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Using subgroup discovery to relate odor 
pleasantness and intensity to peripheral 

nervous system reactions  
Maëlle Moranges, Marc Plantevit and Moustafa Bensafi 

Abstract—Activation of the autonomic nervous system is a primary characteristic of human hedonic responses to sensory 
stimuli. For smells, general tendencies of physiological reactions have been described using classical statistics. However, these 
physiological variations are generally not quantified precisely; each psychophysiological parameter has very often been studied 
separately and individual variability was not systematically considered. The current study presents an innovative approach 
based on data mining, whose goal is to extract knowledge from a dataset. This approach uses a subgroup discovery algorithm 
which allows extraction of rules that apply to as many olfactory stimuli and individuals as possible. These rules are described by 
intervals on a set of physiological attributes. Results allowed both quantifying how each physiological parameter relates to odor 
pleasantness and perceived intensity but also describing the participation of each individual to these rules. This approach can 
be applied to other fields of affective sciences characterized by complex and heterogeneous datasets. 

Index Terms— Mining methods and algorithms, Pattern analysis, Physiological measures 

——————————   u   —————————— 

1 INTRODUCTION
 prominent property of olfaction, the sense of smell, is 
its affective component [1]. This level of processing is 

primal to humans and determines if a stimulus is edible or 
poisonous, pleasant or not, arousing or not. Affective re-
sponses to smells can be expressed verbally (i.e. subjective 
component), and are always accompanied by peripheral 
nervous system reactivity (i.e. physiological component) 
[2], [3], [4], [5]. The main function of these physiological 
responses is to provide somatic signals to the brain in order 
to guide important behaviors, namely approaching or 
avoiding the odor source [6]. 

An important question in the field is how these affective 
responses to odors relate to physiological activity. Beyond 
the olfactory sphere, and in a general way, there are two 
main theories on the topic. The first considers simple affec-
tive dimensions characterized by approach and with-
drawal behaviors [7], [8]. Affects in this case, are catego-
rized along axes of pleasantness, arousal and dominance. 
It has been shown that each of these dimensions varies ac-
cording to specific physiological channels [9]. This is the 
dimensional or biphasic theory of emotion. The other the-
ory postulates a limited number of discrete basic emotions 
(e.g. sadness, fear, joy, surprise, anger, disgust) character-
ized by distinct physiological events [10]. Note that what-
ever the theory, these affective states or basic emotions in-
volve neural networks belonging to the limbic system (in 
particular the amygdala), regions such as the insula, but 
also associative systems located in the prefrontal and or-
bitofrontal cortex [11].   

If we come back to the sense of smell itself, some re-
searchers postulate an organization of the affects induced 
by smells in terms of approach and withdrawal systems 
[12], while others consider that affects provoked by odors 
can be distinguished according to basic emotions such as 
sadness, fear, joy, surprise, anger or disgust [4] [13], [14], 

[15]. The truth is probably at the crossroads of these two 
theories insofar as odors can induce pleasant hedonic re-
sponses, pleasure, and the basic emotion of joy, or unpleas-
ant hedonic responses, displeasure and the basic emotion 
of disgust [3]. Whatever the point of view or theory, the 
vast majority of psychophysical studies in olfaction shows 
that the subjective experience of odors is often character-
ized by a pervasive pleasantness dimension (e.g. "this odor 
smells very good or is bad") as well as descriptions related 
to the intensity of the odor (e.g. "this odor is very strong").  
(see [16][17]).  

As mentioned above, one prominent issue in the field 
concerns the relation between such perceptual and affec-
tive attributes of odors and physiological responses: how 
does the pleasant tone of a smell, and its perceived inten-
sity, relate to peripheral physiological activity? Although 
past studies have revealed some relationship between 
physiological responses and odor pleasantness, and odor 
intensity, the directionality and the nature of these relation-
ships varied from one study to another, and within indi-
viduals as a function of the ongoing task. For example, 
whereas for some, the electrodermal response increases 
with odor intensity [18], for others it varies according to 
the unpleasantness [19] or olfactory quality [20]. Such rela-
tionships between odor pleasantness and physiology have 
also been investigated using heart rate variability [21] and 
results showed that it is possible to discriminate between 
pleasant and unpleasant odors. Furthermore, whereas pas-
sively smelling odors or judging their pleasant tone in-
duces similar heart rate activity patterns, familiarity judg-
ment performed on the same smells overwrites this auto-
nomic response [22]. These differences between studies 
and tasks may be a reflection of both methodological dif-
ferences across studies but also of the large intra- and inter-
individual variability in odor pleasantness and odor 
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intensity [5], [23], [24]. This variability across people makes 
it difficult to examine the relationship between smell pleas-
antness and intensity, and physiology and it is therefore 
necessary and important to consider it. To do so, it becomes 
essential to imagine the relationship between subjective ex-
perience of smells (pleasantness, intensity), and physiol-
ogy no longer as a bijective relationship with a single rule 
that will link the 2 entities, but as a relationship that can be 
diverse: here, each subjective experience can be associated 
with multiple forms of physiological patterns in different 
individuals depending on biological factors but also on the 
developmental trajectories of each and everyone.  

It is important to note that, in general, the data collected 
in psychophysiological studies are characterized by their 
heterogeneity and complexity at different levels: i/ in 
terms of stimuli, past protocols can range from a few to 
several dozens of items, ii/ in terms of human participants, 
a great interindividual variability characterizes the subjec-
tive judgments reflected by a very large diversity in the 
evoked hedonic response for a large range of smells, iii/ in 
terms of physiological responses, multiple parameters and 
variables are measured in the same individual.  In addition 
to this physiological variability, there is a variability in ol-
factory perception linked to factors such as age [25], gender 
[26] or the menstrual cycle [24]. However, to arrive at a 
thoroughgoing model of odor pleasantness and intensity 
and their physiological basis requires having some means 
of i/ assessing these physiological responses in their diver-
sity and heterogeneity across people and in their complex-
ity, and ii/ describing in an intelligible manner the rules 
linking these physiological parameters to the individual 
subjective odor-driven affective experience: in fact,  manu-
ally generating multiple rules linking the subjective expe-
rience (in its diversity) and physiological responses is not 
manageable. 

Standard statistical approaches enable tackling the 
problem of the relationship between the subjective affec-
tive experience of odors and their physiological underpin-
nings very often on a single parameter basis (e.g. by com-
paring mean responses for pleasant vs. unpleasant for each 
individual physiological parameter). Furthermore, 
whereas predicting modeling approaches (e.g. classifica-
tion algorithm) enable considering multiple physiological 
parameters in a single analysis, their explanatory power 
remains rather low. The aim of the present study is there-
fore to better understand the relationship between the 
subjective experience of odor pleasantness and of odor 
intensity, and their physiological foundations by using a 
computational exploratory approach that we intend to 
apply to the field of affective sciences. 

