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Abstract - Attackers are actively considering machine learning-based approaches to avoid 

being detected. Classification models for attack detection are primarily composed of feature-

driven algorithms. Thus, primary features which are individual dimensions in the original 

attributes of data in the input space are a prime target to compromise an AI-driven model. 

Additionally, adversarial examples have shown that an attacker does not need to have 

knowledge of detection criteria to compromise a detection model, even in the case of a black 

box model. Attacks behavioural changes cause features from attacks datapoints to be altered 

and detection performances to drop. Thus, robust features must be engineered to prevent models 

from being compromised in such manner. Graph-based feature engineering has recently shown 

promising results considering robust threat detection. We offer an overview on methods for 

graph-based feature extraction and explain why they are relevant to robust feature engineering 

for threat detection purposes. We detail what we believe are properties for feature space to be 

sustainable and efficient for their prolonged exploitation in security operating centres. 

Specifically, we provide key criteria for the robustness of a feature space for attack detection. 

Finally, we summarize the characteristics for time robust feature selection, identify current 

limitations specific to the distinctive type of graph-based approaches in the purposes of threat 

detection in large internet networks. 
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13.1 Introduction 

As the atomic input element to Machine Learning (ML) algorithms, features are the foremost 

parameters when it comes to detection problems, both for supervised – like classification of 

known attacks – and unsupervised – like statistical anomaly detection of suspicious behaviours 

– models. Therefore, feature engineering is a crucial part of a detection system. This is 

especially true for threat detection purposes, considering big and critical Internet networks 

where data collection throughput can raise to Terabytes per minute. Operators in security 

centres monitoring such networks must ensure they take the right decision. Consequently, the 

information and model predictions must reach them as fast and as clearly as possible. Therefore, 

feature engineering techniques should be scalable. Features must be explainable and time robust. 



The challenge is to find what make a feature engineering scalable while producing explainable 

feature for time robust classification of threat. This raises 2 main research questions: 1) Which 

are the characteristics to make features explainable and time robust in the context of large 

internet networks? As graph structures are very representative of the actual fine-grained 

network behaviour. 2) How are graph-based approaches efficient as a support for feature 

extraction and which type of graph approaches are more relevant and performant for threat 

detection purposes? 

13.1.1. Threat detection 

Threat detection is the detection of any element that could compromise and cause damage to an 

information system [52][25]. In our context, we consider the system to be a large network and 

consider as threat any elements in the data space that would hinder the operation process of 

machine and service in the network it does not have an authorisation to access to (attacks against 

availability and integrity of the systems), or that would unlawfully disclose information (attacks 

against confidentiality) [51]. The main objective of the threat detection system is therefore to 

identify, then stop, any behaviour that would hinder the “normal” operation process in the 

network while not itself hindering it [16]. 

However, threat behaviours are becoming more complex and continuously adapt to defender 

models [57]. Additionally, they do a better job at hiding themselves and it becomes increasingly 

time costly for defence operators to manually detect attacks. As such there is an intense pressure 

for scalable automatization of detection and classification of threats, which also implies a strong 

limitation of false positives alerts to limit inefficient manual verifications [36]. These 

classification algorithms must be efficient in their discrimination of threats while scalable, 

explainable and time robust. 

13.1.2. Feature engineering 

Feature engineering is the full process between data collection and the execution of detection 

algorithms [13]. It includes all transformations in the original feature space like normalisation, 

cleaning, categorisation or encoding, as well as the derivation of new features from original 

features, like relative values, distances. For example, typical derived features in network 

datasets would categorization of port or IP addresses, thresholding on size of packets, or ratio 

between number of packet and total message size [38]. The last step of feature selection is the 

ablation of feature from the feature space to reduce the search space, optimise analysis time and 

remove noisy features that lower detection capability. The feature space for detection is without 



doubt the most crucial factor in any detection system as any properties or constraints that are 

not respected by the feature engineering process will not be respected by the detection system 

as a whole [62]. It is even more important considering that having an efficient feature 

engineering process will lead to the possibility of having more diverse choice in classification 

algorithms while retaining high detection performances [32]. Additionally, with regards to 

threat detection and more particularly in the presence adversarial actors, each feature is a 

potential vector of vulnerability and as such having an optimal feature space is crucial. 

