Metagene:

a C++ meta-program generation tool

Francis Maes

EPITA Research and Development Laboratory,
14-16 rue Voltaire, F-94276 Le Kremlin-Bicétre cedex, France,
francis.maes@lrde.epita.fr,
WWW home page: http://1lrde.epita.fr/

Abstract. The C++ language offers a two layer evaluation model. Thus,
it is possible to evaluate a program in two steps: the so-called static and
dynamic evaluations. Static evaluation is used for reducing the amount of
work done at execution-time. Programs executed statically (called meta-
programs) are written in C++ through an intensive use of template
classes.

Due to the complexity of these structures, writing, debugging and main-
taining C++ meta-programs is a difficult task. Metagene is a program
transformation tool which simplifies the development of such programs.
Due to the similarities between C+-+ meta-programming and functional
programming, the input language of Metagene is an ML language. Given
a functional input program, Metagene outputs the corresponding C++
meta-program expressed using template classes.

1 Introduction

Many languages have of a two-layers evaluation model: some calculations are
done at compile-time, some others at execution-time. A typical compile-time
operation is constant-folding (where 2 * 3 is replaced by 6 at compilation).
More generally, the field of partial evaluation research is focused on performing
computations as early as possible in the compilation and evaluation chain.

The C++ language features advanced compile-time evaluation mechanisms.
Recursive algorithms can be written using template classes. These C++ template
meta-programs (Veldhuizen (1995b, 2002)) are entirely executed at compile-time.
The classical example of a compile-time factorial function is described in figure
1. The template instantiation process allows many common programming struc-
tures to be emulated (e.g. if-then-else, for-each, ...). It is possible to imple-
ment a Turing machine using C++ template instantiation (Veldhuizen (2002)).

Template classes were created first to fulfill a need of genericity. This is il-
lustrated in the STL (Standard Template Library), where abstractions such as
containers and iterators are generic according to the type of the element. How-
ever, those abstractions were not designed for writing compile time functions.
As a consequence, developing, debugging or maintaining C++ meta-programs is
a difficult task. Type checking is quasi inexistent, error messages are generally

template<unsigned N>
struct fact

{

enum {res = N % fact<N — 1 >::res};

s

template<>
struct fact <0>

{

enum {res = 1};

i

int val = fact < 4 >::res;

The evaluation of fact 4 is illustrated in appendix A.

Fig. 1. Compile-time factorial in C++

not adapted, some grammar incoherences occur, and so on. Because of these
drawbacks, very few C++ developers use meta-programming techniques.

Metagene is a program transformation tool which allows one to write C++
template meta-programs in a friendly functional style. It consists in a transla-
tor which transforms functional algorithms into C++ template meta-programs.
Using a functional style language is relevant for several reasons. Firstly, the
C++ templates instantiation process is very close to the evaluation process of a
functional program (pattern matching, nested scopes, no side-effects...). For this
reason, most existing template meta-programs are written using a functional
paradigm (use of recursive functions, no side-effects, first order functions...).
Secondly, many open source implementations of functional languages exist, with
more or less reflexivity. Our prototype is built on top of a complete existing
architecture: Objective CAML and its powerful preprocessor CAMLp4. Finally,
using a functional paradigm allows us to include a real type checking model in
our language. This is an elegant solution for solving the lack of type checking in
C++ meta-programming,.

This paper begins with an overview of related work. Next we introduce our
Metagene prototype. Metagene is made of two distinct parts: the language and
the program transformation process. This is detailed in section 3 and 4. At that
point we describe and study some concrete examples of use. Finally we discuss
possible applications and extensions of Metagene.

2 Related Work

The Expression Templates technique (Veldhuizen (1995a)) has a central place
in C++ meta-programming. This technique allows to build compile-time ab-
stract syntax trees, what is useful in many C++ meta-programs. This technique

is generally used to transform C+-+ statements into equivalent (but more effi-
cient) statements. Its implementation in C++ is essentially based on operators
overloading and template classes techniques.