To achieve this aim, we propose to use a data mining 
approach based on a subgroup discovery (SD) algorithm. 
SD enables to find population subgroups that are statisti-
cally "most interesting" from a population of individuals 
(or items) and a property on individuals of interest. In that 
respect, we aim to obtain the largest possible subpopula-
tions which present the most unusual distributional statis-
tical characteristics, and which respect the property of in-
terest. The dataset used in the current study was previ-
ously published [17] and involves 22 individuals who 

smelled a total of 109 stimuli (varying in olfactory quality 
- chemical, medicinal, floral, etc.  - and in chemical families - 
alcohols, aldehydes, esters etc..). Each odorant was rated 
along two main dimensions of interest, namely pleasant-
ness and intensity. Finally, a total of 4 physiological chan-
nels were recorded: finger pulse frequency (FP), skin con-
ductance (SC), skin surface temperature (ST) and ab-
dominal respiration (AR). These physiological data are de-
scribed by 7 numeric attributes: one attribute for FP, AR 
and ST and four attributes for the SC (latency, rise time, 
amplitude and number of events).  

Although the present study did not have the choice of 
physiological parameters to use (the data come from a pre-
vious study), some methodological choices should be clar-
ified. Indeed, considering the duration of the experiment, 
Licon et al [17] privileged physiological sensors easy to in-
stall (belt positioned on the clothes for the breathing and 
sensors on the hand for the other parameters). Although 
less sensitive than the electrocardiogram for measuring 
cardiac activity and in particular its variability, the finger 
pulse was chosen here because its placement on the volun-
teers' thumb is extremely simple. Finally, note that the cur-
rent analysis further explored 3 other subjective dimen-
sions that are rarely studied and for which we intend to 
examine their physiological underpinnings: odor-evoked 
relaxation, anxiety and stress.  

Our population is therefore obtained from subjective 
descriptions (pleasantness and intensity) of 109 flasks by 
different individuals. The property of interest concerns the 
search for subgroups identified by conditions on physio-
logical attributes (e.g. FP> 1.0) for which a subjective expe-
rience (e.g. unpleasant) is significantly more present than 
in the rest of the data set. Note that the discovery of the 
best subgroups is NP-Complete (see Theorem 4 in [27]). 
Therefore, tackling this problem with a correct and com-
plete algorithm is not feasible in practice. Indeed, we 
started by using an exact algorithm named FSSD (Fast and 
efficient algorithm for Subgroup Set Discovery)[28]; in sev-
eral days it does not converge towards the first best solu-
tion and therefore never calculates the following solutions. 
To circumvent this issue, we therefore used an SD algo-
rithm called monteclopi [29] (Monte Carlo Tree Search type, 
MCTS). MCTS is a heuristic that provides a fast and not 
necessarily optimal response by randomly exploring the 
dataset and improving the most promising results found 
by building a tree accordingly. In this way, it gives us the 
best intervals found for a given target attribute (e.g. pleas-
ant, neutral, unpleasant).  

2 RELATED WORK 
Up to now, the understanding of the physiological foun-

dation of the subjective experience of odor pleasantness 
and odor intensity has been explored using classical statis-
tics and supervised classification. According to our 
knowledge, exploratory subgroup discovery methods 
were very few, or not yet applied in this field of olfactory 
affective sciences. For classical standard statistical ap-
proaches, in the very large majority of studies, hedonic re-
sponses are compared across conditions (e.g. pleasant vs. 
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unpleasant) by considering statistics such as the average or 
the amplitude of the signal in a given time interval. Here, 
complexity and heterogeneity of the data (e.g., heterogene-
ity in perceptual and physiological responses) is not well 
considered. These statistical methods used include mainly 
non parametric tests (e.g. Wilcoxon, Kruskal Wallis) [30] 
and parametrical tests (Analysis of Variance, ANOVA [31], 
[32],[33], [34], [35], [36], [37] or even MANOVA [38], [39], 
[40], [41], [42]) depending on the study design, normality 
of data and/or sample size. The main message of these 
studies is that pleasant and unpleasant odors act differ-
ently on the activity of the peripheral nervous system, and 
that certain parameters such as skin conductance, respira-
tion, heart rate and its variability, or skin temperature may 
be of interest to discriminate these hedonic classes [3], [18], 
[19], [20], [21], [43], [44]. or basic emotions evoked by odors 
[4], [13], [14], [15]. 

Machine learning methods have been successfully ap-
plied in the field of olfaction for specific research questions. 
For example, there has been a rapid rise in the use of ma-
chine learning methods for predicting the relationship be-
tween a molecule’s structure (e.g., the physico-chemical 
space) and its odor (e.g., fruity, musky, the perceptual 
space) [45]. Following this line of research, the most recent 
deep learning methods have been applied to tackle this 
challenge. GoogleAI [46] proposed the use of graph neural 
networks for studying the structure-odor relationship. 
They showed that these graph neural models outperform 
methods on tasks such as random forest model and k-near-
est neighbor model on tasks of relating odor perception to 
odorant chemistry. Despite these recent successes, some re-
search questions remain challenging: studying the rela-
tionship between two spaces that are not stable as the 
chemical space, and are characterized by their variability is 
much more difficult. This is the case when the core of our 
research question is investigating the link between the 
physiological space and the hedonic space which are char-
acterized by their diversity and could be qualified as non 
stable. In that context, data science approaches were used 
in past physiological studies using a large variety of ma-
chine learning algorithms such as artificial neural net-
works (ANN) [47], [48], [49], [50], [51], [52], support vector 
machine (SVM) [49], [50], [53], [54], [55], multivariate pat-
tern classification analysis (MVPA)[56], k-nearest neighbor 
[57], decision trees [58], random forest [50] and linear dis-
criminant analysis (LDA) [59], [60], [61]. These approaches 
enable predicting subjective affective responses from auto-
nomic activity. However, in most cases, these algorithms 
are qualified as black box classifiers (e.g. SVM or ANN) 
since their interpretability power is rather low which is not 
ideal for affective scientists who seek to explain and under-
stand the physiological underpinnings of affective re-
sponses. Note that contrary to standard statistical ap-
proaches, only few of these data sciences studies were ap-
plied to the field of olfaction [61].  

In summary, whereas some classifiers such as decision 
trees or regressions can provide a better explanatory 
power, they are still not relevant to achieve our aim be-
cause these methods attempt to predict classes of items in 
the entire dataset whereas our objective is to determine 

whether there are subsets of items in the entire dataset that 
are characterized by exceptional physiological properties. 
Thus, the present article proposes a data mining method 
(subgroup discovery) that will attempt to search for such 
knowledge in the data by extracting, in the whole dataset, 
subgroups of items (odor pleasantness and odor intensity) 
characterized by exceptional rules (patterns of specific 
physiological responses). 

3 MATERIAL AND METHODS 
In this section, we first present the psycho-physiological 

experiment from which the data was obtained. Secondly, 
we describe the preprocessing of physiological data, and 
that of perceptual data. Then, we present the process of 

 
Fig. 1. Steps of the workflow. The raw data of the experiment are pre-
processed (filtering, normalization, subtraction of the baseline) and the 
subjective ratings are discretized into 3 categories for each individual. 
Once the data is clean, the subgroup search describing the different per-
ceptual dimension is performed. Then a statistical validation of the gen-
erated patterns is performed: the pattern is validated if its informedness 
is outside the confidence interval of the distribution of a bootstrapping of 
1000 random draws. Finally, the extraction of information concerning the 
individual involvement of the subjects for each pattern is made and the 
visualization of all the results is accessible in different ways. 
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data analysis (from pattern generation using data mining 
algorithms, validation of these results by bootstrapping) to 
visualization of each individual in the observed patterns. 
An overview of the whole analytical process is shown in 
Fig. 1. 