Graph based representation are closely related to network behaviour. As such it is expected that 

they could lead to explainable approaches with regards to threat detection in internet networks 

[49]. Graph based representations, especially unattributed connectivity graph that only rely on 

the topological aspects of the network are particularly relevant to the last raised point as they 

require and depend on a minimal amount of feature in the original feature space [46]. 

13.2 State of the art 

13.2.1. Methodology 

In this study, we opted for a methodology that would allow us to focus on the property for 

feature engineering in the context of threat detection concrete issues. As a starting point, we 

identify the key properties a detection system should strives for to be operable in a trustworthy 

and sustainable manner. From these identified properties, we analyse the current trend in recent 

research works, what challenges have been identified in the literature and what are the feature 

engineering approach based on graph that are trying to answer them. From those properties and 

challenges, we identify their research goals about specific detection problems and formulate 

criteria for feature engineering in their realisation. The scope of this study on threat detection 

includes works relative to the definition of the relation between features and the identified 

properties: Scalability, Explainability, Quality, Stability, Time Robustness. We than analyse 

graph-based feature engineering techniques and how they take, or do not take those properties 

in consideration. For each of those properties, we provide definitions from the literature and 

determines how the property is considered important to threat detection by the literature. We 

then make statistics on the number of studies addressing the issues of interest in the literature 

to the subjects of this paper, namely: threat detection, which is the main objective, feature 

engineering, which is the mean we use to attain the objective and graph representation, as a 

support of the feature engineering. We take interest in the papers that intersects those subjects 

between 2019 and June 2024. To better understand the place of feature engineering and graph 



representation in threat detection, we used Google Scholar to search for paper including our 

keywords: explainability, scalability, feature stability, feature quality, concept drift, threat 

detection, feature engineering and graph representation. For each of the keywords we obtain 

the number of research paper including them. We repeat this process with intersection of the 

different properties with research paper on the threat detection topic and then compare general 

trends in the presence of the keywords in paper topics and how often they are discussed in a 

single research paper. Additionally, we consider the proportion on feature engineering and graph 

representation research paper in the topic of threat detection. 

13.2.2. Prevalence of feature engineering and consecutive learning 

properties in the literature 

We enounce in this sub-section a brief overview on the state of the art for the considered key 

property in the context of threat detection. We rely on google scholar search for an estimation 

of the number of papers on those topics and think the tendencies we can observe to be 

informative to have a general idea on the context on threat detection and its relation to feature 

engineering and graph representation. 

 

 

Figure 13.1 shows the proportion of papers in the threat detection domain that include graph 

representation or feature engineering as one of their topics. Both have seen a growth of more 

than 300% between 2019 and 2024, with a spike in 2023 where research paper on threat 

detection including feature engineering or graph representation represented respectively 9,74% 

and 9,37% of paper on threat detection. We can observe that paper on threat detection have a 

similar evolution in their intersection with the topics of graph representation and feature 

engineering. The similarity in their growth could be related to the fact that they give tools for 

similar objectives of current landscape of the threat detection system.  

Figure 13.1: Proportion of Paper on Threat Detection 

Including Graph Representation or Feature 

Engineering between 2019 and June 2024 



 

As can be seen on Figure 13.2 and 13.3, all the properties considered have seen a growth in the 

number of papers between 2019 and June 2024 in the domain of threat detection. However, 

those properties are not equally spread, while in threat detection, scalability paper is considered 

in more than 27000 papers in 2023, explainability is considered in 3500 papers. Feature stability, 

feature quality and time robustness are respectively considered in 27, 99 and 768 papers in 2023. 

Over the five year all the properties have seen a growth in the number of paper and if the number 

of papers on those properties over 2024 remain constant we expect respectively 30400, 4720, 

898, 100 and 46 papers for scalability, explainability, time robustness, feature quality and 

feature stability in the topic of threat detection. Such difference is not surprising as those 

properties have not the same scope, nor relation to end point objectives. Scalability is often a 

requirement for a sustainable solution, while explainability is a desired properties that can be 

observed in a system by the users. Time robustness is property of system to its sustainability 

over time, while feature quality and stability are property to attain time robustness and 

explainability while ensuring scalability. 

Graph representation and feature engineering are both topics that are being more considered for 

the detection of threat in the recent years, both seems to be important for more robust threat 

detection: feature engineering as the mean to ensure scalability, explainability and time 

robustness and graph representation as the support of feature engineering. 