Unfortunately, this technique suffers from its perceived complexity. To solve
this problem, the PETE project Crotinger et al. (2000) generates all the neces-
sary C++ code for using a particular case of Expression Templates. PETE is
highly specialized in this technique, and offers only a few general C++ meta-
programming tools. Expression Templates and tools such as PETE can be used
to build input data to Metagene programs.

MPL (A. Gurtovoy (2002)) is a C++ template meta-programming frame-
work of compile-time algorithms, part of the Boost package (Boost (2003)). This
library provides common compile-time operations such as tests and sequences
manipulation, and some simple compile-time types. The code generated by Meta-
gene is very close to the code written when using MPL. Boost also includes two
other libraries dedicated to template meta-programming: static_assert (compile-
time assertions) and type_traits (types properties Maddock and al. (2001)).These
libraries could be usefull when programming with Metagene.

C++ template meta-programming is now at the heart of highly efficient
(Haney and Crotinger (1999)) scientific container libraries like POOMA (Crotinger
et al. (2000)) - Parallel Object-Oriented Methods and Applications - and Blitz++
(Veldhuizen and al. (2002)). C++ meta-programming is also much used in func-
tional programming libraries. The Fact library (Striegnitz and Smith (2000)),
built on top of PETE, provides typical functional features such as currying,
lambda expressions and lazy evaluation in C+4. The Boost package also in-
cludes a library specialized in lambda expressions: the Boost Lambda Library
(J. Jarvi (2002)). FC++ (McNamara and Smaragdakis (2001)) is a similar li-
brary inspired by the Haskell language. Some other libraries are based on C++
meta-programming such as Spirit (The Spirit group (2002)), which uses Expres-
sion Templates for building parsers. Most of these quoted libraries could have
been written using Metagene.

C++ meta-programming can be used for manipulation of compile-time ab-
stract trees. Using such techniques, we showed in a previous work (Maes (2003))
how to transform fully featured programs written in Tiger (Appel (1997)) into
effective C++ code. This work was an extension of usual Expression Templates,
and required a large quantity of hard-to-maintain C++ template meta-code.

3 The Metagene language

In the remainder of this paper, Metagene designate two elements: a language,
and a program transformation process. Our implementation is based on the
Objective CAML language (Weis and al. (1996a)). The program transformation
process uses a CAMLLex preprocessor and the CAMLp4 parser (Weis and al.
(1996b)). The whole translator is written in Objective CAML.

Some constructs cannot be translated into template meta-programs. The
major restriction is that side-effects cannot be expressed with template meta-

programs. Therefore, Metagene cannot handle mutable values, neither records.
For the same reasons,object oriented features are also impossible in Metagene.
The grammar of Metagene is a subset of the Objective CAML one, that cor-
responds to a pure functional language: Metagene has no imperative features.
Another restriction concerns exceptions, which are not implemented currently in
Metagene. However, they could be implemented using compile-time assertions
mechanisms.

Metagene includes the most important functional features: functions as value
(in parameters or in results), partial application, pattern matching, recursive
functions, nested scopes, builtin types (integer, Boolean, string) and variant
types (such as lists and trees). The Metagene typing mechanism is the same
as the Objective CAML one. Thanks to this proximity, some of the Objective
CAML standard libraries are available in Metagene, such as the list module, or
parts of the string module.

Simple toy C++ compile-time programs can be written using this simple
language core. An example of the factorial function in Metagene is given in
figure 2.

let rec fact = function
n—>n x (fact (n — 1))
|0 —>1

Fig. 2. Factorial in Metagene

Metagene translates this factorial function into a C++ meta-program equiv-
alent to the one presented in 1.