3.1 Experiment 
The dataset comes from a previous study [17] which con-
sisted in recording physiological responses to odorant mol-
ecules, together with psychophysical ratings. For a better 
understanding, we will summarize this experiment. 
Twenty-two subjects (11 men and 11 women) between the 
ages of 19 and 46 years (mean±SD, 32±10 years) partici-
pated in the study and each of them inhaled 109 different 
stimuli (105 odorants and 4 odorless trials containing only 
mineral oil). These odorant molecules were chosen so as to 
cover a large series of chemical families with different mo-
lecular weights and olfactory perceptual qualities. The 
odorants were presented in 15ml vials. These vials con-
tained 5ml of odorants diluted in deodorized mineral oil 
and a scentless polypropylene fabric that absorbs stimuli 
to optimize evaporation and air/oil sharing. 

During the experiments, participants were comfortably 
installed in a 7×7×4m room (room temperature of about 
22°C), in a semi-reclined seated position.  This room was 
dedicated to the study of the sense of smell in that it was 
equipped with a ventilation system allowing a renewal of 
the ambient air. The Autonomic Nervous System (ANS) re-
cording equipment included a total of four physiological 
parameters which were simultaneously and continuously 
recorded and displayed during the experiment: finger 
pulse (FP) frequency, skin conductance (SC), skin surface 
temperature (ST) and abdominal respiration (AR).  

FP frequency was measured using a photoplethysmo-
graphic probe (3.2 cm/1.8 cm, LED photodetector) placed 
on the thumb of the non-dominant hand. Data were re-
duced to pulse rate, in beats per minute (bpm).  

SC amplitude (in microsiemens: μS) was recorded by 
two circular Ag/AgCl electrodes (diameter one cm) placed 
on the third phalanx of the forefinger and of the middle 
finger of the non-dominant hand. Data were reduced to la-
tency (ms), rise time (ms), amplitude (μS) and number of 
events.  

ST was measured using a small ceramic-encapsulated 
metal-oxide semiconductor (9.5 mm length, two mm diam-
eter). The thermistor, designed to operate from 0°C to 50°C, 
was placed directly on the first phalanx of the fourth finger. 
Data were reduced to skin temperature mean.  

Changes in AR circumference were measured using a 
respiratory belt transducer (100 cm rest length, ten cm 
maximum elongation, 3.5 cm width), responding linearly 
to changes in length. Data were reduced to respiratory fre-
quency, in cycles per minute (cpm).  

Once ANS measures had stabilized, odorant trials were 
initiated. Each trial began with a white screen (for five sec-
onds) followed by a written instruction, “Please prepare to 
smell”, followed by a countdown, “3, 2, 1” (for five sec-
onds). 

Then, the investigator presented odorant stimuli about 
one cm below the participant’s nose for three seconds. 

Participants were instructed to sniff each flask for as long 
as it was presented, not to move and to focus their atten-
tion on the white screen in front of them during 30 seconds. 
Afterwards, they were asked to rate the odorant molecule 
along 5 dimensions: pleasantness, intensity, relaxation, 
stress and anxiety induced by the odorants, on a scale from 
1 (not at all) to 9 (extremely). Participants could complete 
their ratings within a time window of 25 seconds. The 109 
trials were divided in four sub-sessions or blocks (27 or 28 
odorants/session), presented in random order. The dura-
tion of each block was around 30 minutes. Total session du-
ration was around three hours. 

It should be noted that in the original study by Licon et 
al [17], the same participants returned to the laboratory one 
day later for a second session. During this second session, 
participants were presented with the same series of 109 
flasks, and their tasks were to rate, among others, each 
stimulus for the following 6 basic emotional states: joy, sad-
ness, fear, anger, disgust, and surprise; neutral state and 
pleasure were also added. For more details, refer to the sec-
ond session in Licon et al [17]. 

3.2 Physiological data and parameters 
Physiological data were sampled and recorded at 256 Hz, 
then converted and amplified via an 8-channel PRO-
COMP+ system (Thought Technology, Montreal, Canada) 
and displayed, stored, reduced and analyzed off-line. This 
device has already been used in several studies related to 
the senses and emotions in various fields such as psychia-
try [62], food sciences [63] or neuroscience [6]. All physio-
logical parameters were analyzed in the 30-s window after 
stimulus onset (using the ten seconds before odor presen-
tation as baseline). Abdominal respiration (AR, cycle per 
minute or cpm), skin temperature (ST, mean temperature 
in C°) and finger pulse frequency (FP, in beats per minute 
or bpm) were normalized by subtracting baseline values 
(in the 10-sec period preceding stimulus onset) from the 
values in the 30-s window after stimulus onset. Note that 
for AR and FP, baseline values were multiplied by a factor 

 
Fig. 2. Physiological attributes of the electrodermal response following 
stimulus presentation: latency (ms), rise time (ms), amplitude (μS). t0 
corresponds to the time-point of odor presentation, i is the initiation point 
of the SC response and m is the maximum point of the SC response. 
The amplitude minimum is 0.01 µs and the initiation point is sought 
within the first 4 seconds. The calculation of the 3 variables is as follows: 
Latency = t0-ti, Rise Time = tm-ti, Amplitude = SCm-Sci. 
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of 3 in order to be in the same time scale as that of the post-
stimulus period (30 sec).  

For Skin conductance (SC), in terms of signal analysis, 
SC has been smoothed by a Gaussian filter and analyzed 
through 4 variables. It should be noted that multiple SC re-
sponses can appear in the time between two trials. These 
multiple responses were considered by computing the 
number of skin conductance event (NSSCR) before and af-
ter the signal (as AR and FP), during baseline and after 
stimulus onset. We then focused on the first SC event fol-
lowing the olfactory stimulation by computing SC ampli-
tude, latency and rise time, which are the most common SC 
parameters used in emotion and olfaction studies [19], [17], 
[49], [50], [64]. These SC parameters are depicted in Fig. 2. 
Note that the SC response begins in a time window of 4 
seconds (maximum) after stimulus onset. In the case 
whereby no peak has been identified, the 3 attributes (la-
tency, amplitude and rise time) are equal to 0. 

3.3 Perceptual data and discretization 
The ratings of each subjective scale were discretized using 
k-means [65] clustering (k = 3 classes; low, medium and 
high for pleasantness, intensity, relaxation, stress and re-
laxation). This discretization method has been chosen be-
cause it takes into account individual’s valuation strategy 
which is not the case with more standard methods based 
on equi-depth and equi-width technics (see Fig. 3). This 
discretization has been applied to each participant inde-
pendently. K-Means enable partitioning into k clusters so 
that the distance between intra-cluster points is minimized 
and the inter-cluster distance is maximized allowing parti-
tioning the subjective data in three categories as different 
as possible. Note that if an individual did use less than 3 
different ratings on all odorants for a given subjective di-
mension, then a discretization into 3 classes was not possi-
ble. In such cases, the individual was not included in the 
analysis for this specific subjective judgment (this case 
only happens for anxiety ratings of 2 individuals).  

