates Applied to Program Evaluation

Francis Maes

EPITA Research and Development Laboratory,
14-16 rue Voltaire, F-94276 Le Kremlin-Bicêtre cedex, France,

francis.maes@lrde.epita.fr,
WWW home page: http://lrde.epita.fr/

Abstract. The C++ language provides a two-layer execution model:
static execution of meta-programs and dynamic execution of resulting
programs. The Expression Templates technique takes advantage of this
dual execution model through the construction of C++ types expressing
simple arithmetic formulas. Our intent is to extend this technique to a
whole programming language. The Tiger language is a small, imperative
language with types, variables, arrays, records, flow control structures
and nested functions. The first step is to show how to express a Tiger
program as a C++ type. The second step concerns operational analysis
which is done through the use of meta-programs. Finally an implemen-
tation of our Tiger evaluator is proposed.

Our technique goes much deeper than the Expression Templates one. It
shows how the generative power of C++ meta-programming can be used
in order to compile abstract syntax trees of a fully featured programming
language.

1 Introduction

During the compilation process, an input program expressed in textual form
is transformed by successive steps into executable code. As in any language, a
C++ program will basically be evaluated during its execution. The interesting
particularity of C++ is its ability to do some computations at compile-time us-
ing template constructions (the so-called meta-programs, see Veldhuizen (2002),
Czarnecki and Eisenecker (2000), Järvi (1998) and appendix A for an exam-
ple). This two-layer execution model corresponds to the usual concept of static
(compile-time) and dynamic (execution-time) processing.

In C++, there is a technique called Expression Templates described by Veld-
huizen (1995), which allows the exploitation of this two-layer execution model.
This technique relies on transformations of simple arithmetic expressions at
compile-time to increase the performances of the executable code. Moreover
some evaluation can be done entirely statically with mechanisms such as con-
stant propagation. This way, some computations usually done at execution-time
are processed at compile-time.

The Expression Templates technique is based on the use of template classes.
In order to work on expressions, we need a structural description of them. This
is done by building a type that reflects the abstract syntax tree (AST) of the
expression. Each node of this tree will be translated into a template class whose
arguments are the node subtrees.

Usually, a program written in any language can also be expressed as an ab-
stract syntax tree. The next natural step is to wonder whether it is possible to
extend the Expression Templates technique to a whole programming language.
Expressing a full program with a C++ type reflecting its AST could thus be
made possible. In the remainder of this paper, this type will be called the TAT
(Tree As Type). A TAT is a representation of an AST using a C++ type for-
malism.

Expressing a program in the TAT formalism would allow us to adapt the Ex-
pression Templates evaluation method to a whole program and therefore to take
advantage of the two-layer execution model of C++ (see Haney and Crotinger
(1999)). The entire process of compiling and executing a program expressed as
a TAT corresponds to its evaluation.

To experiment this idea, we have to choose a programming language that
does not have this two-layer execution model. We want this language to be
simple and to have few constructions. Nevertheless, this language must at least
include types, functions, records, arrays and flow control constructions. Tiger, a
language defined by Appel (1997), corresponds to our needs: with only 40 rules
in its EBNF grammar, it respects all our conditions.

This work is a proof of concept. No-one had previously mapped an entire lan-
guage to a C++ meta-program. Those that consider C++ expression templates
for prototype implementations should be interested in this project. Moreover, the
C++ metalanguage is here introduced as an intermediate language. This point
of view is different from the current trend of supporting meta-programming by
designing metalanguages as extensions of existing programming languages. Our
work initially inspired by Expression Templates goes very deeply into the possi-
bilities of C++ meta-programs using several techniques discovered recently.

This paper begins with an overview of related work. Next, section 3 intro-
duces the Tiger language, followed by a description of our architecture. Our first
objective is to translate Tiger programs into TATs. When trying to do this, sev-
eral problems arise (e.g. expressing lists). These are developed in section 4. Our
second objective is to do some static processing on this TAT. This will require
a structure called environment, and a form of static pointers detailed in section
5. Finally we want to evaluate a Tiger program expressed as a TAT using the
C++ two-layer execution model. The implementation which allows this is de-
scribed in section 6. This is followed by some interesting results related to this
new technique. This paper will finish with a discussion about the possibilities of
such mechanisms.

2 Related work

Our work is based on Expression Template. The Expression Template is at the
basis of our work. This technique described by Veldhuizen (1995) has many
known interests. In particular it allows to build the static AST of a C++ ex-
pression. This allows C++ meta-programs to work on C++ expressions seen as
types. This can be useful for:

– Rewriting statements into equivalent (but more efficient) ones.
This was the original intent of Expression Templates. This technique was
first used to evaluate vector and matrix expressions in a single pass, without
temporaries.

– Building lambda terms. Several libraries for doing functionnal program-
ming in C++ are based on Expression Templates. Thanks to C++ meta-
programs, several functionnal operations are possible on these lambda terms.
The Fact library (Striegnitz and Smith (2000)) provides typical functional
features such as currying, lambda expressions and lazy evaluation in C++.
The Boost package also includes a library specialized in lambda expres-
sions: the Boost Lambda Library (J. Jarvi (2002)). FC++ (McNamara and
Smaragdakis (2001)) is a similar library inspired by the Haskell language.
Our work has something to do with lambda term manipulations: we also
manipulate TATs. But our intent is not to do functionnal operations on
a TAT but to compile a whole program including functions and variables
declarations.