A meta-program is a program that manipulates or generates programs. Since
Metagene is a typed language manipulating C++ pieces of code and C++ types,
these structures are seen as particular Metagene values. Thus, compared to Ob-
jective CAML, we added two builtin types: czztype (C++ type seen as a value)
and czaprim (C++ piece of code seen as a value). Values of those two types are
created with a quotation syntax (<@ ... @>).

A czxtype value represents a C++ type. Figure 3 shows some examples of
use of this type.

let a = <@ int @
let b = <@ std::string @>
let f = function <@ int @> —> 0| <@ std::string @> —> 1

Fig. 3. Use of C++ types

czrtype values can be matched, which makes it very easy to write functions
from types to types (the so-called traits).

A cxzprim value represents a piece of C++ code. Such a piece of code is
called a primitive in Metagene. It corresponds to a function with its parameters,
its return type, and a body. In a primitive, a Metagene value can be referred to
by using the ‘$’ symbol. The figure 4 illustrates primitives.

let rec power n = function
n —> let p = power (n — 1) in
<@ float x @ float @ return x * $p%(x) @
|0 —> <@ float x @ float @ return 1 @

This function evaluates a piece of code which computes the power of a float value.
For example, using the C++ inlining mechanisms, power 3 will be evaluated into a
primitive equivalent to float f(float x) {return x * x * x}. Metagene primitives
are the basis for evaluating and creating C++ code at compile-time (Czarnecki and
Eisenecker (2000)).

Fig. 4. Use of primitives

Most of the time, Metagene programs are used in a C++ context. Therefore,
switching from one language to the other (from one evaluation stage to the other)
should be easy. This is done in Metagene with the ‘$$’ separator that allows to
switch from C+4 to Metagene, and from Metagene to C++. An example that
illustrates the interaction between C++ and Metagene is proposed in figure 5.

// include Metagene core
#include <mtg.hh>

$3
(x some Metagene code x*)
let str = "Hellogworld!"

let h = <@ void @ void @ std ::cout << str << std::endl; @
$$
// back to C++

int main ()

$hs () ;

return 0;

}

Fig. 5. Hello world!

This interaction with C++ allows two typical Metagene usages:

— Using Metagene code mixed with C++ normal code in any project.
— Writing active libraries, which does not need Metagene to be used.

4 The transformation process

The Metagene translator produces C++ template meta-programs. In this sec-
tion, we present the key generation rules and conventions that we used in order
to make this possible.

Consider the identity function, function a -> a. The usual translation of
this function into a C++ meta-program is given in figure 6. This implementation
of identity corresponds to the one proposed in introduction to the Boost Meta-
programming Library.

template<typename a>
struct identity

{
typedef a res;
IS

Fig. 6. Typical implementation of identity as a C++4 meta-program

A function is translated to a template class whose return value is a type, ar-
bitrarily called res. A function argument is translated to a template parameter.
All Metagene values are stored as C++ types. These are usual conventions when
doing C++ meta-programming.

Metagene is a typed functionnal language; the identity function can work on
any type. Therefore we need to treat integers, Booleans, strings, or functions in
an uniform way. The remainder of this section presents our main contribution
which solves this problem: functionnal values encapsulation in C++ types. These
technique is in the core of Metagene generated code.

Values of type int or char are directly encapsulated into C+4 template
classes. The figure 7 shows the example of integers. Characters are treated in a
very similar way.

Metagene includes many variant types, such as Boolean and list. This kind
of types are handled via the generation of their constructors as empty (template
or non-template) classes. This is enough for the construction and the match-
ing of variant type values. This common C++ meta-programming technique is
presented in figure 8.

In functional programming, a function is a particular kind of value. Therefore,
functions must also be encapsulated into types. The code given in figure 6 cannot
be used for this reason: identity must be a type. The code really produced by
Metagene when translating this function is given in figure 9.

The function identifier is mapped to an encapsulation of the implementation
into a C4++ class. This allows to see identity as a particular case of value.

