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Abstract—Cloud computing is a method for accessing and
managing computing resources over the internet, providing flexi-
bility, scalability, and cost-efficiency. Cloud computing relies more
and more on OS-level virtualization tools such as Docker and
Podman, enabling users to create and run containers, which are
widely used for application management. Given its significance in
cloud infrastructures, it is crucial to have a better understanding
of OS-level virtualization performance, especially in tasks related
to container management (ex: creation, destruction). In this
paper, we conducted benchmarking tests on Docker and Podman
to evaluate their performance in various container management
scenarios and with different image sizes. The results revealed that
Podman excels in quickly instantiating small-sized containers,
while Docker demonstrates superior performance with larger-
sized containers.

Index Terms—Containers, Docker, Performance Evaluation

I. INTRODUCTION

Cloud computing is a widely adopted paradigm that involves
the provisioning of computing resources as services over
the Internet in a flexible and scalable way [1] [2]. Its key
technology is virtualization, which enables service isolation by
running them in abstractions called Virtual Machines (VMs)
[3]. Nonetheless, virtualization introduces certain overhead
due to hypervisors, which manage VM activities and CPU
scheduling among virtual machines [4]. As an alternative
to traditional virtualization, OS-level virtualization tools like
Docker [5] and Podman offer similar functionalities, all while
mitigating some of the overhead drawbacks.

Although many of its benefits are already known, the
possible bottlenecks of OS-level virtualization tools still need
to be fully understood [6]. So, in this paper, we conducted a
performance evaluation of two well-known OS-level virtual-
ization tools (Docker and Podman) from a system management
perspective. The evaluation centers on measuring the execution
time of key management-related variables, including : image
pull time, container instantiation, container termination, con-
tainer removal, and image removal. The study encompasses
three test scenarios: downloading the image from a remote
server, downloading the image on a local server, and working
with an image pre-installed on the machine. Various image
sizes are considered, ranging from 500MB to 3GB. The anal-
ysis provides insights into the average times of these variables
and employs a Design of Experiments (DoE) approach for a
comprehensive assessment of the data.

The remainder of this article is structured as follows: Sec-
tion II presents some interesting related works, while Section
IIT outlines the experimental methodology used. The results
are presented in Section IV, and the final considerations are
presented in Section V.

II. RELATED WORKS

The performance evaluation of container technology has
been a subject of extensive study, with notable works like [7]
and [8] demonstrating the superiority of containers over virtual
machines, especially in scenarios involving concurrent execu-
tion of multiple abstractions on the same resource [5]. These
studies have laid the foundation for understanding the benefits
of containerization in various application domains, including
big data processing and general I/O-intensive workloads [9]
[10], as well as high-performance embedded systems [11] [12].

While these investigations have contributed significantly to
the field, a critical aspect has often gone unnoticed: the impact
of container image size on application performance. Notably,
the literature lacks substantial exploration in this area, with
existing studies typically focusing on the application-level
performance of containers [13]. The role of image size, despite
its potential significance, has received limited attention.

Prior studies, such as the work by [14] [15], have evaluated
the performance of different image types, but in the context
of traditional virtualization and didn’t explicitly consider the
nuances of container image size. In a related study, [12]
assessed the performance of two container technologies in
I/O-intensive applications, offering an indirect indication that
the size of files stored within container images may affect
performance. However, the direct influence of image size
on container administration tasks remains unexplored in the
current literature.

Additionally, prior research by [16] conducted an analysis
of 200,000 Docker Hub images with varying image configura-
tions to assess the impact of these features on container startup
times. Notably, one of the parameters under consideration was
the image size. The findings of this study concluded that no
single dominant configuration feature exclusively determines
a container’s startup time on Docker platform. However, it’s
important to note that this study did not take into account
different container platforms. Consequently, the conclusions



drawn from their research can not be generalized to containers
in a broader context.

What sets our work apart is our focus on the often-
overlooked factor of image size and its potential impact on
the performance of container administration-related activities.
Furthermore, our research aims to investigate whether the in-
fluence of image size varies noticeably depending on the type
of container used, providing a more nuanced understanding of
this relationship.