– Building any other structured expressions, such as the group (2002)
library which uses Expression Template in order to build EBNF rules. C++
meta-programs are then used to transform a grammar into a usable parser.
In this library, C++ meta-programs deal with complex operations such as
in our work.

The Expression Template is very useful but a bit complex to implement.
PETE (Crotinger et al. (2000)) is a tool that aims at generating the needed
code. Fact is built on top of PETE. This tool could help us to build a C++
front-end to our compiler. The idea of using template constructions in compilers
has already been used for building a java compiler, see van Reeuwijk (2003).

3 Tiger evaluation and compilation

3.1 Tiger constructions

Tiger is an Algol-style language with a functional flavor. Two kinds of construc-
tion exist: declarations and typed expressions. Declarations are of three kinds:
type, variable and function declarations. Four basic types exist: integers, strings,
nil and void. New types can be built with records and arrays. Existing types can
be renamed by a typedef mechanism. Tiger is not a first-order functionnal lan-
guage: functions cannot be passed as parameters, neither as results.

Tiger has a nested let-in-end construction which makes it possible to declare
nested scopes. A particular case of this is the ability to declare nested functions.

Except declarations, everything in Tiger is an expression: literals (strings
and integers), unary and binary operations, left-values, function calls, array and
record instantiations and flow control constructions: if-then-else, while-do,
for-to-do, break.

3.2 Architecture

We use a front-end program which parses Tiger and does the semantic analysis:
type checking, scopes and bindings. The output of this front-end is a C++
program which declares a TAT. Our front-end is based on techniques explained
by Appel (1997).

The interesting thing is the remaining work: the program evaluation. This
task is done in C++ through the static and the dynamic processing.

Parsing
Semantical
analysis

Operational
analysis

type checking,
scopes,
bindings

lexical analysis,
grammatical analysis

Tiger
source
program

Executable
code

template instantiation,
transformations

...

Front-end program C++ compiler

C++
code
with
TAT Static

evaluation
Dynamic

evaluation

Two layer
evaluation

function inlining,
types resolution

instanciated
templates

Fig. 1. Placement in the compilation chain

Our front-end associated with the C++ static processor is a compilation
chain. Indeed the input of this chain is a textual Tiger program, and its output
is an executable program.

3.3 Comparison with a standard compiler

A usual object oriented compiler first parses the program. It provides AST classes
that are dynamically instantiated in order to build the programs abstract tree.
At this point until the end of the compilation, successive transformations are
applied until getting the executable code.

In our case, we provide a set of template classes corresponding to each node
of the AST. During the compilation of a Tiger program, these templates are
filled by our front-end giving us the TAT. At this point, the C++ compiler does
successive transformations until getting the executable code.

An analogy can easily be done between our Tiger compiler and a standard
compiler. Where a standard compiler provides AST classes, we provide AST
meta-classes. Where a standard compiler builds an AST expressed as objects,

we build an AST expressed as a type (the TAT). A standard compiler provides
classes for operational analysis, we provide meta-classes to do this work.

It has been shown that a Turing machine could be constructed with template
constructs (Veldhuizen (2002)). Any work traditionally done by a standard com-
piler can theoretically be done with C++ meta-programs. The method that we
present should thus be adaptable to any other language. The only restrictions
are the C++ compilation times and memory use.

4 Translation into TAT

Let us return to the Expression Templates technique with the following Tiger
program:

(5 ∗ 10 + 1)

Since the Expression Templates technique was originally used to describe and
evaluate simple expressions (literals, variables, unary, binary and potentially n-
ary operations), such examples can easily be constructed with it. Here is an
example of TAT corresponding to the previous example:

Listing 1.1. A simple TAT

typedef BinOp< BinOp< ConstInt <5>, ConstInt <10> , Times > ,
ConstInt <1>, Plus >

program t ;

However this covers a very small part of the whole programming language.
Important features such as type declarations, function declarations and calls,
or flow control cannot be expressed. Moreover, Tiger expressions are typed: we
want our compiler to be able to evaluate and work on typed-expressions. When
trying to translate more complex examples into TATs, different problems arise
such as the list problem, or the reference problem.

4.1 The list problem

Let us consider this Tiger example:

Listing 1.2. Two functions

l et

function double (x : int) : int = 2 ∗ x
function sum(a : int , b : int , c : int) : int = a + b + c

in

double (30) − sum (6 , 1 , 2)
end

When building this program’s TAT, we need to express lists: declaration lists,
function formals lists, and function call arguments lists. The usual way to do this

is to use recursive lists. A recursive list is defined as empty or as a head element
followed by a tail list.