// builtin support for Metagene integers
template<int i>
struct Int
{
enum {value = 1i};

}s

// integer encapsulation into a C++ type
typedef Int< 1 > one_t;

// access to the content of an encapsulated integer
int one = one_t::value;

Fig. 7. Simple values encapsulation

// type ’a list = EmptyList | List of ’a x ’a list

struct EmptyList {};
template<typename fst , typename snd>
struct List {};

// let listl12 = List (1, List(2, EmptyList))
typedef List< Int< 1 >, List< Int< 2 >, EmptyList > > list12;

// let operation = function
// EmptyList -> ...
// | List(head, tail) —> ...
template<typename T>

struct operation {};
template<>

struct operation < EmptyList >

// code for the EmptyList case

)

template<typename head, typename tail >
struct operation < List < head, tail > >

// code for the List(head, tail) case

)

Fig. 8. Variant values encapsulation

// let identity = function a —> a
struct identity
{

template<typename a>

struct value

{

typedef a res;

}s

}s

Fig. 9. Function as value

In Metagene just as in Objective CAML, let plus a b = a + b is syntac-
tic sugar for let plus = function a -> (function b -> a + b). In these
languages, functions with multiples arguments are treated as nested unary func-
tions. Such functions returning functions are generated exactly as any other
function. See appendix C, for the translation of the plus function.

Here is a short list of some other generation rules:

— Function application is done by accessing the implementation of functions.
For example let g = £ ais translated to typedef f::value<a>::res g;.

— A pattern matching is translated to a list of template class specializations
(see figure 8).

— C++ types are not changed during their translation: <@ std::string @>
becomes std: :string.

— CH+ primitives are a particular case of Metagene values. Therefore, they are
encapsulated into C++ types, as any other Metagene value. This encapsu-
lation, illustrated in figure 10, corresponds to the object-function technique.

//let primitive = <@ int i @ bool @ return ¢ > 0; @
struct primitive

{

bool value(int i) { return i > 0; }

s

Fig. 10. A translated cxxprim

— Strings are implemented as lists of chars.

— Tuples are implemented as lists of their members.

— Mutual recursion is not supported. The C++ syntax does not allow to pre-
declare nested template classes, which is needed in the case of mutual recur-
sions. This problem, which is illustrated in figure 11, could be handled by
generating a complex particular code in these case.

struct u {
template<typename T>
struct value {
// use of v::value

}
}

struct v {
template<typename T>
struct value {
// use of u::value
}
}s

// Such code is impossible in C++.

Fig. 11. Mutual recursion problem

Currently, the code generated by Metagene compiles with Comeau and Icc
compilers. Gee 3.3 is near to be fully supported: it works fine on simple exam-
ples, but fails (due to an unimplemented feature of gcc) when it becomes heavy
(More than thirty pages of C++ meta-code). This can be excused because of
the complexity of the generated code.

5 Examples and results

This section presents two complete programs using Metagene. The first one
addresses a common meta-programming issue: unrolling a short loop. More pre-
cisely, the goal is to perform an image convolution whose kernel is known at
compile-time. A simple example of loop unrolling is given in Appendix D (un-
rolling of a dot product). The image convolution implementation corresponds to
two nested loops unrolling.

000 010 123 123 S
Convolution kernel: 000 1241 156
000 010 SR 9 10 11 12 0000
13 14 15 16 1111
Execution time: —_— —
|:|fu11 dynamic
two layered evaluation
using Metagene
Execution time ratio: 17,7 3.8 2.5 2.3 14.8

Fig. 12. Image convolution with kernel known at compile-time

Figure 12 compares the execution times of our image convolution for different
(more or less complex) convolution kernels. Two techniques are compared: full
dynamic evaluation and two-layers evaluation using Metagene. As shown by
these results, execution time for an image convolution is significantly improved
by using a two-layers evaluation (the simpler the convolution kernel is, the better
the resulting primitive is). This can be applied to all applications that know their
convolution kernel before execution-time. The convolution primitive evaluation
is done in 13 lines of Metagene code. The C++ meta-program generated by
Metagene has 160 lines of code. An equivalent C++ meta-program can be written
in approximatively 50 (hard to read, hard to debug) lines of code.