Fig. 3 illustrates an example of the different discretiza-
tions based on subjective ratings of a participant judging 6 
different odorant molecules. A visualization of the discreti-
zation of each subject for each perceptual attribute is avail-
able in Fig. S1 (Supplementary file). 

Note that to validate the classes generated by the k-
means clustering, we ran the algorithm 100 times with dif-
ferent initializations for the same individual and a given 
subjective dimension. Results revealed a relative stability 
of the generated clusters (95.1% in average for all subjects 
for pleasantness, 95.9% for intensity, 95.8% for relaxation, 
97.3% for stress and 96.3% for anxiety). We further vali-
dated these clusters using silhouette analyses in each indi-
vidual and showed that for all dimensions, silhouette coef-
ficient values were relatively high, which validate the con-
sistency of clusters: pleasantness: [0.61-0.81], intensity: 
[0.64-0.88], relaxation: [0.66-0.93], stress: [0.67-1], anxiety: 
[0.63-1]. 

3.4 Subgroup discovery analysis 
The above listed pre-processing ended in a dataset 𝐷 ana-
lyzed through a subgroup discovery method described 

below. The dataset 𝐷 consists of the set 𝑂 of 𝑚  odorant 
molecules, the set 𝑆 of 𝑛  individuals, a set 𝑃 of physiolog-
ical attributes and a set 𝐸 of subjective evaluations. 

By convention, we denote by 𝑥!, the ith attribute of the 
set of attributes 𝑋: 
𝑂 = {𝑜", … , 𝑜#} 
𝑆 = {𝑠"	, … , 𝑠%	} 
𝑃 = {𝑝", 𝑝&, 𝑝', 𝑝(, 𝑝), 𝑝*, 𝑝+}
= {𝐹𝑃, 𝐴𝑅, 𝑆𝑇, 𝑆𝐶	𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒, 𝑆𝐶	𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑆𝐶	𝑟𝑖𝑠𝑒	𝑡𝑖𝑚𝑒,	 
𝑆𝐶	𝑁𝑆𝑆𝐶𝑅} 
𝐸 = {𝑒", 𝑒&, 𝑒', 𝑒(, 𝑒)}
= {𝑃𝑙𝑒𝑎𝑠𝑎𝑛𝑡𝑛𝑒𝑠𝑠, 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, 𝑅𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛, 𝑆𝑡𝑟𝑒𝑠𝑠, 𝐴𝑛𝑥𝑖𝑒𝑡𝑦} 

 
A pair of a given odorant and a given individual 

uniquely identifies a tuple in dataset 𝐷: 
 

𝐷: (𝑜, 𝑠) → 𝑃 × 𝐸 
 
The value of the attribute 𝑝 ∈ 𝑃 is denoted by 𝑝(𝑜, 𝑠). 

Similarly, the value (aka class) of the attribute 𝑒 ∈ 𝐸 is de-
noted by 𝑒(𝑜, 𝑠). Note that for these attributes, there are 3 
classes generated by the discretization process: low, me-
dium, high. The set of tuples for an attribute 𝑒 of class label 
𝑐, are as follows: 

 
𝐷(-,/) =	 {(𝑜, 𝑠) ∈ 𝐷	|	𝑒(𝑜, 𝑠) = 𝑐} 

 
An example of dataset is presented in Table 1a with only 

one perceptual attribute (pleasantness). In this example,  
𝐷(12-343%5%-44,			#-6!7#) corresponds to the “medium” class 
lines represented in bold in Table 1b. The other classes rep-
resented in italics are noted: 𝐷(12-343%5%-44,			¬#-6!7#). So, in 
terms of support: |𝐷(12-343%5%-44,			#-6!7#)| = 5 and 
|𝐷(12-343%5%-44,			¬#-6!7#)| = 4. 

We used a subgroup discovery approach to find a set of 
pairs, of individuals and odors that characterizes the spe-
cific class 𝑐 against the other classes (¬𝑐) for a targeted per-
ceptual attribute 𝑒. These subgroups are identified by an 
intent, i.e., a description.  For this, we seek to identify the 
conditions on some physiological attributes strongly asso-
ciated with a given subjective class (ex. Medium, Low, 
High). This can be formalized by a descriptive rule related 
to a subgroup. 

 
Fig. 3. Example of classical discretizations and the k-means discretiza-
tion (k=3) in 3 discrete variables: low, medium and high based on sub-
jective ratings of a participant evaluating 6 odorants (ratings: 
2,5,6,7,9,9). In literature, self-reported ratings are usually discretized by 
dividing the ratings in k groups with k=2 or 3. The methods used are 
generally equi-depth (division into k equal size intervals) [58], [66], [67] 
or equi-width (quantile division: k groups with the same number of val-
ues) [3]. 

 

 

mmmmm 
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A descriptive rule 𝑟, denoted 𝑟:	𝑑 → (𝑒, 𝑐), is defined by 
a physiological description strongly associated to the class 
𝑐 of a targeted perceptual attribute 𝑒. The description is a 
set of intervals 𝑟 = {N𝑥"	 , 𝑦"	 O, N𝑥&	 , 𝑦&	 O, … , N𝑥9	 , 𝑦9	 O}, each being 
a restriction on the value of physiological attributes. The 
pairs (𝑜, 𝑠) whose physiological attribute values belong to 
the intervals of description 𝐷 are members of the coverage 
of 𝐷: 

 
𝑐𝑜𝑣(𝑟) = {(𝑜, 𝑠)		∀𝑖 = 1…𝑘, 𝑥!	≤𝑝!(𝑜, 𝑠)≤ 𝑦!	} 
 
Let’s consider the following pattern 𝑟 = “SC_NSSCR ∈

	[0,1]”	and the previous dataset this time illustrated in the 
Table 1c. 𝑐𝑜𝑣(𝑟)	corresponds to the gray lines, that means 
all the lines with the number of events is 0 or 1 (see under-
lined values). 

We aim to discover subgroups where one target class for 
a given perceptual attribute is over-represented, the other 
entities being under-represented. For that, we are inter-
ested in the subgroups that maximize a quality measure. 
There are several quality measures [68], [69]. In this study, 
we focused on the informedness [70] which corresponds to 
the difference between the true positive rate and false pos-
itive rate of the pattern. This quality measure allows to 
identify subgroups that maximize coverage for one class 
target and minimize coverage for other classes. It is a trade-
off between recall and precision. 

 

𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠(𝑟, 𝑒, 𝑐) =
|𝑐𝑜𝑣(𝑟)^𝐷(-,/)|

|𝐷(-,/)|
−
|𝑐𝑜𝑣(𝑟)^𝐷(-,¬/)|

|𝐷(-,¬/)|
 

Let us take again the examples of the Table 1b and 1c: 
let us consider, for the target “medium”, the subjective 
evaluation of the “pleasantness”, and the pattern: 𝑟 =
“SC_NSSCR ∈ 	 [0,1]”.  