This can be transposed into C++ with the static list technique described by
Veldhuizen (2002). We use a template class List, which parameters are the first
element (a type), and the remaining list. A class EmptyList is used to mark the
end of the list. With this notation, we can express lists as types. For example,
in sum (6, 1, 2), the argument list can be expressed with the following TAT:

List < ConstInt <6>,
L i s t < ConstInt <1>,

L i s t < ConstInt <2>,
EmptyList

>

>

>

The full TAT conversion of a similar sample is given in the next section.
Static lists, which are a particular case of trees, will be used extensively in the
remaining of this paper: this is our first addition to the Expression Templates
technique.

4.2 The reference problem

The following simple example illustrate the reference problem:

Listing 1.3. Two variables addition

l et

var i : int := 80
var j : int := 6

in

i + j
end

Const : 80

Plus

VarDec

LetInEnd

int

SimpleVar SimpleVar

List

List

VarDec EmptyList

Const : 6

Fig. 2. AST of example 1.3

The expression i refers to the variable declaration var i : int := 80. The
same way, the declaration var i : int := 80 refers to the builtin type int.
This example demonstrates that we cannot consider programs as simple trees.
The main structure acts as a tree, but the implicit relations by reference trans-
forms this tree into a DAG (direct acyclic graph).

The TAT has to describe a tree plus some graph relations between a dec-
laration and its uses. This is the main difficulty compared to the Expression
Templates technique. Without a reference mechanism, we cannot express con-
cepts such as types or functions.

Each time a declaration is referred, we need a pointer to it. The following part
shows how to solve this: each declaration will have a location in an evaluation
environment.

5 Evaluation Environment

At every point in the program, there is a set of active declarations which can
be used. An expression such as i + j (listing 1.3), or double(30) - sum(6, 1,

2) (listing 1.2) cannot be evaluated without the declaration context: we need to
maintain an environment at evaluation time.

Tiger defines some builtin types and functions. These declarations, visible
at every point in every Tiger program, will be the initial state of our environ-
ment. Declarations that have the same visibility are grouped into scopes. In the
remainder of this paper, the list of declarations of the same scope is called a
chunk.

The main operations we need on this environment are pushing and popping
chunks. Moreover, we need a way to extract a declaration, given its chunk and
its location in the chunk.

New declarations are introduced with the let-in-end structure, which is
composed of two parts. A first declarative part, located between let and in,
allows declaring a chunk. The second part, is an expression, in which we can
use previous declarations. Evaluating the whole structure is done by pushing
the chunk into environment, evaluating the expression and finally popping the
chunk.

The environment can also be modified by a function call: when this occurs
the evaluation point is changed. This implies that the set of active declarations
changes.

Listing 1.4. A function call

l et

function double (x : int) : int = 2 ∗ x
in

let

var i : int := 17
in

double (i) + i
end

end

In the above example, the function call is evaluated the following way:

1. Evaluate function parameters: here i = 17.
2. Initialize formal values: x ← i
3. Pop declarations introduced between the function declaration and the func-

tion call: this restores the environment of the function implementation. In
our case: pop the chunk containing var i : int := 17, as the function
double does not know this declaration.

4. Push formals declarations. Here: push a chunk containing x : int.
5. Evaluate the function body: (2 * x)

6. Restore callers environment: x does not exist any more, i is reintroduced.

At this point, a stack seems to be appropriate for our needs. This stack will
be filled with declaration chunks. A declaration chunk simply contains the corre-
sponding part of the TAT. At a given evaluation point, each visible declaration
is located with a pair of indexes: the index of the chunk, and the index of the
declaration in the chunk. So a simple pair of indexes is enough to refer to a
declaration.

The example 1.3 can now be translated into the following TAT:

LetInEnd<

List < Var< ConstInt < 80 > , bu i l t i n t ype s , i n t t ype > ,
L i s t < Var< ConstInt < 6 > , bu i l t i n t ype s , i n t t ype > ,

EmptyList > > ,
BinOp< SimpleVar < 0 , 0 > , SimpleVar < 0 , 1 > , Plus >

>

The pair < 0, 0 > refers to the first declaration of the first chunk, which cor-
responds to var i:= 80. The pair < 0, 1 > refers to var j:= 6. builtin types

and int type are predefined integer values, which identify the builtin int Tiger
type. This mechanism of environment and location pair is a form of static point-
ers.

We are also able to translate example 1.4:

LetInEnd< l et

List < Function < List < function double (
TypeLnk< bu i l t i n t ype s , 1 > > , x : int) =

BinOp< ConstInt < 2 > , 2
SimpleVar <1 , 0 > , Times > , ∗ x

0 > > ,
LetInEnd< in

List < Variable < ConstInt < 17 > , l et

bu i l t i n t ype s , 1 > > , var i : int := 17
in

BinOp< FuncCall < 0 , 0 , double (
List < SimpleVar < 1 , 0 > > > , i)

SimpleVar < 1 , 0 > , Plus > + i

> end

> end

Let’s remember the goal: translating an AST into a C++ type (the TAT), so
that the compiler can work on this type. In the proposed implementation, the
environment related computations are done at compile-time. Meta-programming
techniques will allow us to reduce the execution-time work considerably.

6 Implementation

The basis of the Expression Templates technique is to write a template class per
kind of node available in the AST. The parameters of this template are the node
subtrees. Each of these template classes correspond to a node of the AST.