Our second example illustrates a typical meta-programming task that was
currently almost impossible to implement in C++. The beternary program is
parameterized by a set of strings, and computes a perfect matching primitive.
This corresponds to the action of GPerf (Schmidt (1989)). At execution-time,
the generated primitive allows to match exactly the set of predefined strings.
Such programs are typically used for lexing a set of keywords.

The beternary source code is given in Appendix E. Writing this program
in pure C++ meta-programming (without any tool) is almost impossible for
several reasons. Beternary intensively uses the string type, which is not builtin
in C++ meta-programming. This is solved by using Metagene string type and
its string standard functions. More generally, our program uses a lot of lists
which traditionally requires to use heavy static lists machinery. Metagene offers
great features for doing that simply (builtin type, standard library, OCaml op-
erators...). Finally the beternary algorithm is much more complex than average
C++ meta-programs, which generally do not do more than unrolling a loop.

We have compared the execution times of three techniques: full dynamic
evaluation, two-layers evaluation using Metagene and two-layers evaluation using
GPerf. Theses techniques have been compared with the following input: ["if";
"then"; "else"; "begin"; "end"]. For each technique, one thousand random

strings of length 10 were tested. This programs were executed on a K6-350Mhz
Processor:

— full dynamic: 536 milliseconds.
— using Metagene: 5 milliseconds.
— using GPerf: 101 milliseconds.

On this simple example, the two-layers evaluation using Metagene is much
better than the full dynamic evaluation. Thus, thanks to C++ compile-time eval-
uations, the matching functions was ultra-specialized. On such little examples
(very few keywords), Metagene is even better than GPerf.

This primitive ultra-specialization has a cost. However, with more than five
strings, the compilation times becomes really important. Figure 13 illustrates the
evolution of compile-time with the number of strings (all strings are less than
10 characters long). Two C++ compilers are compared: Comeau 4.3.0.1 and Icc
7.0 The compilation-times are exponential: the beternary is realistically limited
to seven or eight strings. This is due to the machinery of C++ template classes
instantiation. Depending on the implementation of C++ compilers, a simple
linear meta-program is often executed in a — more or less — exponential time
(Abrahams and Coelho (2001)). In our case, the complexity of the beternary’s
critical part is quadratic.

4000 T

3500 |- 4
3000 |- ~
2500 |- g
2000 | -

1500 |- T

Compilation time (seconds)

1000 4

500 .

0 + * * & B ! !
3 4 5 6 7 8 9 10 11
Number of strings

Fig. 13. Beternary compilation times

6 Conclusion

Metagene has the same goal as the Boost Meta-programming Library: simplify-
ing C++ template meta-programs development. The strategy adopted by Meta-
gene is to generate the template classes code. PETE is a tool which generates a
particular case of template meta-programs: Expression Templates. Contrary to
PETE we want to be able to translate any C+4 meta-program.

Some similarities between C++ meta-programming and functional program-
ming led us to build Metagene on top of a functional language. Our implemen-
tation is based on Objective CAML and its parser: CAMLp4. In order to do
meta-programming with Metagene, we have added two builtin types in the core
of the language: cxxtype (C++ type seen as a value) and cxxprim (C++ function
seen as a value).

Most important functional features are already implemented. We have shown
how our program transformation process was based on value encapsulation in
C++ types. The major restriction is that side-effects are impossible in C++ tem-
plate meta-programming. Therefore, records and mutable fields are not possible
in Metagene.