A new annotation of the dataset is depicted in Table 1d. 
Here, the lines in grey correspond to 𝑐𝑜𝑣(𝑟), those in bold to 
D(-,/)	and those in italics to D(-,¬/). The lines in bold and high-
lighted illustrate the true positive, namely 𝑐𝑜𝑣(𝑟)^(D(-,/) )  and 
the bold and highlighted lines the false positives, namely 
𝑐𝑜𝑣(𝑟)^(D(-,¬/) ). 

We therefore have the following quality score:  
𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠(𝑟, 𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡𝑛𝑒𝑠𝑠,𝑚𝑒𝑑𝑖𝑢𝑚) = 𝟒/𝟓 − 2/4

= 0.3 
The objective of a subgroup discovery algorithm is 

therefore looking for physiological intervals which opti-
mize informedness. Because the search space is huge, gener-
ating all the solutions is not possible, extremely time con-
suming and actually not feasible. We therefore opted for 
heuristic approaches which return the best solutions found 
for a given time budget. We use the monteclopi algorithm 
[29], which is based on Monte Carlo Tree Search (MCTS) 
[71] to explore the search space. Especially, monteclopi 
builds a search tree, which is expanded and updated at 
each iteration. Each path of the tree is described by a score 
determined by a quality measure. This algorithm is a com-
bination of classic tree search implementations that uses 
exploration and exploitation. Exploration consists of ran-
domly searching for new paths in order to find another so-
lution. Exploitation allows the improvement of the most 
promising paths so as to maximize the measure of quality. 

TABLE 1 
EXAMPLE OF DATASET 

 

a) Example of dataset for the subjective ratings of pleasantness (note that for FP, AR, ST and SC-NSSCR, each value is calculated by substracting a base-
line value from the physiological signal following odor presentation - see section 3.2; bpm means beats per minute and cpm means cycles per minute). b) 
Support for the “medium class”. c) Support for the pattern r=SC_NSSCR∈ [0,1]. d) Explanation of informedness with the true positives in bold and high-
lighted and the false positives in italics and highlighted for the pattern r and the class c. 
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Monteclopi thus allows us to look for other good solutions 
while validating the quality of the current best. For that, at 
each iteration, the algorithm goes through four phases: se-
lection, expansion, simulation (aka roll-out) and back 
propagation (aka update). These four steps are illustrated 
in Fig. 4. Selection consists in selecting the unexplored 
child of a node from the tree already constructed. This 
node is developed in the expansion step and a new transi-
tion is added to the construct tree.  The tree then simulates 
the value of this state: it successively performs random 
transitions from the extended node, until it reaches a ter-
minal node. Then the backpropagation state allows to up-
date the tree by adding the value of the new state and by 
correcting the value of each state upstream in the tree. 
These four steps are executed successively, until there is no 
more time budget or all the search space has been explored. 
At this point, the nodes with the best informedness are re-
turned. 

Monteclopi is given a time budget as a parameter (here 
200 seconds) and it returns the 10 best patterns found at the 
end of the allotted time. 

3.5 Validation of patterns 
In order to validate the quality of a pattern, we per-

formed bootstrapping by calculating the informedness of 
10,000 groups for each pattern discovered, with the same 
support as the current pattern, drawn at random (with re-
placement between each draw). The aim is to validate the 
pattern if its informedness is outside the 95% of the random 
distribution. For this, we calculate the interval between the 
100.⍺ and 100.(1-⍺) percentiles of the bootstrap distribution 
with ⍺ = 0.025. Only patterns with an informedness above 
the 97.5th percentile are kept, the others are rejected. An 
example of pattern validation is illustrated in Fig. 5. This 
interval-based validation makes it possible to avoid report-
ing subgroups indicating an informedness likely to be ob-
served by a random subset of entities. 

3.6 Participation of individuals in the generated 
patterns 

Here, we calculated the number of individuals partici-
pating in a given pattern and we quantified how much 
they participate in it. To this end, we considered only the 
data of an individual when the informedness is positive. Let 
us consider 𝑠!	an individual, the data for this individual are 
noted: 

  
𝐷4!	:	(𝑜, 𝑠!	) → 𝑃 × 𝐸 

 
For example, in Table 1, 𝐷4#	corresponds to the first three 

rows in the table. 
The informedness computed for a participant 𝑠 for the 

rule 𝑟 and the target (𝑒, 𝑐) is:  
 

𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠(𝑟, 𝑒, 𝑐, 𝑠) =
|𝑐𝑜𝑣(𝑟)^𝐷4

(-,/)|
|𝐷4

(-,/)|
−
|𝑐𝑜𝑣(𝑟)^𝐷4

(-,¬/)|
|𝐷4

(-,¬/)|
 

 
The higher the informedness for an individual, the more 

the individual participates.  
The number of participants to the pattern 𝑟  and the tar-

get 𝑐 is: 
 

𝑁𝑏:3;5!/!:3%54(;,-,/,<) 
= |{𝑠	∀𝑠 ∈ 𝑆, 𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠(𝑟, 𝑒, 𝑐, 𝑠) > 0	𝑖𝑠	𝑇𝑟𝑢𝑒} 

 
Let us consider the previous example and always the 

target “medium” for the “pleasantness” and the pattern: 
𝑟 = “SC_NSSCR ∈ 	 [0,1]”. The number of participants for 
this rule and this target is computing from the informedness 
of each individual: 
𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠(𝑟, 𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡𝑛𝑒𝑠𝑠,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑠") = 𝟐/𝟐 − 1/1 = 0 
𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠(𝑟, 𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡𝑛𝑒𝑠𝑠,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑠&) = 𝟐/𝟐 − 0/1 = 1 
𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠(𝑟, 𝑝𝑙𝑒𝑎𝑠𝑎𝑛𝑡𝑛𝑒𝑠𝑠,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑠') = 𝟎/𝟏 − 1/2

= −0.5 
𝑁𝑏:3;5!/!:3%54(;,:2-343%5%-44,#-6!7#) = {𝑠&} = 1 

 
Thus, whereas Subject 1 and Subject 3 do not participate 

in the pattern and Subject 2 participates to the pattern at 
100%. 

 
Fig. 5. Example of validation. In blue: the bootstrapping distribution. The 
rectangle around the distribution: the 95% percentile interval. The verti-
cal bar: the informedness of the TOP1 pattern of the target "low" for 
pleasantness. 

In order to validate the quality of a pattern, we performed bootstrapping 

 
Fig. 4. Steps of the MCTS algorithm. 
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4 RESULTS 
4.1 Overall description of results and quality 

All 10 best descriptive rules of each perceptual attribute 
are presented in Tables S1-5 (Supplementary file). The set 
contains 150 patterns (top 10 descriptive rules, 3 classes, 5 
perceptual attributes). The informedness of these patterns is 
between 0.042 and 0.151, which may be seen as not high 
but still outside the 95% confidence interval (for a better 
understanding of the bootstrapping procedure, see section 
3.5 and especially Figure 5). As can be seen in Figure S2 
(which shows the Top 1 validations of each category), for 
each pattern, the quality measure (vertical bar) is located 
beyond the upper limit of the confidence interval (rectan-
gle around the distribution). These patterns are therefore 
significant.  