These template classes fulfill two roles: first they express the AST informa-
tion. This is implicitly done with class organization into the TAT. Second, our
classes must provide evaluation code.

In the case of expressions, this consists on two tasks: the type calculation,
and the value calculation. The declaration classes provide some other services
such as common operations for types.

Apart from AST meta-classes, we also need to provide meta-code to perform
some static processing. This corresponds to the set of operations related to the
evaluation environment.

6.1 Global organization

Two kinds of classes have to be written: expression classes and declaration
classes. Declarations will be further distinguished via classes specialized for type,
variable and function declarations. Moreover, the implementation also includes
the environment mechanism, and tools for its manipulation.

AstNode

FuncDec

Declaration

TypeDec VarDec

Expression

Fig. 3. Main kind of classes

Note that the base classes AstNode, Expression, Declaration, TypeDec...
are only used for some static checking. These classes are not very interesting,
and will not be detailed in this paper.

6.2 Expression classes

As in the Expression Templates technique, each Expression class will implement
an evaluation method. These methods are inlined, so that the C++ compiler
can build efficient evaluation code.

The main difference with Expression Templates is due to the evaluation envi-
ronment: The evaluation method depends on the current environment. Another
striking difference is that expressions are typed. Evaluating an expression con-
sists in computing both its type and value. We want expression types to be
evaluated statically: this work will be done through typedefs. All the typed val-
ues that we manipulate are represented with four bytes. In order to simplify,
we decided to represent all variables with the void* type. This lead us to the
following model adopted by all expression classes:

// v a r t r epre sen t a non−typed va lue .
typedef void ∗ va r t ;

// Here comes the t emp la t e parameters : t he TAT sub t r e e s .
template< . . . >

struct AnExpression : public Express ion
{

// Eva luat ion i s dependent o f cur ren t environment .
template<class T env>

struct eva l
{

// s t a t i c a l l y compute the expre s s ion type
typedef . . . T;

// i n l i n e method t ha t e v a l ua t e s the expre s s ion va lue
inl ine va r t do i t () { . . . }

} ;
} ;

template<signed Value>

struct ConstInt : public Express ion
{

template<class T env>

struct eva l
{

typedef IntType T;
inl ine va r t do i t () {return (va r t) Value ;}

} ;
} ;

ConstInt < 123 > is a TAT: its value and type can be evaluated:

typedef ConstInt <123> program t ;

va r t va lue = program t : : eval < i n i t i a l e n v t > : : do i t () ;
typedef program t : : eval < i n i t i a l e n v t > : :T type ;

Notice that ”::” is C++ for Java ”.”
Two types are predefined:

– var t represents all Tiger variables. For example, an int can directly be
casted into a var t (these two types have the same size: four bytes). Most
of time a var t corresponds to a record pointer or an array pointer.

– initial env t corresponds to the Tiger builtin environment: builtin types
such as IntType or StringType, and builtin functions (print, ord, concat...).

The TAT given in listing 1.1 can now be evaluated. Here is the template
expansion chain that leaded to the result: 51.

1 . program t : : eval < i n i t i a l e n v t > : : do i t ()
2 . BinOP< ConstInt <5>, ConstInt <10> , Times >

: : eval < i n i t i a l e n v t > : : do i t () +
ConstInt <1>:: eval < i n i t i a l e n v t > : : do i t () ;

3 . ConstInt <5>:: eval < i n i t i a l e n v t > : : do i t () ∗
ConstInt <10>:: eval < i n i t i a l e n v t > : : do i t () + 1 ;

4 . 5 ∗ 10 + 1
5 . 5 1

6.3 Declaration classes

The first role of declaration classes is to store information relative to the decla-
ration. For example a variable declaration must store its type and initial value.
This is done with template parameters exactly as above. The second role of dec-
laration classes depends on the kind of declaration. For variables and functions,
only some utility functions are implemented. The type classes do more things:
their second role is to implement all operations related to the type: assignment,
comparison, creation and destruction. These operations can depend on the en-
vironment. This is for example the case for an array, which refers to the type of
its elements.

Here is the model of type declaration classes:

struct AType : public TypeDec
{

// Type e va l depends on environment
template<class T env>

struct eva l
{

// Common opera t i ons are implemented here
void c r e a t e (va r t & v) ;
void des t roy (va r t v) ;

void a s s i gn (va r t & l e f t , v a r t r i gh t) ;
int compare (va r t l e f t , v a r t r i gh t) ;

} ;
} ;

Such classes are implemented for VoidType, IntType, StringType, ArrayType
and RecordType.

Each new type definition in a Tiger program, will result in new type opera-
tions. Our Tiger compiler generates evaluation code, but also operations code.
In order to emphasis on this contribution, we chose to implement assignment
and comparison as structural. At the contrary to the Tiger specifications, when
two records are compared, this is done member by member. When an array is
assigned, the all content is copied.