Metagene allows to write C++ meta-programs very easily, without any knowl-
edge of template meta-programming. Metagene syntax is much more adapted
to meta-programming than the template classes one. Moreover, Metagene in-
cludes some standard libraries such as list and string processing. Using these
libraries, complex C++ compile-time operations (e.g. sorting a list, manipu-
lating multiple lists or trees, ...) become fully accessible. Thanks to Metagene
meta-programming builtin types (czztype and czzprim), most of common C++
meta-programs, such as type traits or loops unrolling, can be expressed simply in
a functional style. Metagene breaks the complexity of C+4 meta-programming.

The major restrictions of Metagene are related to the complexity of the
template classes instantiation process. This leads essentially to very long C++
compilation times, and a high quantity of memory usage. Simple meta-programs
do not raise these problems, but when the complexity becomes higher (quadratic
or more), the compilation time becomes a major restriction.

Several improvements could be done on Metagene. Many C++ meta-programs
are parametrized by an abstract syntax tree. This can be done with the Expres-
sion Templates technique. This feature is not integrated in Metagene yet. To
add this feature, we could see how to integrate Metagene with the PETE tool.

Currently, Metagene supports two types designed for C++ meta-programming:
cxxtype and cxxprim. In order to manipulate classes in the same way, we could
add a new builtin type czzclass. This way, it would be possible to write functions
from class to class, etc... Moreover, Boost meta-programming libraries could be
encapsulated into Metagene. For example, their type_traits library provides lots
of informative functions about C++ classes, types and functions.

Finally, in order to improve the expression power of Metagene programs,
we could generate C++ introspective data when manipulating primitives and
classes. This would allow to have a primitive parameters list, or even a list of

C++ classes members or methods. This way, we could write completely generic
Metagene programs.

Bibliography

D. A. A. Gurtovoy. The boost C++ metaprogramming library, March 2002.
URL http://www.boost.org/libs/mpl/doc/paper/html/index.html/.

D. Abrahams and C. P. Coelho. Effects of metaprogram-
ming style on compilation time, September 2001. URL
http://users.ren.com/abrahams/instantiation_speed/.

A. Appel. Modern Compiler Implementation in C / Java / ML. Cambridge
University Press, 1997.

Boost. Boost libraries, March 2003. URL http://www.boost.org/.

J. Crotinger, J. Cummings, S. Haney, W. Humphrey, S. Karmesin, J. Reynders,
S. Smith, and T. Williams. Generic programming in POOMA and PETE. In
Generic Programming, Proceedings of the International Seminar on Generic
Programming, volume 1766 of Lecture Notes in Computer Science, pages 218—.
Springer-Verlag, 2000. URL http://www.acl.lanl.gov/pete/.

K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Techniques
and Applications. Addison-Wesley, 2000.

S. Haney and J. Crotinger. How templates enable high-performance scientific
computing in C++. Computing in Science and Engineering, 1(4), 1999. URL
http://www.acl.lanl.gov /pooma/papers.html.

G. P. J. Jarvi The boost lambda library, 2002. URL
http://www.boost.org/libs/lambda/doc/.

J. Maddock and al. The boost type traits library, 2001. URL
http://www.boost.org/libs/type_traits/.

F. Maes. Program templates: Expression templates applied to program evalua-
tion, 2003.

B. McNamara and Y. Smaragdakis. Functional programming in C++ using the
FC++ library. SIGPLAN Notices, April 2001.

D. C. Schmidt. Gperf, gnu perfect hash function generator, 1989. URL
http://www.gnu.org/software/gperf/.

J. Striegnitz and S. A. Smith. An expression template aware lambda function. In
First Workshop on C++ Template Programming, Erfurt, Germany, October
10 2000. URL http://oonumerics.org/tmpw00/.

The Spirit group. Spirit parser framework, 2002. URL
http://spirit.sourceforge.net/.

T. Veldhuizen. Expression templates. C++ Report, 7(5):26-31, June 1995a.

T. Veldhuizen. Using C++ template metaprograms. C++ Report, 7(4):36—
43, May 1995b. URL http://monet.uwaterloo.ca/ tveldhui/papers/Template-
Metaprograms/meta-art.html.