13.3 Key properties for features in threat detection 

In this section we introduce what we defined as five key-properties for feature engineering in 

threat detection. We divide those in two categories: the first category are the properties that not 

tied to features but should be objectives for a threat detection approach to thrive, scalability, 

explainability and time robustness. We think those properties to be especially important 

consideration for any trustworthy and sustainable threat detection system. The second category 

Figure 13.2: Research Papers on Threat Detection Including 

Explainability and Scalability between January 2019 and June 

2024 

Figure 13.3: Research Papers on Threat Detection Including 

Feature Stability/Quality and Time Robustness between 

January 2019 and June 2024 



are the properties which are only related to the feature in the detection system, the feature 

quality and stability. While not totally disjointed, those properties are still different from one to 

another, and are a factor of utmost importance in ensuring the three previous properties. 

13.3.1. Scalability 

Scalability of a system is its capacity to function properly with an expected computational 

workload and within expected margins with future workloads. In the context of detection, 

scalability is the capacity to produce a prediction or decision under a time constraint considering 

a potentially higher volume of data. Thus, the importance of scalability of a system is directly 

related to its task. When working with increasing numbers of objects, it is required for a system 

to be scalable. Sustainability of such systems requires their scalability to maintain the quality 

of service. Eventually, if scalability is not insured, sustainability can be compromised, and the 

system must be replaced, leading to miscontent from users, new production costs or security 

issues [23]. Scalability is mostly constrained by the time of computation and the memory space, 

but in some cases can depends on structural design, for example with the limited number of 

IPv4 addresses. A system scalability is tied to its worse sub-process scalability. For a detection 

pipeline, it will be the step in the pipeline with the worst scalability.  

As such in a threat detection system, feature engineering must be scalable. Threat detection 

requires handling of volumes of communication data which are ever growing with passing time 

[48]. Moreover, data are becoming increasingly diverse with several types of structure and 

structural constraints. Thus, feature engineering techniques should consider time, space, and 

structural complexity to ensure operability of the threat detection system [1]. Threat detection 

environments data are often subjected to a high collection rate up to Terabytes of data per 

minutes for big network [65]. Therefore, the time constraint is especially strong when 

considering those type of networks and security operating centre scenario which require 

prediction in less than a minute. Therefore, scalability is a main concern to threat detection and 

by extension to feature engineering in this context. With regards to scalability, the main 

challenge identified by the literature for threat detection are scalable model that retain high 

detection performance, scalable feature engineering for high detection performance and 

scalable data structure for scalable feature engineering. 

13.3.2. Explainability 

Explainability for an AI-based system is defined as the capacity for each part of this system to 

provide an explanation for its prediction, all the parameters used in the detection system, and 



the actions it has taken. It is a main concern in AI-driven solution as it is difficult to have a 

complete comprehension of machine learning model decision [8]. A system having a higher 

explainability level should be more trustworthy as the users would be reach an understanding 

of decision made by the system, and as such would have a better useability [50]. The main 

factor for this better useability is the capacity of the user to determine if using the AI-model 

results and his understanding will yield a better decision than his own. Thus, performances are 

a critical issue when considering explainability in AI-driven systems [15]. However, there is 

currently a lack in our capability of evaluation or quantification of explainability, therefore 

quantifying the relation between performances and the different layers of explainability an open 

issue [59]. Nevertheless, explainability has a major place in the current AI-driven detection 

landscape as it can be used to prove your detection system respect ethical concerns [30]. 

In the threat detection domain, explainability is especially important as trust is a main issue in 

the detection of attack as any attack detected by a system with low trustworthiness will be as 

good as not [1]. Attacks must be ensured to be detected efficiently. False positives have a 

remarkably high impact because they will lose time to operator in security centre to analyse the 

alert or interfere with the quality of services for certain users if an action is mistakenly taken 

for the false alert [53]. However, there is an interesting concern about explainability for AI 

detection models and their interaction with adversarial models. While it is quite known that 

adversarial example can produced for black box model, it can be thought that having more 

explainability in a model or its features could yield more adversarial example. In fact, recent 

works have shown that using feature explainability it is possible to detect which feature could 

be a liability in consideration to adversarial models [24]. Main challenges considered by the 

literature for the explainability of model are on the evaluation of the explainability of a model 

and about the eventual trade-off between explainability and detection performances. 