6.4 Program Environment

We have seen that type and expression evaluations depend on an environment,
through the type identified by T env in the previous code samples. We want
the environment to be computed statically: we need an implementation which
allows to push, pop, and retrieve declarations at compile-time. Therefore we use
again static lists: an environment is implemented as a static list of declaration
chunks. A declaration chunk is a part the TAT which is also a static list. This
construction allows us to manipulate the environment:

Pushing and popping declaration chunks is done with typedefs:

// Push T new chunk on T env , y i e l d i n g T new env .
typedef List < T new chunk , T env > T new env ;

// Pop an element o f T env , y i e l d i n g T new env .
typedef T env : : t a i l T new env ;

Environment access is done with a template class and a specialization:

template<class T env , unsigned N>

struct ListGet
{

typedef ListGet<T env : : t a i l , N − 1 > : :T T;
} ;

template<class T env>

struct ListGet<T env , 0 >

{
typedef T env : : head T;

} ;

// Access to the chunk number 3 .
typedef typename ListGet<T env , 3 > : :T T chunk 3 ;
// Access to the d e c l a r a t i on number 1 o f t h i s chunk .
typedef typename ListGet<T chunk 3 , 1 > : :T T dec l 3 1 ;

We are now able to write a simplified version of the LetInEnd template class.

template<class T decl , class T exp>

struct LetInEnd
{

template<class T env>

struct eva l
{

typedef List<T decl , T env> T new env ;
typedef T exp : : eval<T new env > : :T T;
va r t do i t ()
{

// Create new v a r i a b l e s dec l a red in T dec l
// (not d e t a i l e d here) .

// Eva luate the expre s s ion in the new environment .
va r t r e s = T exp : : eval<T new env > : : do i t () ;

// Destroy the v a r i a b l e s dec l a red in T dec l
// (not d e t a i l e d here) .

return r e s ;
}

} ;
} ;

All the needed operations on the environment can be done with type oper-
ations: we are able to fully compute the environment at compile-time for each
evaluation point. Function calls are not detailed here, but they use the same
operations. Note that all functions are evaluated each time they are called (as
inline functions). This implies that if we want a recursive function to be trans-
lated as a C++ recursive function, we need the environment to be exactly the
same at each recursive call.

6.5 The dynamic part

Not everything can be done at compile-time. The Tiger language allows some
constructions which cannot be resolved statically.

The main dynamic stuff is the variable declaration and use. When a variable
is declared, we need to store its value somewhere. At each evaluation point of
the program, there is a set of variables which are accessible.

A variable can be of any supported Tiger type: it can be an array, a string
or a record. There is no static representation of such values: we need to store
this into memory at the program execution. Therefore we use the C++ stack:
variables declared in a let-in-end construction are declared as local variables
in the LetInEnd evaluation method.

The Tiger has a nested let declaration. At a given evaluation point, there can
be several visible scopes. This obliges us to maintain a stack of scope pointers

during the whole execution process. Accessing a variable is performed with two
indirections: a first one to get the right scope and another one to reach the
variable into this scope. We could have chose to implement variables access
with a static link mechanism. This would corresponded to the adaptable closure
present in the phoenix library, part of the spirit project (group (2002)).

These indirections are our main limitation to really perform a static res-
olution of programs. Conversely, here is a program that is entirely statically
evaluated:

Listing 1.5. A program solved statically

l et

function foo () = 20 ∗ 20
function bar () = 30 / 2
function smousse () = i f (80 > 6) then 1 else 0

in

(foo () + bar () + smousse ()) ∗ 4
end

There is no variable used so, after our transform towards C++, we can expect
that a C++ compiler can statically solve this program. In this particular case,
using a C++ compiler which has good optimization capacities, we directly obtain
one assembler instruction which gives the integer result.

6.6 The C++ program

The C++ program always have the same structure:

// Inc lude a l l t emp la t e c l a s s e s needed to expre s s and e va l ua t e
the AST.

#include "all.h"

// Generate the TAT.
typedef . . . program t ;

int main ()
{

// i n s t a n t i a t e program eva l ua t i on
return (int) program t : : eval < i n i t i a l e n v t > : : do i t () ;

}

The line of the main() launch the doit() instantiation, which results in the
generation of the program evaluation code. This work is done by the C++ com-
piler.

7 Results

Our compiler covers all of the Tiger language. Lot of Tiger programs have been
tested, and work successfully. Our process has been tested with como, g++ 3.2
and icc which gives slightly faster programs.

To experiment the performance of generated code, some Tiger programs com-
piled with our process have been compared to their C hard-coded equivalent. In
average, the C program goes two to three times faster than the (C++) Tiger
one. This performance lack is mostly explained by the variable access cost: each
access needs two indirections. But viewed as an evaluation process, this can be
considered as good results.

This performance highly depends on the aptitude of the C++ compiler
to optimize code. These optimizations are essentially obtained by the inlin-
ing mechanism. This optimization has been tested using the g++ option called
-finline-limit. This option influences the quantity of functions inlined. This
experience showed us the importance of good inlining at compile-time. Opti-
mizations are done until approximatively -finline-limit-1000, which is much
more than for usual C++ programs. This can be explained by the amount of
functions that are instantiated. Indeed for each node of the AST, there is at
least one function which will be used.

8 Conclusion

We have seen that a program can be expressed as an Abstract Syntax Tree (AST)
given the language grammar. Using a technique based on Expression Templates,
we are able to build a C++ type which describes this AST. This representation
is called the TAT (Tree As Type).