T. Veldhuizen. Techniques for scientific C++. Technical report, Computer
Science Department, Indiana University, Bloomington, USA, 2002. URL
http://osl.iu.edi/ tveldhui/papers/techniques/.

T. Veldhuizen and al. Blitz+4, October 2002. URL
http://www.oonumerics.org/blitz/.

P. Weis and al Objective caml, January 1996a. URL
http://caml.inria.fr/ocaml/.

P. Weis and al. Ocamlp4: Pre processor and pretty printer for ocaml, January
1996b. URL http://caml.inria.fr/camlp4/.

A Compile-time factorial in C++4

fact 4 is entirely evaluated during the compilation. The instantiation process
is the following;:

fact < 4 >::res —>

4 fact < 3 >::res —>

4 % 3 x fact < 2 >::res —>

4 x 3 % 2 x fact < 1 >::res —>
4 %

4 %

2

*

3 % 2 x 1 % fact< 0 >::res —>
3«21 x1 —>
4

B Expression templates example

The following arrays statement:

A=-B + 2 % C;

can be transformed into a single loop of the form:

for (i = ... ; ... ; ...)
Ali] = =B[i] + 2 *= C[i];

Most of time, this last code is much more efficient.

C Plus function translation

// let plus = function a —> (function b —> a + b)
struct plus
{

template<typename a>

struct value

{

struct res

{

template<typename b>
struct value

{

typedef mtg::intplus templ;

typedef typename templ::value<a>::res temp2;
typedef typename temp2::value::res res;

D A generic dot product

59

let rec numbers = function 0 — > []
| n —> (numbers (n—1)) @ [n]

let base i = <@Q const float a[], const float b[] @ float @
return a[i] x b[i]; @

let zero = <@Q const float a[], const float b[] @ float @
return 0; @

let plus u v = <@Q@ const float a[], const float b[] @ float @

return u(a, b) + v(a, b); @
let generic_dot n = List.fold_left plus zero
(List .map base (numbers n))

$8

float a[10], b[10];
float res = $generic_dot 10$(a, b);

E Beternary: perfect matching function

(¥ primitives x)

let prim_const i = <@Q const charx @ int @ return i; @

let prim_false = prim_const (—1)

let prim_char i (¢, p) e = <@QQ const charx str @ int @
return str[i] == c ? $pF(str) : e(str); @

let prim_switch i = List.fold_right (prim_char i)

(* helper functions x)
let select_strings i c¢ strlist =

let test (num, str) = ((i < (String.length str)) &&

((String.get str i) = c))

in List.filter test strlist
let give_indexes strlist =

let rec give_indexes_. i = function

0 ->1
| hd :: t1 —> (i, hd) :: (give_indexes_ (i + 1) tl)

in give_indexes_ 0 strlist

(* main algorithm x)
let beternary strlist =
let rec beternary_- i plist =
let switch_case ¢ =

(¢, beternary_ (i + 1) (select_strings i ¢ plist))
and next_chars =

let rec next_chars_ cur = function
[] —> cur

| (num, str) :: tl —>
let ¢ = if

((String.length str) <=1i) or (List.mem (String.get
str i) cur)
then cur
else ((String.get str i) :: cur)
in next_chars_ c tl
in next_chars_ [] plist
in let recurse () = prim_switch i

(List .map switch_case next_chars) prim_false
in match plist with

[—> prim_false
| [(num, str)] —> if (i = (String.length str))
then (prim_const num)
else (recurse ())
| - —> recurse ()

in beternary_. 0 (give_indexes strlist)
(x use of this C++ meta—program x)

let example = beternary
[77 if”; ”then”; ” else”; ” begin”; ”» end”]

Here is a simple example of use of the beternary meta-program:

(* let input — [Ilall; naan; "ab"; "b"] *)
int output(const charx str) // after C++ inlining

{