13.3.3. Time Robustness 

A detection system is time robust if its detection performances are not compromised over time, 

therefore it is robust to concept drift. Concept drift is a problem by its unpredictable aspect and 

the diverse aspect of changes it encompasses. Additionally, changes in detection target and in 

the detection environment, i.e. the data that are not supposed to be a detection target, are both 

important concepts. A concept is defined as an event with a certain probability of appearance in 

an environment [61]. In this context, concept drift is not only the change in the behaviour of a 

concept, but additionally how the distribution of concepts evolves in the environment and how 



some concepts disappear, or new concepts appear. This statistical definition of concept drift 

leads to the detection of concept drift properties as a mean to characterize it: its time of 

occurrences, its severity, and its distribution at a given time [42]. Concept drift as such is also 

problem to consider for unsupervised detection, but it also a mean to detect unexpected 

behaviours such as new potential threat [19]. 

In threat detection, concept drift is especially important as change in environment of detection 

can lead to an increase in the number of false alarms and leads to an unsustainable detection 

system for the detection of attacks in data streams [22]. Additionally, changes in detection target 

will lead to a decrease in the detection of previously seen threats, meaning the detection system 

will lose gradually its efficiency if nothing is done [37]. Features can have a varying robustness 

to concept drift for the detection of threats, thus feature engineering is vital in producing AI-

based model time robust [18]. Feature engineering can even go a step further in its consideration 

of concept drift, with evolving feature set which react to concept drift in the data stream analysis 

[11]. A shift in the data profile is detected, feature previously selected that are submitted to shift 

are reevaluated for selection with the objective for the selection to better correspond to current 

data profile. The research challenges identified in the literature with regards to time robustness 

are the detection of shift in a data profile, the extraction of feature for a time robust feature 

space and the automatization of update for feature space in consideration to concept drift.   

13.3.4. Feature Quality 

Feature quality is a characteristic which is inherent to a specific detection purpose. Depending 

on the detection objectives such as false positive rate optimisation or overall performance, 

optimisation a single feature quality can vary greatly. To determine how qualitative a feature is, 

there is a strong need to understand all useful information it bears for the chosen purpose [40]. 

Additionally, a feature quality regarding a detection of a specific target on a can differ 

depending on the considered feature set, since information from distinctive features in the same 

set can overlap. Feature engineering is relevant for maximisation of the quality of a feature 

when considering feature quality because the quality of an engineered feature can be higher 

than cumulated quality of the source features [45]. For example, you can have distinctive 

features that have a range of value which are all evenly distributed when looking at them and 

the different classes to detect. As such the quality of those single feature would be low. But then 

you could notice that by crossing them the distribution is not even with the classes to detect, 

then resulting in a feature of higher quality. Having features that do not contribute to the 

detection can be very detrimental to AI-based detection models, adding them to the feature set 



would make a drop in the detection performances. As such feature quality can be crucial in 

assembling a purposeful feature set [41], and to select the right features depending on specific 

objectives such as the detection of a particular target classes or lowering the false positive rate. 

The relation of feature quality to threat detection is dual. Firstly, in term of detection 

performances, having a better quality of feature leads to better results as we would keep only 

features that are beneficial to the detection performances. This is supposedly due to having 

feature more closely related to physical or digital reality [3]. Secondly, having a better feature 

quality for dataset could lead to an overall better dataset quality [47]. While the quality of a 

dataset is not only tied to its features, and those features do not have a direct influence on the 

general behaviour of the data in the dataset, they are the main interface between the data and 

the threat detection tools [56]. The main challenges with regards to feature quality according to 

the literature are the evaluation of feature quality and the evaluation of the impact of feature 

quality to detection performances.  

13.3.5. Feature Stability 

Feature stability is a property of features which suffers from a reduced consideration in the 

literature being twice as less present in research paper in the 5 last year than feature quality. 

However, it is tightly linked to explainability, as having a feature not stable would mean the 

information it brings is not stable, feature quality, as it is constant if the feature is stable, and 

vary if it is not, and time robustness, as if the whole feature set is stable than you are not 

subjected to concept drift anymore [58]. It is defined as a measure of the robustness of the 

feature, i.e. considering the whole dataset, how relevant the feature is to the detection objectives, 

such as the optimisation of true positive rate for binary detection [4]. Depending on set 

conditions, it is possible to determines different values of stability, using different feature sets 

or aggregates which can be relevant for example to detect cyclo-stationarity. Empirically a more 

stable feature should be more qualitative, more explainable, and eventually more time robust. 

Additionally, when considering feature stability for feature selection, it should result in a more 

stable feature selection process as you would not need to reconsider stable features [28]. 