Building and evaluating the TAT poses various problems. We need to express
lists (for declarations, arguments, etc.). This problem is solved using the Static
list technique. In the TAT, some elements refer to others. The reference problem
implies the use of an environment which is implemented using a stack. We have
seen that this container allows the required operations: pushing, popping and
accessing. This stack is directly filled with parts of the TAT: this is a form of
static pointers, which solves the reference problem.

An implementation based on the Tiger language has been proposed. This
implementation intensively uses meta-programming techniques, therefore, the
C++ compiler is able to do lot of work at compile-time: expression types and
element references are solved statically. The limits of static resolution is the use
of variables which can only be manipulated dynamically.

Our Tiger compiler is originally inspired by the Expression Templates tech-
nique. However, the evaluated constructions are not restricted to basic ones,
such as unary or binary operators, but includes the common flow control con-
structions, structured types, variables, and nested functions. Moreover, thanks
to the use of a static environment, such advanced operations can be evaluated
by jumping from one point of the program to another. This happens for example
each time a function is called. That characteristic is a noticeable difference with
the Expression Templates which are evaluated in a simple bottom-up fashion.

This original technique shows how we used C++ meta-programming in order
to work on abstract syntax trees of a mostly functional programming language.

Indeed the C++ generative power allowed us to implement compiler parts and
translation into C++ equivalent code.

Bibliography

A. Appel. Modern Compiler Implementation in C / Java / ML. Cambridge
University Press, 1997.

J. Crotinger, J. Cummings, S. Haney, W. Humphrey, S. Karmesin, J. Reynders,
S. Smith, and T. Williams. Generic programming in POOMA and PETE. In
Generic Programming, Proceedings of the International Seminar on Generic
Programming, volume 1766 of Lecture Notes in Computer Science, pages 218–.
Springer-Verlag, 2000. URL http://www.acl.lanl.gov/pete/.

K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Techniques
and Applications. Addison-Wesley, 2000.

S. group. Spirit parser framework, 2002. URL http://spirit.sourceforge.net.
S. Haney and J. Crotinger. How templates enable high-performance scientific

computing in C++. Computing in Science and Engineering, 1(4), 1999. URL
http://www.acl.lanl.gov/pooma/papers.html.

G. P. J. Jarvi. The boost lambda library, 2002. URL
http://www.boost.org/libs/lambda/doc/.

J. Järvi. Compile time recursive objects in C++. In Technology of Object-
Oriented Languages and Systems, pages 66–77. IEEE Computer Society Press,
1998.

B. McNamara and Y. Smaragdakis. Functional programming in C++ using the
FC++ library. SIGPLAN Notices, April 2001.

J. Striegnitz and S. A. Smith. An expression template aware lambda function. In
First Workshop on C++ Template Programming, Erfurt, Germany, October
10 2000. URL http://oonumerics.org/tmpw00/.

C. van Reeuwijk. Rapid and robust compiler construction using template-based
metacompilation. In 12th International Conference on Compiler Construction,
Lecture Notes in Computer Science, pages 247–, Warsaw, Poland, April 2003.
Springer-Verlag.

T. Veldhuizen. Expression templates. C++ Report, 7(5):26–31, June 1995.
T. Veldhuizen. Techniques for scientific C++. Technical report, Computer

Science Department, Indiana University, Bloomington, USA, 2002. URL
http://osl.iu.edi/ tveldhui/papers/techniques/.

A A simple C++ meta-program and its evaluation

template<unsigned i>
struct f a c t o r i a l
{

enum { r e s = i ∗ f a c t o r i a l < i − 1 > : : r e s } ;
} ;

template<>

struct f a c t o r i a l <0>
{

enum { r e s = 1} ;
} ;

enum { f a c t 4 = f a c t o r i a l <4>:: r e s } ;

Thanks to the template expansion mechanism, this C++ meta-function allows
to compute a factorial at compile-time:

f a c t o r i a l <4>:: r e s
4 ∗ f a c t o r i a l <3>:: r e s
4 ∗ 3 ∗ f a c t o r i a l <2>:: r e s
4 ∗ 3 ∗ 2 ∗ f a c t o r i a l <1>:: r e s
4 ∗ 3 ∗ 2 ∗ 1 ∗ f a c t o r i a l <0>:: r e s
4 ∗ 3 ∗ 2 ∗ 1 ∗ 1
24

B A full tiger program

l et

type any = {any : int}
var bu f f e r := getchar ()

function p r i n t i n t (i : int) =
l et function f (i : int) = i f i >0

then (f (i /10) ; p r i n t (chr (i−i /10∗10+ ord (”0”))))
in i f i <0 then (p r i n t (”−”) ; f (− i))

else i f i >0 then f (i)
else p r i n t (”0”)

end

function r ead in t (any : any) : int =
l et var i := 0

function i s d i g i t (s : string) : int =
ord (bu f f e r)>=ord (”0”) & ord (bu f f e r)<=ord