The number of individuals participating in the patterns 
varies between 20% and 86.36%. Finally, whereas 83,33% of 
the rules contain only one interval (≠ [−∞;+∞])  (named 
as Simple descriptive rules; aggregated result shown in the 
Fig. 6, Fig. S8 and section 4.2), 16,66% of the rules contain 
multiple intervals (named as Multidimensional descriptive 
rules; presented in section 4.3).  

For descriptive purposes, a specific terminology will be 
used to describe the different classes within each subjective 
dimension. For odor pleasantness, we will use the terms 
“unpleasant”, “neutral”, and “pleasant” for the respective 
classes “low”, “medium”, and “high”. For odor intensity, 
we will use the following notations: we will use the terms 
“not at all intense”, “midly intense”, and “very intense” for 
the respective classes “low”, “medium”, and “high”. Note 
that for the 3 other subjective ratings, the same notation as 
that for intensity will be used: “Not at all” + relax-
ing/stressful/anxiety-inducing for the “low” class, 

“Mildly” + relaxing /stressful/anxiety-inducing for the 
“medium” class, “Very” + relaxing/stressful/anxiety-in-
ducing for the “high” class. 

4.2 Simple descriptive rules 
Fig. 6 depicts the simple descriptive rules. These rules are rep-
resented in a combined visualization for odor pleasantness 
and odor intensity. For the same class (low, medium, high), 
one can have several rules whose interval concerns the 
same physiological attribute. For visualization purposes 
we presented the rule with the best informedness. All these 
selected rules are displayed on axes for each physiological 
attribute. 

For pleasantness (Fig. 6a), it can be seen that pleasant 
odors are associated with a decrease in FP activity, and 
very small variations in skin temperature; combined with 
neutral odors, they decrease activity in most SC attributes. 
For neutral odors, they decrease SC activity (number of 
events) and skin temperature. For unpleasant odors, the 
activity is mainly focused on one parameter, namely SC 
which increases for 3 attributes (amplitude, latency and 
rise time). For intensity (Fig. 6b), not at all intense odors 
decrease AR, increase ST and decrease SC (number of 
events). Moreover, there is a gradual increase of SC activity 
from mildly intense to very intense for 3 attributes (ampli-
tude, latency and rise time). Finally, very intense odors in-
duced an increase in SC activity for the attribute number 
of events.  

Mixed results were observed for relaxation, stress and 
anxiety (Fig. S7a-c). Not at all relaxing odors induced few 
variations in AR, a decrease in ST and an increase in SC 
latency and rise time. Mildly relaxing odors induced a de-
crease in FP and AR activities and small increases in SC 
amplitude and rise time. Very relaxing odors induced an 

 
Fig. 6. Visualization of simple rules for odor pleasantness (a) and odor intensity (b). Each vertical line corresponds to the value zero (0).  
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increase in AR and ST and a mild increase in SC latency. 
For stress, not at all stressful odors induced an increase in 
SC amplitude, latency and rise time. Mildly stressful odors 
induced a very small increase in SC amplitude, latency and 
rise time, and very stressful odors decreased FP activity, 
changed in both directions AR activity, increase mildly SC 
amplitude and induced an increase in SC number of 
events. Finally, for anxiety, not at all anxious-inducing 
odors decreased ST and increased SC activity (amplitude, 
rise time and to a lesser degree latency). Mildly anxious-
inducing odors increased very slightly SC amplitude and 
rise time. Very anxious-inducing odors induced a change 
in both directions of AR, increased slightly SC amplitude 
and increased strongly SC latency. 

4.3 Multidimensional descriptive rules 
The rules with multiple intervals are depicted in Fig. S3 
(Supplementary file). Each interval is represented by a col-
ored bar on the axis of the corresponding physiological at-
tributes. A first result of interest is that 92.3% of these mul-
tidimensional rules concern the "medium" class (Table 2) of 
four perceptual dimensions (Pleasantness, Intensity, Stress 
and Anxiety). The relaxation dimension did not contain 
any multidimensional descriptive rules and therefore contains 
only simple rules. A second result of interest is that none of 
the extreme ratings (“low”, “high”) for the dimensions of 
intensity, relaxation, stress and anxiety was described by 
any multiple physiological rules. The only exception was 
the state “High” pleasantness which was characterized by 
20% of multiple rules. In summary, these data suggest that 
simple physiological rules are in place when the olfactory 
system is confronted with chemicals evaluated with ex-
treme subjective hedonic scores: odors evaluated as "high" 
and "low" in terms of pleasantness were associated with no 
or very few multiple rules. However, it should be kept in 
mind that these descriptive rules are not systematically the 
same across individuals. This variability is discussed in 
Section 4.4. 

 

4.4 Variability in the generated descriptive rules 
The number of individuals participating in a given pattern 
was calculated from the informedness of each individual for 
that pattern. A first visualization in a standardized frame, 
allowed us to visualize which individuals participate in the 
pattern and how much they participate to the pattern. The 
graph of patterns classified as TOP 1 can be viewed in Fig. 
S4 (Supplementary file). One such example is displayed in 
Fig. 7 whereby each point depicts a participant labelled 
with his/her number. The two axes of the figure 

correspond to the false positive and true positive rate. Note 
that informedness is the number of true positive ratio minus 
the false positive ratio and it must be positive for the indi-
vidual to be noted as a participant in the pattern. In sum, 
each subject positioned above the unit slope line partici-
pates to the pattern (symbolized in white). The more a 
white point is distant from the unit slope line, the greater 
the number of true positives compared to false positives 
and therefore the more the subject participates in the pat-
tern. 

A second visualization was carried out in the form of a 
Venn diagram (see Fig. S5 and S6, Supplementary file) cre-
ated with Interativenn [72]. Fig. 8a illustrates such data for 
pleasantness ratings. For each target, we selected the same 
patterns as those visualized in Fig. 6 and calculated the 
overlap in terms of individuals for each pattern of the same 
class. The Venn diagrams thus allow us to illustrate 
whether it is the same individuals who participate in the 
different patterns or not. For example, in the 15 individuals 
who participate in the “1. SC_Latency” pattern of the un-
pleasant in fig. 8a: 13 are also present in the other two pat-
terns, 1 individual is common only with the pattern "4. 
Sc_Rise_Time" and 1 individual is not present in the other 
patterns. In order to be able to compare these 3 diagrams, 
we reconstructed these diagrams retaining only physiolog-
ical attributes common to the unpleasant, neutral and 
pleasant odors (Fig. 8b). An important result to extract 
from this analysis is that the more unpleasant the subjec-
tive emotional experience, the greater the number of indi-
viduals participating in the physiological pattern. In other 
words, the physiological response to aversive stimuli ap-
pears to be more invariant than the physiological response 
to appetitive stimuli. 

 
Fig. 7. Participation of each subject in the best pattern found for unpleas-
ant odors. The number displayed on each point corresponds to the sub-
ject’s identification number. The size of the dot indicates the number of 
odors classified as unpleasant to that individual. 