This last observation holds true for some threat detection issues like phishing detection [5]. 

Moreover, there is another form of information that can be extracted from feature stability and 

is especially important in threat detection which is how will the feature behave when there is a 

shift in the trend of the data. Threat detection environments are very subjected to change in the 

values of the feature space over time in both the general environment and the targets to detect 

in this environment, i.e. the concept drift [69]. In this context, what is of interest is not the 



general stability of the feature, but how a robust or stable feature can maximise stability for the 

environment to differentiate threat from normal behaviours. Generating or extracting features 

which are stable in consideration to evolution of data with passing time is a key property for a 

time robust threat detection and the concept drift of the data [6]. The main challenges 

considering feature stability for threat detection identified in the literature are how correlated is 

a feature space stability to time robustness and how to ensure feature stability with passing time. 

13.4 Graph-based Approaches 

In this section, the different kinds of graph-based approaches for feature engineering we have 

considered are detailed. We give a general idea of their exploitation for threat detection purposes 

and point out their advantages and limitations. 

13.4.1. Landscape of graph-based feature engineering 

Figure 13.4: Graph Based Feature Generation Taxonomy 

 

The main objective in feature engineering is to render new angles of information accessible and 

operable for a specific purpose. Graph-based feature engineering techniques have thus evolved 

to open the access to information that was not available beforehand. The main point of graph 

representation is the capacity of showing behaviour of interactions between distinctive objects 

in the data space [12]. Additionally, it leads to a multitude of graph representations, themselves 

leading to distinct types of structures on different scales, temporality, information layers and 

means of accessing that information. These graphs representations type and different possibles 

processing operations are interchangeable in their association. We propose in our taxonomy of 



feature generation techniques (Figure 13.4) to make a distinction between automatic feature 

generation, i.e. feature generated by a learning model, and more classical feature extraction 

methods as they usually are both significantly different in the resultant features. They do 

however have a similitude in their purpose to benefit from data structure closely related to real-

world structure like social networks or transportation networks for examples [44].  

13.4.2. Types of metrics 

In this section the different kinds of graph metrics, i.e. the parameter from graph that can be 

extracted as new features, are detailed. There are various means to produce feature from graph 

structured data [54], which depend on a range of factors that are detailed in the next sub-sections, 

where we explain advantages and limitations for each of them. 

13.4.2.1 Global and local metrics 

The first important parameter in graph feature extraction for threat detection is the locality of 

the metrics. Indeed, depending on their locality, metrics can be tied to vastly different threat 

behaviours [20]. The locality of a metrics depends on the objects needed to compute it. For 

example, a global metric is a metric that need to consider elements in the whole graph to be 

computed, at most it would refer to all the nodes and edges contained in the graph. Invertedly, 

the most local metrics would be information tied to a single node or edge. In general, either 

node or edge corresponds to a single data point in a tabular view, meaning such information are 

not related to graph topological behaviours. Thus, we in general a metric is local when it 

considers a single node or edge and its direct neighbours. There are multiple locality levels 

between local and global including connected component level and or any partition-based sub-

graph level. Each locality has its importance when trying to detect specific threat behaviours as 

some threats could have a visible impact only considering a smaller part of the graph, while 

others could only be detected while looking at a bigger scale. Those graph topological 

behaviours are linked to spatial behaviours of the data, and actively link attack behaviours with 

specific elements in the graph. Thus, there is a need for any graph feature engineering for threat 

detection to determine which locality is relevant to its various threat detection purposes.  

13.4.2.2 Dynamicity and temporality 

While locality is important for its relation to the spatial behaviour of threats, attack behaviours 

are temporal events as well. Dynamicity is the parameter representing how behaviours evolve 

in a data structure. Graph structure can be adapted to show the appearance, disappearance, or 

transformation of events inside the structure. There are dynamic graph representations and there 



exist multiple representations which can represent different behaviours. For example, a 

complete dynamic graph can be represented as a full spatial graph with additional temporal 

edges between nodes having the same identifier at different temporality. The temporality is the 

given time of an event for a given dynamic graph representation. In the case of a complete 

dynamic graph, it is adapted for representing the evolution of the behaviour of a single node. 

However, it would show severe drawbacks in term of scalability for the representation of the 

dynamicity of global metrics. For the same data we can represent dynamic graphs with different 

parameters for temporality. Absolute time can be the parameter for temporality, although 

usually data are divided into slices of time and the temporality is affected by time windows. 