III. EXPERIMENTAL METHODOLOGY

In this section, we present the experimental methodology
used in this work. We start by outlining the goals of the
study, followed by some general considerations about the ex-
perimental design required to achieve these objectives. Finally,
we provide detailed information on the experiments conducted
from an operational perspective and describe the hardware and
software infrastructure used.

A. Goal

The main goal of this work is to verify whether the size of
images used in containers affects the performance of activities
related to container management and whether such variation
depends on the OS-level virtualization tool used.

B. Design Of Experiments - DoE

In a designed experiment, intentional alterations are made
to input variables to observe their impact on the output [17].
This involves categorizing factors as independent variables and
responses as dependent variables. It necessitates thoughtful
factor selection and a fitting experimental plan to assess
resulting effects, like the comprehensive full factorial plan,
which examines all independent variable levels.

We have chosen to monitor the following dependent vari-
ables: container image download time, container instantiating
time, container stop time, and container and image removal
times. These metrics are vital when considering the long-
term use of containers. For short-term services, processing
efficiency may not pose a significant concern, but when a
platform remains active for over a year, unoptimized met-
rics can result in substantial infrastructure costs. The service
(Docker or Podman), test scenarios, and image sizes serve as
the independent variables.

Optimizing the dependent variables can be achieved by
adjusting the independent variables. A response optimization
model is commonly employed to identify the optimal variable
combination. Desirability functions, a multivariate analysis
technique, are used to simultaneously evaluate and optimize
multiple response variables in an experiment or process. This
approach is often applied in experiments where the goal is to
determine the optimal input variable configuration to maximize
or minimize dependent variables.

The desirability function is defined as a transformation that
converts a response (dependent) variable y into a desirability
value d ranging from O (undesirable) to 1 (highly desirable),
i.e. 0 < d; < 1. There are many desirability functions that can

be used, such as the linear function or the quadratic function.
In this work, we have used the Desirability function offered
by Minitab software, which is:

di =0 7; > U
di= (Ui =)/ (U; =Ty)" T <4 <U;
d; =1 :l.)i < T,

where, y; predicted value of the ¢* response; T; target value
of the * response; U; highest acceptable value for the i
response; d; desirability for the i® response; D desirability
composed [18].

C. Experiments Performed

To achieve the pursuited goals, the case studies are based on
the virtualization of open-source OS-level virtualization tools
used in private and hybrid clouds. The initial stage of the
methodology was based on a study to understand how the
Docker and Podman software works and in what context these
tools are used. Next, the test environment, monitoring strategy
and workloads to be used were defined.

To this end, the solution chosen for monitoring software
time metrics was to develop pure Shell scripts, without adding
extra tools, since their main function is to automate repetitive
and complex tasks [19]. Therefore, this study considers three
different scenarios for the software mentioned: downloading
the image from a remote server, downloading the image on
a local server and with the image already installed on the
machine. To ensure a realistic experiment, a workload was
used that behaves similarly to a real scenario, which seeks to
use the machine’s computing resources at high load.

Figure 1 illustrates all the test scenarios developed, consider-
ing the types (Normal, RMI, Local RMI), the services studied
(Docker and Podman) and the different image sizes used in
the analysis (500MB to 3GB). RMI refers to the scenario in
which the images and containers are removed at the end of
each run, while in the Normal scenario only the containers
are removed each cycle, and Local refers to downloading the
images over a local network.

Fig. 1.

Tllustration containing all the test scenarios carried out



D. Testbed environment

The test environment consists of a single HP Compaq 6005
machine, with a 2.8 GHz AMD Athlon II X2 processor, 8
GB of main memory and an additional 1 GB of swap. The
operating system used was Debian 11 Bullseye (kernel 5.10.0-
19-amd64) with no graphical interface with only the standard
system utilities and a ssh server installed. Docker and Podman
software were used in versions 23.0.1 and 3.0.1, respectively.
For the images, in order to offer a broad view of the testing
possibilities, 4 main sizes were chosen: S00MB, 1GB, 2GB
and 3GB. Three different scenarios were taken into account:
testing with an image already installed in the environment
(Normal), testing with an image pull from a remote server
(RMI), testing with an image pull from a server on the local
network (Local).