TABLE 2 
PERCENTAGE OF MULTIDIMENSIONAL RULES FOR EACH AFFECTIVE DIMENSION AND CLASS   

 

The other rules are one-dimensional, they are called simple rules and are described in section 4.2. 
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5 DISCUSSION 
The present study was aimed at exploring the physio-

logical underpinnings of odor pleasantness and odor in-
tensity by considering inter-individual diversity. To this 
end, we used a computational exploratory approach and 
generated a series of descriptive rules for different subjec-
tive experiences. A first result of interest was that our ap-
proach provided a set of descriptive rules linking the di-
mensions of intensity and pleasantness with a number of 
physiological parameters. For example, for the dimension 
of olfactory intensity, we observed a gradual increase in the 
electrodermal response as a function of an increase in in-
tensity. For odor pleasantness, while the perception of 
pleasant odors is associated with a decrease in cardiac ac-
tivity, the perception of unpleasant odors is associated with 
a strong activation of the electrodermal response. These re-
sults are in line with previous studies [2], [3], [4], [18], [20] 
and support the hypothesis of a stronger somatic response 
for aversive (unpleasant and intense) olfactory stimuli. 

A second result of interest concerns the invariance or di-
versity that characterizes physiological responses to both 
pleasant and unpleasant stimuli.  While for the former we 
observed great diversity among individuals, the pattern 

observed for the latter was very consistent among partici-
pants. These data bring a new element of information to 
the study of subjective hedonic experience of smells by 
opening the door to the existence of universal somatic and 
physiological responses between individuals, responses 
that provide relevant information about our harmful envi-
ronment [6]. On the other hand, beyond these responses to 
aversive stimuli, there would exist physiological patterns 
dedicated to appetitive stimuli, which are important for 
our well-being, and which would be more sensitive to in-
dividual development and trajectory of each and everyone. 
These results of greater inter-individual variability ob-
served in responses to pleasant and neutral odors com-
pared to unpleasant odors are in agreement with the study 
by Kroupi et al [61].  In the latter, a classifier discriminated 
with a high level of prediction the unpleasantness of an 
odor from EEG data. However, the algorithm struggled to 
predict the pleasantness and/or neutrality of an odor. Be-
cause the explanatory power of such a predictive approach 
is relatively poor, the explanation for these classification 
difficulties was not explicit. In another study [60], the au-
thors improved the quality of the model by making predic-
tions within a subject rather than from all subjects' data. 

 
Fig. 8. Venn diagrams of the overlap of individuals in the different physiological patterns for each class of pleasantness by considering all 
physiological parameters (a) or only those common to the three classes (b). Each circle or ellipse corresponds to a pattern with a simple 
descriptive rule, it is labeled by its classification number in the TOP10 pattern followed by the physiological attribute concerned by the rule and 
then by the number of subjects participating in this pattern. The numbers in each diagram indicate both the number of subjects in each inter-
section and the relative complement in order to know the number of common participants in the overlapping patterns. 
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This reinforces the idea that inter-individual variability 
hinders the correct classification of emotions at the popu-
lation level and that it is important to put the individual at 
the center of the analysis.  

As a secondary objective, we asked the question of 
whether subjective dimensions such as perceived and re-
ported stress, relaxation or anxiety could have a physiolog-
ical correlate in the manner already studied for the dimen-
sions of intensity and especially pleasantness. The rules 
generated for these dimensions do not seem to fit the hy-
pothesis of a decrease in sympathetic activity (decrease in 
AR, FP, SC and increase in ST) in response to relaxing, non-
stressful and non-anxiety-inducing stimuli. This observa-
tion leads us to make different hypotheses. The first is that 
the generated rules do not correspond to a physiological 
reality and that they depend on the data set or are gener-
ated at random. The second is that not all smells have the 
potential of inducing strong states of anxiety, stress and/or 
relaxation, and therefore the data distribution within each 
of these dimensions was not ideal to perform our analysis. 
Indeed, it may be the case that most of the participants de-
clared to perceive most odorants as not at all (or very) re-
laxing, stressful and anxiety-inducing stimuli leading to 
strong disparities in the classes low, medium and high for 
these dimensions. The third hypothesis is that the partici-
pants from the current study exhibited difficulties in un-
derstanding the meaning of these dimensions of relaxa-
tion, stress and anxiety and thus/or showed difficulties in 
describing their own feelings about these emotional di-
mensions when applied to olfaction. Even if it is difficult to 
provide a definitive answer regarding the acceptance or re-
jection of one of these hypotheses, we think that the first 
hypothesis is the less plausible since if it was validated, this 
would have to apply to all subjective judgements including 
judgements of pleasantness and intensity. The results for 
these dimensions of pleasantness and intensity are - how-
ever - in good agreement with the literature. Moreover, the 
second hypothesis is strengthened by the fact that the 3 
classes of these 3 affective dimensions were very clearly 
unbalanced, the rating “1” (not at all) was used widely 
more (between 33.5 and 45.7%) than the others (see Fig. S7, 
Supplementary file) (aggregate means and standard devi-
ations in a scale from 1 to 9 across all subjects and all stim-
uli: 3.36+/-2.32 for relaxation, 2.87+/-2.32 for stress, 
2.61+/-2.00 for anxiety). As such, our study cannot con-
clude whether the second hypothesis and/or the third hy-
pothesis (misunderstanding of the dimensions of relaxa-
tion, stress, and anxiety as applied to the universe of 
smells) is the most plausible. In both cases, and to clarify 
this limitation, it will be important for future studies in this 
area to consider i/ the ability of odors to induce these sub-
jective experiences in humans, and ii/ the development of 
appropriate measurement scales to assess the subjective 
nature of these dimensions. In particular, it would be rele-
vant to combine within the same scale, different states that 
may belong to the same subjective dimension. This is the 
case of the state of relaxation which can be opposed on the 
same continuum to perceived stress. It is possible that with 
such a scale, participants can describe their subjective ex-
perience more easily.  Nevertheless, we note that the results 

observed for these dimensions do not compromise our ap-
proach in any way, since it proved to be effective for our 
dimensions of interest, namely pleasantness and intensity.  