(”9”)
function sk ip to () =

while bu f f e r =” ” | bu f f e r =”\n”
do bu f f e r := getchar ()

in sk ip to () ;
any . any := i s d i g i t (bu f f e r) ;
while i s d i g i t (bu f f e r)

do (i := i ∗10+ord (bu f f e r)−ord (”0”) ; bu f f e r := getchar ()
) ;

i

end

type l i s t = { f i r s t : int , r e s t : l i s t }

function r e a d l i s t () : l i s t =
l et var any := any{any=0}

var i := read in t (any)
in i f any . any

then l i s t { f i r s t=i , r e s t=r e a d l i s t () }
else ni l

end

function merge (a : l i s t , b : l i s t) : l i s t =
i f a=ni l then b
else i f b=ni l then a
else i f a . f i r s t < b . f i r s t

then l i s t { f i r s t=a . f i r s t , r e s t=merge (a . r e s t , b) }
else l i s t { f i r s t=b . f i r s t , r e s t=merge (a , b . r e s t) }

function p r i n t l i s t (l : l i s t) =
i f l=ni l then p r i n t (”\n”)
else (p r i n t i n t (l . f i r s t) ; p r i n t (” ”) ; p r i n t l i s t (l . r e s t))

var l i s t 1 := r e a d l i s t ()
var l i s t 2 := (bu f f e r :=getchar () ; r e a d l i s t ())

in

p r i n t (” l i s t 1 : \ n”) ;
p r i n t l i s t (l i s t 1) ;
p r i n t (” l i s t 2 : \ n”) ;
p r i n t l i s t (l i s t 2) ;
p r i n t (” merged l i s t : \ n”) ;
p r i n t l i s t (merge (l i s t 1 , l i s t 2))

end

C TAT of the previous program

The following program compiles in less than two minutes with g++ 3.2 on a
350Mhz processor.

#include " all .h"

typedef LetInEnd< List < RecordType< List < TypeLnk< bu i l t i n type s
, 1 > > > > ,

LetInEnd< List < Variable < FuncCall < bu i l t i n f un c s , 9 , L i s t < > > ,
bu i l t i n t ype s , 2 > > ,

LetInEnd< List<

Function< List < TypeLnk< bu i l t i n t yp e s , 1 > > , LetInEnd< List<

Function< List < TypeLnk< bu i l t i n t yp e s , 1 > > , I f < BinOp< SimpleVar
< 5 , 0 > , ConstInt < 0 > , GreatThan > , ExpList< FuncCall < 4 , 0 , L i s t <

BinOp< SimpleVar < 5 , 0 > , ConstInt < 10 > , Divide > > > , ExpList<

FuncCall < bu i l t i n fun c s , 0 , L i s t < FuncCall < bu i l t i n fun c s , 4 , L i s t <

BinOp< BinOp< SimpleVar < 5 , 0 > , BinOp< BinOp< SimpleVar < 5 , 0 > ,
ConstInt < 10 > , Divide > , ConstInt < 10 > , Times > , Minus > , FuncCall <

bu i l t i n f unc s , 3 , L i s t < ConstString < 0 > > > , Plus
> > > > > > > > , 4 >

>,
ExpList< I f < BinOp< SimpleVar < 3 , 0 > , ConstInt < 0 > , LessThan > ,

ExpList< FuncCall < bu i l t i n f un c s , 0 , L i s t < ConstString < 1 > > > ,
ExpList< FuncCall < 4 , 0 , L i s t < BinOp< ConstInt < 0 > , SimpleVar
< 3 , 0 > , Minus > > > > > , I f < BinOp< SimpleVar < 3 , 0 > , ConstInt
< 0 > , GreatThan > , FuncCall < 4 , 0 , L i s t < SimpleVar < 3 , 0 > > > ,
FuncCall < bu i l t i n fun c s , 0 , L i s t < ConstString < 2 > > > > > > >

, 2 >

, L i s t<

Function< List < TypeLnk< 0 , 0 > > , LetInEnd< List < Variable < ConstInt
< 0 > , bu i l t i n t ype s , 1 > > ,

LetInEnd< List<

Function< List < TypeLnk< bu i l t i n t yp e s , 2 > > , I f < BinOp< FuncCall <

bu i l t i n f unc s , 3 , L i s t < SimpleVar < 1 , 0 > > > , FuncCall < bu i l t i n f un c s
, 3 , L i s t < ConstString < 3 > > > , GreatEq > , BinOp< FuncCall <

bu i l t i n f unc s , 3 , L i s t < SimpleVar < 1 , 0 > > > , FuncCall < bu i l t i n f un c s
, 3 , L i s t < ConstString < 4 > > > , LessEq > , ConstInt < 0 > > , 5 >

, L i s t<

Function< List < > , While< I f < BinOp< SimpleVar < 1 , 0 > , ConstStr ing
< 5 > , Equal > , ConstInt < 1 > , BinOp< SimpleVar < 1 , 0 > , ConstStr ing
< 6 > , Equal > > , Assign < SimpleVar < 1 , 0 > , FuncCall < bu i l t i n fun c s
, 9 , L i s t < > > > > , 5 >