In addition, all the images were provided directly from the
Docker servers and configured in advance. The images have
a nginx server in version 1.23.3 and a file with random bytes
generated by the command dd. Each file had its size calculated
to take into account the size of the nginx image and the Docker
compression algorithms when doing push to Docker Hub. The
images are available on Docker Hub with the following iden-
tifiers: pedrmelo/software-aging:500mb, pedrmelo/software-
aging:1gb, pedrmelo/software-aging:2gb, pedrmelo/software-
aging:3gb. Finally, for the Local tests, the image server con-
figuration used was a Positivo MOBO 5950 notebook with
a 1.6GHZ Intel Atom N2600 and 2GB of RAM and the
OpenMediaVault system installed, a system designed to be
used as a network storage platform (NAS) to manage and
share files. At the end of each test, any resident images and
containers were removed and the test machine rebooted.

Figure 2 shows the script execution flow used during the
execution of experiments involving the pull of a server’s
image, which consisted of: performing the pull of the image,
instantiating the container, stopping it, and removing the
container and image. In order to ensure data integrity and
that the previous experiment didn’t affect the next one, a
30 seconds wait time was added after the container was
instantiated and another 60 seconds wait time after the image
was removed. Finally, everything is done in a conditional
loop with a maximum of 100 interactions (n == 100). The
error handling presented is due to the fact that there is a pull
limit on the Docker servers and also to get around possible
infrastructure problems related to the Internet used.
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error =0

Fig. 2. Script flow

For the scenarios in which the pull was not performed

directly from a server, the script flow shown in Figure 2
was slightly altered, with neither the pull of the image nor
its removal occurring within the main iterative loop, so the
pull and image removal times were not measured for this
scenario. Wait times were also reduced to 10 and 20 seconds
respectively.

IV. EXPERIMENTAL RESULTS

This section presents and analyses the results obtained
on this study. The analysis of the results is divided into
subsections to facilitate its comprehension.

A. Experimental Results

The analysis of the data obtained was grouped according to
the three types of test carried out. In addition, each graph was
divided into four sectors representing the sizes of the images
used, each related to the average times of each variable studied
in relation to the size of the image used. To compare the times,
the Docker data is in a dark shade and the Podman data is in
a light shade.

Figure 3 shows the results of the experiments in Scenario
#1, in which the containers were instantiated with images
already present on the experiment machine. There was no pull
image from a server, so the time taken to remove the images
is zero. The results indicate that the stop time, container
removal and image removal times of the two tools were very
similar. The biggest difference was observed with regard to
Docker’s instantiating time, which is relatively longer than
Podman’s for the S00MB, 1GB and 2GB image scenarios,
where Docker’s average instantiating time was almost twice
as long as Podman’s with the 2GB image (0.7s for Dodman
and 0.35s for Podman). In addition, most scenarios showed
better results with Podman for the average time to pul/l and
when removing the containers.
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Fig. 3. Normal Scenario Results #1

In the Scenario #2, images are tested doing a pull image
from a remote server. For this case, we used Docker Hub, since
the same images can be used for both Docker and Podman. In
Figure 4, we can see that the biggest difference in time was
found in the pull time between the two tools, with 229.78s and
267.65s for Docker and Podman, respectively. In this scenario,
Docker showed better results for most of the variables, with



the exception of container instantiating using 2GB and 3GB
images, with a value of 3.52s for the 2GB image and 28.48s
for the 3GB image, while Podman showed 0.72s with a 2GB
image and 5.74s with a 3GB image in relation to instantiating
time. Thus, Docker ended up showing a difference more than
4 times greater than Podman in the container instantiating
variable related to the 2GB and 3GB images. In the other
variables, Docker showed better results in all values, being
overall twice as fast as Podman.
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Fig. 4. RMI Scenario Results #2

Finally, Scenario #3 tests images by doing pull from a local
server. In Figure 5, we see a pattern similar to the one found
in the analysis of the previous graph: Podman had a better
performance for the instantiating time of a SOOMB container
when compared to Docker, and Docker did better than Podman
with regard to the other variables, even if sometimes showing
a slight difference. There was also the same pattern as in the
previous analysis with the variable of instantiating with a 3GB
image, Podman had a time almost 7 times better than Docker
(4.08s and 28.96s respectively).
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Fig. 5. RMI Local Scenario Results #3