Another mean of representing a dynamic graph is to make series of graphs divided by those 

time windows. Data are assigned to the graph which corresponds to their time window. In the 

dynamic graph, locality of the behaviour and evolution of those behaviour is considered to 

better represent and detect the spatiotemporal events. Different combinations of locality and 

dynamicity will lead to different metrics more representative of specifics threats. 

13.4.2.3 Attributed graph 

Nodes and edges in a graph can contain properties apart from their identifier. Those properties 

are named attributes. If a graph is made of nodes and edges without any attribute, it is said to 

be unattributed, otherwise this is an attributed graph. In the case of an unattributed graph, we 

are only able to compute metrics based on the topological aspect of the graph. The purpose of 

an attributed graph is to be able to build relations between objects in the graph based on their 

attributes. To compute the graph metrics, we add another constraint based on graph elements 

attributes. This way, we can add a bias correlated to the attributes to the topological metrics. 

However, while biases are necessary for detection, it can also be detrimental and can lead to 

overfitting for example.  Thus, attribution in graphs should be thought carefully, as one of the 

purposes of graph representation is to be free of some data bias. We want graph representation 

to give detection criteria related to mandatory behaviours of specific threats while avoiding 

criteria related to behaviours of a specific threat on a specific period, but which could be easily 

modified at later times. Relying on more attributes lead to more leeway in the compromission 

of the time robustness of a model. 

13.4.3. Learning-based approaches 

As can be seen on Figure 4, learning-based approaches are detached from other types of 

approaches in our taxonomy. The principal reasons for this separation are the fact that learning 



based approaches are mostly automatised and that the feature generation is directly tied to the 

model performances. We define by automatised the fact that before the computation of such 

feature generation model, the user has no prior knowledge of the features that will be extracted. 

While in more classical feature generation models, features to be extracted are defined and 

purposefully extracted, in learning-based approaches features happen to be extracted. There is 

a radical paradigm shift, leading to the second difference: instead of choosing features to be 

extracted in expectation to optimize model performances, we optimize the model in expectation 

of meaningful features. Thus, we make a clear distinction between those approaches in the 

taxonomy. Neural networks have shown to be particularly efficient for the genereration of 

feature for optimisation problems [10] and have been applied to threat detection models [17]. 

13.4.3.1 Graph Neural Network (GNN) 

GNN are neural networks processing graph structured data. They are primarily used in the 

detection of elements or groups of elements in a graph, i.e. nodes, edges, sub-graphs or 

connected components. They are mostly applied to attributed graphs as a mean to extract 

information from the graph attributes. This capacity of association of graph attributes and 

topology has led to various works for the generation of features using graphs. The main 

advantage of the use of GNN is their capacity to aggregate the data from a graph structure 

automatically and efficiently [60]. They may however need more classical feature engineering 

in prior for specific use-cases. As most neural networks-based models, they have a high 

specificity leading to approaches of feature generation not extensible to any use beside the 

specific case they have been modelled for [31]. GNN have recently been applied to feature 

engineering for threat detection purposes [63]. 

13.4.3.2 Other Neural Networks (NN) 

While less common for the extraction of features based on graph, other NN techniques have 

been applied to this purpose. For example, to manage dynamic graph, LSTM which is an 

autoencoder model based on recurrent neural networks (RNN) has been applied to generate 

features on temporal information in the graph and to assign them to static nodes [33]. The choice 

of LSTM compared to GNN is justified in the literature by a characteristic of GNN to over-

focus on the topological aspect of the graph [27]. For threat detection purposes as well, like in 

the detection of specific messages in social networks we have seen use of NN as a mean to 

produce highly qualitative features [68]. Other types of RNN have proven to be efficient in 

engineering of features, notably applied on control flow graphs for unsupervised detection [43]. 



13.4.4. Topological based approaches 

While not inherently unattributed approaches, topological based approaches primarily focus on 

the connectivity inside the graph structure. They are interesting for feature extraction purposes 

as they tend to be scalable for pre-defined tasks and shows prominent level of interpretability 

[21]. Since many threat detection problems involve structures that can be precisely represented 

by graph like social networks, end-to-end network or internet of things devices networks, their 

topological aspect can be highlighted in the graph metrics. Additionally, some approaches 

produce high quality feature representing global behaviours [21], while others can better 

represent local behaviours in the graph structure. Thus, a broad range of behaviours can be 

tailored for the detection of specific threats. 