> >,
ExpList< FuncCall < 5 , 1 , L i s t < > > , ExpList< Assign < FieldVar <

SimpleVar < 3 , 0 > , 0 > , FuncCall < 5 , 0 , L i s t < SimpleVar
< 1 , 0 > > > > , ExpList< While< FuncCall < 5 , 0 , L i s t < SimpleVar
< 1 , 0 > > > , ExpList< Assign < SimpleVar < 4 , 0 > , BinOp< BinOp< BinOp
< SimpleVar < 4 , 0 > , ConstInt < 10 > , Times > , FuncCall < bu i l t i n f unc s
, 3 , L i s t < SimpleVar < 1 , 0 > > > , Plus > , FuncCall < bu i l t i n f unc s , 3 ,
L i s t < ConstString < 7 > > > , Minus > > , ExpList< Assign < SimpleVar
< 1 , 0 > , FuncCall < bu i l t i n fun c s , 9 , L i s t < > > > > > >, ExpList<

SimpleVar < 4, 0 > > > > > > >

, 2 >

> >,
LetInEnd< List < RecordType< List < TypeLnk< bu i l t i n t yp e s , 1 > , L i s t <

TypeLnk< 3 , 0 > > > > > ,
LetInEnd< List<

Function< List < > , LetInEnd< List < Variable < Record < 0 , 0 , L i s t <

ConstInt < 0 > > > , 0 , 0 > , L i s t < Variable < FuncCall < 2 , 1 , L i s t <

SimpleVar < 6 , 0 > > > , b u i l t i n typ e s , 1 > > > ,
ExpList< I f < FieldVar < SimpleVar < 6 , 0 > , 0 > , Record < 3 , 0 , L i s t <

SimpleVar < 6 , 1 > , L i s t < FuncCall < 4 , 0 , L i s t < > > > > >, N i l > > >

, 4 >

, L i s t<

Function< List < TypeLnk< 3 , 0 > , L i s t < TypeLnk< 3 , 0 > > > , I f < BinOp<

SimpleVar < 5 , 0 > , Ni l , Equal > , SimpleVar < 5 , 1 > , I f < BinOp<

SimpleVar < 5 , 1 > , Ni l , Equal > , SimpleVar < 5 , 0 > , I f < BinOp<

FieldVar < SimpleVar < 5 , 0 > , 0 > , FieldVar < SimpleVar < 5 , 1 > , 0 > ,
LessThan > , Record < 3 , 0 , L i s t < FieldVar < SimpleVar < 5 , 0 > , 0 > , L i s t
< FuncCall < 4 , 1 , L i s t < FieldVar < SimpleVar < 5 , 0 > , 1 > , L i s t <

SimpleVar < 5 , 1 > > > > > > > , Record < 3 , 0 , L i s t < FieldVar < SimpleVar
< 5 , 1 > , 0 > , L i s t < FuncCall < 4 , 1 , L i s t < SimpleVar < 5 , 0 > , L i s t <

FieldVar < SimpleVar < 5 , 1 > , 1 > > > > > > > > > > , 4 >

, L i s t<

Function< List < TypeLnk< 3 , 0 > > , I f < BinOp< SimpleVar < 5 , 0 > , Ni l ,
Equal > , FuncCall < bu i l t i n f un c s , 0 , L i s t < ConstString < 8 > > > ,
ExpList< FuncCall < 2 , 0 , L i s t < FieldVar < SimpleVar < 5 , 0 > , 0 > > > ,
ExpList< FuncCall < bu i l t i n f un c s , 0 , L i s t < ConstString < 9 > > > ,
ExpList< FuncCall < 4 , 2 , L i s t < FieldVar < SimpleVar
< 5 , 0 > , 1 > > > > > > > , 4 >

> > >,
LetInEnd< List < Variable < FuncCall < 4 , 0 , L i s t < > > , b u i l t i n typ e s

, 0 > , L i s t < Variable < ExpList< Assign < SimpleVar < 1 , 0 > , FuncCall <

bu i l t i n f unc s , 9 , L i s t < > > > , ExpList< FuncCall < 4 , 0 , L i s t <

> > > > , bu i l t i n t ype s , 0 > > > ,
ExpList< FuncCall < bu i l t i n f un c s , 0 , L i s t < ConstString < 10 > > > ,

ExpList< FuncCall < 4 , 2 , L i s t < SimpleVar < 5 , 0 > > > , ExpList<

FuncCall < bu i l t i n fun c s , 0 , L i s t < ConstString < 11 > > > , ExpList<

FuncCall < 4 , 2 , L i s t < SimpleVar < 5 , 1 > > > , ExpList< FuncCall <

bu i l t i n f unc s , 0 , L i s t < ConstString < 12 > > > , ExpList< FuncCall
< 4 , 2 , L i s t < FuncCall < 4 , 1 , L i s t < SimpleVar < 5 , 0 > , L i s t < SimpleVar
< 5, 1 > > > > > > > > > > > > > > > > > >

program t ;

const char∗ metasmousse : : c o n s t s t r i n g [] = { "0" , " -" , "0" , "0" , "9" ,
" " , " \012 " , "0" , " \012 " , " " , " list 1 : \012 " , " list 2 : \012 " , "
merged list : \012" , NULL} ;

int main ()
{

return (int) program t : : eval < i n i t i a l e n v t > : : do i t () ;
}