Table I lists all the average times of the variables studied
in relation to the test scenarios.
B. DoE analysis

Analyzing the Pareto chart for pull, in Figure 6, we can
see that all the factors and their combinations up to the third

interaction are important for the DoE analysis. In the graph,
we have the vertical reference line as a value of 1.96, and all
the vertical bars exceed this line, thus indicating that for all
the responses in our model, the effects are statistically signif-
icant. This pattern was confirmed for all the other dependent
variables and, for simplicity, only the Pareto chart for pull has
been included.

Term 195
C
A
AB
ABC
AC Factor .Name
A size(MB)
B B test type
c service
BC
0 5 10 15 20
Standardized effects

Fig. 6. Standardized Effects Pareto Chart - pull

The following DOE analysis was divided into two parts,
since in the previous data analysis Podman showed a shorter
time when raising smaller containers (pull time and instantia-
tion) and Docker in the downtime of the services for the other
containers (downtime, container removal and image removal).
Interaction graphs were used for the independent variables:
image size (size); test type (type), with (1) the test adopted as
Normal, (2) the RMI test and (3) the Local RMI test; service
(service) with (1) for Docker and (2) for Podman. For the
first square of each graph, the line with circles represents
the Normal scenario, the one with squares the RMI scenario
and the one with triangles the Local RMI scenario. For the
remaining two, the circled line indicates the Docker container
virtualizer and the squared line Podman.

Figure 7(a) represents the averages of pull time and instan-
tiating for each image size considering the 3 different test
scenarios. Each level of the independent variables is shown on
the horizontal axis and the averages are shown on the vertical
axis. By analyzing this graph, we can see some similar trends
for the 3 factors. Both the size * type, size * service and type
* service graphs did not cross at any point, so these factors
did not affect the dependent variables.

In addition, the 7(b) instantiating graph followed a similar
pattern to the pull graph, however the graph between size
* service showed that there is a strong interaction between
the service used and the size of the image, since the average
instantiating time decreased noticeably when we have Docker
and a 3GB MB image when compared to the RMI scenario
with an image of the same size.

As for Figures 7(c), 7(d) and 7(e), we noticed that the
pattern of interactions we studied in the analyses of pull and
instantiating was also maintained for the graphs of interactions
for stop time, container removal and image removal times.



Software

| Test type [ Image size (MB) [ Pull (s) [ Instantiating (s) [ Stop (s) [ Container removal (s) | Image removal (s)

Docker Normal 500 0.00 0.58 0.40 0.13 0.00

Podman Normal 500 0.00 0.35 0.42 0.18 0.00

Docker Normal 1024 0.00 0.67 0.52 0.13 0.00

Podman Normal 1024 0.00 0.35 0.42 0.18 0.00

Docker Normal 2048 0.00 0.70 0.45 0.13 0.00

Podman Normal 2048 0.00 0.35 0.42 0.18 0.00

Docker Normal 3072 0.00 0.68 0.47 0.13 0.00

Podman Normal 3072 0.00 0.64 0.55 0.22 0.00

Docker RMI 500 58.57 3.52 1.28 0.14 0.42

Podman RMI 500 62.45 0.72 2.78 0.51 0.93

Docker RMI 1024 111.00 143 1.52 0.13 0.49

Podman RMI 1024 125.80 4.27 5.29 0.46 1.02

Docker RMI 2048 229.78 2.12 1.70 0.14 0.67

Podman RMI 2048 267.65 5.62 6.59 0.63 1.61

Docker RMI 3072 390.70 28.48 2.33 0.45 1.09

Podman RMI 3072 393.83 5.74 5.66 0.60 1.64

Docker RMI Local 500 53.29 2.84 1.01 0.13 0.41

Podman RMI Local 500 58.45 0.82 2.97 0.46 0.94

Docker RMI Local 1024 104.94 1.53 1.45 0.13 0.49

Podman RMI Local 1024 119.39 4.41 5.15 0.56 1.23

Docker RMI Local 2048 218.41 1.99 1.47 0.13 0.66

Podman RMI Local 2048 256.98 5.22 6.64 0.65 1.58

Docker RMI Local 3072 380.09 28.96 2.57 0.51 1.13

Podman RMI Local 3072 369.34 4.08 5.95 0.52 1.61

TABLE T
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Fig. 7. Interaction graph