13.4.4.1 Probabilistic models 

Probabilistic models may be the topological approach most closely related to learning based 

models as they produce feature spaces based on rules. They differ from learning based models 

from the sources of the rules as they are human made mathematical rules [44]. Some models 

make use of hierarchical structures in networks to compute probabilities of existence of edges 

between nodes in the graph. This is the link prediction. Instead of using this information as for 

link prediction, the probabilities are mapped to data in the feature space and can then be used 

by various learning algorithms. The major drawback of most of these models it that they are 

often based on Bayes rules and suffer from a serious lack of scalability. Another branch of 

probabilistic models are the stochastic models. The main advantage of stochastic models is that 

while they are automatable, they are highly parametrizable as well [29]. By their stochastic 

nature, the computation time is malleable and can provide an adaptable framework for the 

dynamicity of the data as they can update the feature space automatically. 

13.4.4.2 Community models 

Graph community structures are a mean to partition a graph into clusters using the graph 

topology itself as the only parameter. A node is part of community if it is more closely related 

to the node in its community compared to other nodes in the graph structure depending on the 

community partitioning criteria. The most common partition criterion is the maximization of 

the modularity. The appearance of community-based partition as another form of clustering 

comes from the realisation that for large networks, the clustering techniques were failing in 

distinguishing communities compared to the ground truth of the network-based datasets. Large 

networks tend to have a lot of noise, i.e. behaviour sufficiently different for being outlier, but 



not significative while considering a threat detection purpose. As such classical clustering 

approaches tend to make small clusters out of all those small-scale outlier behaviours. On the 

other hand, those uninteresting behaviours are statistically over-present when compared to 

threat behaviours, rendering more the detection of threats more difficult in this context. 

However, specific threat behaviours have shown to be closely related in a graph structure. 

Hence, community structures have emerged to highlight those behaviours. Additionally, small-

scaled attacks have a lessened impact while looking at whole graph metrics, whereas they are 

more impactful on a community structure. Community-based approaches also prove to be quite 

time efficient and more explainable as they can tie behaviour to areas in the graph structure [19]. 

13.4.4.3 Spectral models 

Spectral models use the Laplacian matrix representation of a graph to extract features. Matrix 

representation for graphs can be very costly both in space and time complexity. Thus, spectral 

models are mostly applied on dynamic graphs, where the number of node and edge for each 

time window tend to be lower as activity on short period are more concentrated in the graph 

structure. Spectral models specifically access topological information inside the graph through 

the eigenvalues of the Laplacian Matrix. These values are the main interest of spectral models 

because they provide information on the graph structure in an instantaneous manner, such as 

the number of connected components corresponding to zero in the eigenvalues. Moreover, 

similarly to the community models, spectral models are independent from the original feature 

set of the dataset, i.e. they work well with unattributed graph. Thus, they are not as affected by 

noise and bias in the original feature space [67]. 

13.4.5. Relation-based approaches 

Relational based approaches, while still relying on topological aspects of the graph structure 

are not dissociable from the attributed aspect. Indeed, those approaches are tied to 

heterogeneous graph structures, where nodes can be objects of several types and edges are the 

relation between those nodes. They can represent a relational database where any row in the 

database is a node and edge are foreign keys. However, a relational database is not required as 

input data [66]. As such, it is possible for relational based approaches to be quite scalable using 

relational database for data storage [9]. Additionally, by the nature of the relation between the 

different objects, features and rules generated are inherently explainable [64][14]. Relational 

graph structures can represent variety of types of data and prove to be efficient at modelling 

data with multitude of objects classes as videos or natural language texts [34]. This proves to 



be particularly interesting in the detection of threats in a social network environment as they 

can make an efficient use of posts content [26]. Additionally, providing more explainable 

features give a more trustworthy base on approaches for threat detection [55]. 

13.4.6. Knowledge graphs 

Similarly to approaches based on relational graphs, approaches based on knowledge graphs are 

indissociable from the knowledge graph structure. They present similarity to relational graphs, 

notably by the facts that they are heterogeneous graphs where nodes are from different classes 

of objects or concepts in this case, and the edges represent relations between the objects. The 

main difference between relational and knowledge graphs is that a knowledge graph can be 

refined. More precisely, generated features from the knowledge inside the graph will lead to 

further analysis which in return will feed the knowledge graph resulting in a new knowledge 

graph [7]. Not all approaches using knowledge graphs for feature engineering have a process 

to update the knowledge graph. However, this raises the critical point about knowledge graphs: 

elements in the knowledge graph do not need to exist in the original data to be part of the 

knowledge graph. While the nodes can represent existing objects, they can represent more 

abstract concepts. Additionally, knowledge graph-based approaches intend to be highly 

explainable representation and to perform efficiently together with tree-based learning models 

like random forest or XgBoost [39]. Knowledge graphs being structurally like relational graphs, 

feature engineering approaches are scalable, and this hold true for tree-based models.  