When such a scientific approach of linking perceptual di-
mensions (pleasantness and intensity) with a physiological 
space is undertaken, one question that may be asked is 
how the data mining approach is positioned in relation to 
other approaches in artificial intelligence such as machine 
learning. In fact, these two approaches complement each 
other. Whereas machine learning allows us to validate pre-
dictive models, the data mining approach is more focused 
on knowledge extraction by providing descriptive and es-
pecially explanatory modeling. When datasets are charac-
terized by a large inter-individual variability (which is the 
case of our data), it sometimes happens that the machine 
learning approach does not allow to put forward a solid 
predictive model. To illustrate this with our data, we tested 
a series of classifiers (e.g., Decision trees (DT), Random 
Forest (RF), Logistic regression (Log. Reg.), K-nearest 
neighbors (KNN), Support vector machine (SVM), Multi-
layer perceptron (MLP)), all available in the scikit-learn Py-
thon library [73] using tuning in k-fold cross-validation. 
Note that the higher the value of k, the higher the accuracy 
should be, and it is common to use k-values of 5 or 10. 
Here, the performance was very similar to different k-val-
ues (3, 5 and 10; accuracy difference less than 2%), and a 
value of k=10 was chosen. The tuning allows to choose a 
set of optimal hyperparameters for the learning algorithm. 
The mean cross-validated accuracies of the best estimators 
are shown in Table 3 for pleasantness and intensity; the 
other affective dimensions and details on the parameters 
selected by tuning are available in Table S6 (Sup-plemen-
tary file). Note that the accuracy is never better than the 
size of the largest class. Indeed, for relaxation, stress and 
anxiety, DT, RF, Log. Reg, SVM and MLP classify in more 
than 90% of cases the most frequent class. As mentioned in 
the Section 2 (Related works), the classification scores are 
not high suggesting that these different algorithms have 
not been able to manage the diversity of human perception 
inherent in this dataset. In this case, the data mining ap-
proach can be interesting to implement because it allows to 
extract a certain number of rules linking olfactory percep-
tion and physiology and in fine to open the door to the val-
idation of new hypotheses that we would not necessarily 
have thought of when analyzing the data manually. It 
should also be noted that this data mining approach has 
different objectives than machine learning methods such as 
feature extraction. Whereas feature selection allows to ex-
tract the most relevant predictive variables in order to de-
fine the most robust predictive model, in data mining, the 
extraction is not about feature extraction but about the 
rules that will link features from two different spaces. In 
data mining, the generated knowledge is characterized by 
a high level of interpretability. In our study, these rules are 
computed by mathematically well-funded measures and 
consist in conjunctions of conditions on physiological at-
tributes that conclude on particular subjective experiences 
of odors. The generated rules are easy to assimilate for a 
domain expert such as psychologists or neuroscientists in 
our case. Because it enables modeling that extracts 
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descriptive rules from the data that link subgroups belong-
ing to both perceptual and physiological spaces, such ap-
proach is positioned upstream of predictive modeling and 
therefore allows developing new hypotheses in the field. 
In sum, the rules generated may allow scientists to start a 
hypothetical-deductive approach, to formulate new scien-
tific assumptions, then to set up new experiments and 
lastly to test new predictive models using machine learn-
ing approaches. 

Although the present study provides interesting results 
linking physiology and odor pleasantness and intensity, 
some limitations are to be noted and should be discussed. 
A first limitation concerns the size of the sample studied 
(n=22). Is it sufficient to extract knowledge linking odor 
pleasantness or odor intensity with physiological re-
sponses with such a number of participants? When using 
conventional statistics, power analysis is used to answer 
this question. For example, in Licon's original study with 
these 22 subjects, a significant relationship was observed 
between physiological responses to odors and odor pleas-
antness (Licon et al., 2018, page 5). The statistical power 
associated with this correlation was adequate and ex-
ceeded the 80% threshold (83% in this case).  In our case, 
the minimum number of volunteers is actually the one that 
allows us to observe exceptional patterns that stand out 
from chance. Even though our analysis revealed a number 
of exceptional patterns, the fact that our findings are lim-
ited by our sample of participants cannot be ruled out. It 
will therefore be important in future studies to investigate 
a method for assessing a minimum sample size for such 
data mining approaches. For example, one could imagine 
data mining algorithms, that would discover rules on the 
basis of a first sample and that would set out to verify if 
these rules are still observed on another independent sam-
ple. These future algorithms should also be able to account 
for the variation that could exist between the rules gener-
ated by the 2 datasets (for instance using Jaccard-based 
measure [74]), and evaluate the optimal sample size capa-
ble of generating stable rules. Nevertheless, it should be 
kept in mind that a recurrent problem in this topic of the 
relations between perception and physiology in the field of 
odors concerns the data sets which are very few. The vast 
majority of studies use a limited number of odorants, un-
like our study which is one of the few to include more than 
100 molecules. Thus, beyond the development of new data 
mining algorithms, it will be necessary to accumulate more 
perceptual and physiological data sets by integrating more 
olfactory stimuli in the experimental designs. 

A second point of improvement concerns the scales used 
to evaluate the different perceptual and affective dimen-
sions. As mentioned above in this discussion, one can 

wonder whether the fact that participants over-represent 
or under-represent certain categories of the scales may 
have introduced a bias in our results. Although these pat-
terns are very unfrequent for the main dimensions of pleas-
antness and intensity (see Figures S1 and S7), it happens 
for the dimensions of stress, relaxation and anxiety that 
participants do not have the same distribution of the 
“low”, “medium”, “high” categories. For these three di-
mensions, it is therefore possible that this non-uniform dis-
tribution may introduce bias into our data. Note however 
that subgroup discovery analysis considers in a way this 
bias by extracting invariant descriptions through both the 
score and the number of individuals who participate to the 
pattern. Nevertheless, it will be important in future work 
to further limit the polarized reactions of the participants 
by taking into account the intrinsic distribution of each in-
dividual by weighting individual’s trials according to this 
distribution. This could be done by adding metrics such as 
subjective interestingness [75]. A third limitation of our 
study concerns other physiological parameters that can 
undoubtedly help to improve knowledge extraction. This 
will imply not only new signals and modalities, but also 
more complex features of selected physiological signals. 
Our protocol focused on physiological signals that were 
simple enough to measure and already collected in a pre-
vious study [17]. A possible perspective of our study 
would be to complete these measurements by parameters 
even more discriminating in the classification of affective 
responses.  One can think for example of heart rate varia-
bility which can be measured using ECG sensors.  The 
measurement of EEG is also an avenue to follow by con-
sidering signal amplitudes and latencies but also more 
complex features in the time-frequency domain for exam-
ple. Finally, measurement of brain activity via fMRI should 
also be considered. For the latter, the problem will be the 
number of trials per hedonic condition (e.g. pleasant vs. 
unpleasant) which may be limited due to the temporal res-
olution of the method (which limits the study in time) and 
the habituation phenomena (which increases the duration 
of experiment). Taken as a whole, such an approach will 
enrich our knowledge of the perceived pleasantness and 
intensity of smells at different levels of processing (behav-
ior, central nervous system, peripheral nervous system), a 
multimodal approach that is too rarely implemented.   

6 CONCLUSIONS 
The main aim of the present study was to set out to exam-
ine whether the use of subgroup discovery may help in im-
proving our understanding of the relationship between 
perceptual dimensions of pleasantness and intensity of 

TABLE 3 
MEAN 5-FOLD CROSS-VALIDATION ACCURACY (%) OF THE BEST PREDICTORS FOUND BY TUNING 
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odors and their physiological underpinnings. The pre-
sented workflow enabled to relate autonomic nervous sys-
tem activity patterns with specific odor perceptual re-
sponses. On specificity of this method is that it applies to a 
large amount of data, which is not always the case with all 
datasets from affective sciences. To circumvent this issue, 
and generate pertinent hypotheses in the field, one could 
combine different datasets from different studies with sim-
ilar protocols since our approach can be used on experi-
ments whose stimuli (olfactory and non-olfactory) are not 
necessarily the same for all participants. Last but not least, 
this approach can be applied to other fields of affective sci-
ences characterized by large, complex and heterogeneous 
datasets.  
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