We can see that the lines remained parallel or very close,
not crossing at any time, indicating that there are no strong
interactions between the independent variables. On the other
hand, only one interaction escaped this analysis: we noticed

Furthermore, in the RMI scenario there was also an increase,
but only from the 1GB image onwards, indicating that the
relationship between the size of the image and the type of test
used directly influences the container removal time up to these
levels. All the other interactions in the 7(c) and 7(e) graphs
maintained the same pattern, not showing strong interactions
between the dependent variables.

C. Response optimization

The response optimization used was based on the method of
desirability functions, specifically for the combination of re-
sponses in a single desirability D by aggregating the geometric
mean, always seeking to minimize the dependent variables:

1) For container initialization (pull and instantiating - Ta-
bles II and III):

Response Goal Lower limit(s) | Target(s) | Higher limit(s)
instantiating | Minimize - 0.3161 49.179
pull Minimize 0.0000 484.481

TABLE I

VARIABLES USED FOR THE MINIMIZATION OF pull AND INSTANTIATING

Solution | size(MB) | type | service | Composite Desirability
1 500 1 2 0.999680
TABLE TIT

RESPONSE TABLE FOR THE MINIMIZATION OF pull AND INSTANTIATING

2) For stopping and removing containers times (stop, con-
tainer removal and image removal - Tables IV and V):




[1]

[ Response | Goal [ Lower limit(s) [ Target(s) [ Higher limit(s) |
rm_image Minimize - 0.0000 44874
rm_container | Minimize - 0.1096 2.5108
stop Minimize 0.3444 22.4624

TABLE IV
VARIABLES USED FOR STOP TIME, CONTAINER REMOVAL AND IMAGE
REMOVAL TIMES MINIMIZATION

Solution | size(MB)
1 500

service | Composite Desirability
1 0.997047
TABLE V
RESPONSE TABLE FOR STOP TIME, CONTAINER REMOVAL AND IMAGE
REMOVAL TIMES MINIMIZATION

type
1

3) For all the dependent variables (Tables VI and VII):

[2]

[3]

[4]

[5]

[6]

Response Goal Lower limit(s) | Target(s) | Higher limit(s)
rm_image Minimize - 0.0000 4.4874
rm_container | Minimize - 0.1096 2.5108
stop Minimize - 0.3444 22.4624
instantiating | Minimize - 0.3161 49.179
pull Minimize 0.0000 484.481

[7]

TABLE VI
VARIABLES USED TO MINIMIZE THE DEPENDENT VARIABLES

Solution | size(MB) | type | service | Composite Desirability
1 500 1 1 0.997127
TABLE VII
RESPONSE TABLE FOR THE GENERAL MINIMIZATION OF THE
EXPERIMENTS

The optimization of the experiments in Table III showed
that the best configuration for starting the container services
is the S00MB image with the Normal test scenario and using
Podman as the service. On the other hand, with regard to
stopping and removing the services offered by the containers,
the result of Table V, the best configuration is using an
image of size 500 MB in the Normal test scenario and using
Docker as the service. Overall, Table V gave us the complete
result for all the independent variables, showing that the best
configuration for minimizing the dependent variables is the
500 MB image, using the Normal scenario and using Docker
as the container service.

V. FINAL REMARKS

In this study, we compared Docker and Podman in container
management performance. Docker outperformed Podman in
most metrics (stop time, container and image removal) across
various scenarios. However, Podman excelled in two aspects
(pull and instantiation times) for smaller images. Generally,
Podman is ideal for rapidly containerizing small applications,
while Docker is more efficient for larger containers.

For future work, we plan to expand our research to include
other container solutions like LXC/LXD and OpenVZ. We aim
to analyze aspects such as CPU, memory, and network usage
to assess performance and efficiency in different scenarios,
helping identify the best solutions for specific use cases.

[8]

[9]
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