13.5 Discussions 

In this section, we detail our reflection on the observations while analysing the literature and 

shed light to the lack of consideration about certain areas of feature engineering for threat 

detection. We try to propose leads on points we think should be improved in the future. 

13.5.1. Limitations of GNN and other NN approaches 

Studies on GNN and other NN approaches tend to focus on the performance optimisation of 

specific models. As such, key-properties for an efficient feature engineering, independent of the 

learning model itself are rarely considered in this domain. While explainable GNN models exist, 

they are still exceedingly rare [35]. And since NN-based models are inherently less explainable, 

as a feature generation tool they produce features that are hardly interpretable. While for a 

specific detection process, it may be acceptable, it is completely unreliable for threat detection 

purposes as it is impossible to gauge the trustworthiness of a system based on those approaches. 

This is specially the case for prolonged detection over networks that are subject to concept drift. 



NN models being extremely specific, they are particularly sensitive to concept drift and 

therefore are not time robust. If in addition they are not explainable, it is hard to detect the 

breaking point where the detection system will stop to function properly. NN models 

additionally suffer from problems linked to their exploitation. They are not scalable and as such 

cannot handle a big volume of data under time constraint. Additionally, they are not adapted to 

handle heterogeneous graphs or dynamic graphs. Moreover, they suffer from imbalance in the 

classes, which is inevitable as threats are in most cases a minority in the data space. 

13.5.2. Use of attributes in graph feature engineering 

Different approaches based on graphs for feature engineering use attributed graphs. While 

attributed graphs add another layer of information compared to unattributed graphs, the graph 

attributes represent either features from the original feature space or are derived from them. As 

such they suffer from part of the original feature space biases. While in a static context, the 

impact of this matter of fact could be minimal. In a detection environment subject to concept 

drift, this is crucial. This is a main argument for using graph representation for feature 

engineering. We want the features we extract from the graph to be representative of threat 

behaviours throughout the system life cycle and not of the behaviour the threat had at a specific 

time point. Behaviours issued from the original feature space are frequently those that could be 

easily modified by an attacker, and thus having a model that can avoid relying on these features 

produce more time robust predictions relying on more stable features. Additionally, relying on 

a lower number of features tends to make more time robust models. 

13.5.3. Consideration of key-properties in current landscape 

The number of research papers addressing properties of features are scarce, especially in the 

threat detection domain. While scalability, explainability and time robustness properties that are 

not directly tied to features are discussed, feature quality and stability are hardly considered, 

even in feature engineering focused works. These can be explained, as we could observe that 

in most works that claim to address feature engineering, feature engineering was in fact not the 

focus of the work. Feature engineering is a mean to obtain better detection performance. Current 

landscape of feature engineering for threat detection lacks means for the evaluation of the 

feature engineering and feature spaces. Decision systems, powered by AI or not, are feature-

driven and ultimately the main parameter of those system are the features. They are the prime 

target for adversarial behaviours as well. Therefore, the quality of feature spaces should be 

ensured, and we should ensure their conformity to the threat detection purpose.  



13.6 Conclusion and future works 

In this paper, prominent graph representations and approaches for feature engineering purposes 

have been detailed with regards to threat detection and classification of attacks in large network 

environment. We synthetised definition for what we identify as key properties for feature 

engineering and robust threat detection, and analysed how they are considered in the current 

landscape of threat detection. We elicited the limitations of the current approaches for graph-

based feature engineering while highlighting the relevant behaviour they display for time robust, 

scalable, and explainable detection, such as the minimization of original feature space as 

parameter for derived features, the assignment of local behaviour from graph structures to the 

data and smoothing of statistical anomalies in large network data environments. 

For future works, we would like to evaluate concept drift robustness, while primarily looking 

for clues in identifying and evaluating criteria for having a time robust feature space. To this 

end we expect graph representation to produce stable and qualitative features. 
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