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Abstract— The progress of magnetic resonance imaging
(MRI) allows for a precise exploration of the brain of premature
infants at term equivalent age. The so-called DEHSI (diffuse
excessive high signal intensity) of the white matter of premature
brains remains a challenging issue in terms of definition, and
thus of interpretation. We propose a semi-automatic detection
and quantification method of white matter hyperintensities
in MRI relying on morphological operators and max-tree
representations, which constitutes a powerful tool to help
radiologists to improve their interpretation. Results show better
reproducibility and robustness than interactive segmentation.

I. INTRODUCTION

Prematurity concerns 15 millions of children every year.
Newborn brain MR images provide qualitative and quan-
titative data about the maturation of the brain, such as
myelination [4]. The controversy about the prognosis of the
diffuse excessive high signal intensity, initially described
in [3] then in [14], remains actual and debated, e.g. [5], [7],
[10]. However, the detection (and the reproducibility of the
comparisons) of high signal intensity in the white matter by
radiologists constitutes a difficult task, prone to subjectivity
and intra and inter-observer variability [8].

This issue led us to propose a robust image process-
ing method to provide a more reproducible and objec-
tive analysis of the signal intensity of the white matter
in neonates. Actually, a semi-automatic tool to detect and
quantify the hyperintensities in the white matter would
constitute an important help to determine their definition
and thereby their prognosis. However neonatal MRI images
show significant differences with respect to older children
or adult brain images, such as inverted contrast and small
dimensions, and existing segmentation methods cannot be
applied. Therefore, we have developed a new pipeline for
the segmentation of different neonatal brain tissues (grey and
white matter, cerebrospinal fluid, grey nuclei) on 1.5T T2-
weighted newborn brain images, 1.5T still being the most
used magnetic field in clinical routine. Concerning white
matter hyperintensities, a lot of methods have been developed
for adult brain images [1]. For instance some algorithms are
based on an optimal FLAIR intensity threshold to separate
the hyperintensities from normal brain tissues, based on
the analysis of image histograms [6]. Samaille et al. have
developed an unsupervised method relying on a non-linear
diffusion filter and including the local image contrast as an

important parameter [13]. But, to the best of our knowledge,
no semi-automatic nor automatic method for detecting white
matter intensities is available for newborn brain images. In
this paper we focus on the detection and quantification of
hyperintensities in such images. The proposed method relies
on mathematical morphology based on max-tree representa-
tions, using image contrast as in [13], but it is specifically
designed for neonatal brain images.

II. OVERVIEW OF THE SEGMENTATION METHOD

Brain tissues are extracted step by step from the original
images. We first apply an anisotropic diffusion filter [11]
to decrease the noise. Then the suppression of the scalp is
realized by opening and image thresholding. The intracranial
cavity (ICC) is then obtained, in which all next processing
steps are restricted. The following steps are based on a max-
tree representation [12] (i.e. a hierarchical representation of
the connected components of all upper level sets of the
image, the parenthood relation being defined by inclusion).
Indeed, in T2 images of neonatal brains, cephalo-spinal fluid
(CSF), ventricles and hyperintensities are brighter than their
surroundings, and thus appear in the max-tree representation
as nodes or branches that can be clearly identified.

To segment the CSF (in the pericerebral spaces and within
the ventricles), markers are first defined by thresholding the
image (default value is set to 0.85 for an image normalized
between 0 and 1). The connected components in the max-tree
that include the markers and that satisfy a contrast criterion
are then selected. Pericerebral CSF and lateral ventricles
(LV) are then separated based on the location of markers.

For the extraction of the basal ganglia and thalami (BGT),
an area closing is first applied with a large area value
(default value is set to 2/3 of the ICC size) and the original
image is subtracted from the closing result. This provides an
image in which the BGT is again a region brighter than its
surroundings, and that can therefore be detected in the max-
tree representation. Additionally to markers inside the BGT,
the detection is also constrained by an enclosing rectangle
that defines the region of interest. A regularization step based
on maximal Cheeger set is then applied [2], to smooth the
contours.

When subtracting all detected structures from the ICC, the
remaining tissues are composed of the cortical grey matter



(GM) and the white matter (WM), including the hyperinten-
sities. The grey levels of these tissues are separated using a
simple histogram analysis, leading to an optimal threshold
using Otsu’s method [9]. To avoid a potential important
overlap between the grey levels distributions of grey matter
and white matter on the whole brain parenchyma, we propose
to perform the histogram analysis in small rectangular blocks
partitioning the ICC.

Interactive correction tools are offered to the user at each
step for potential local improvements if needed.

III. SEGMENTATION AND QUANTIFICATION OF
HYPERINTENSITIES

Within the white matter, hyperintensities are then seg-
mented. Again, the white matter hyperintensities are brighter
than their surroundings, hence correspond to regions in the
max-tree representation. A context-based energy is used
to define a contrast criterion. Assuming that the intensity
function f in a uniform region R can be approximated by
its average intensity value f(R), the quantity

V (f,R) =
∑
p∈R

(f(p)− f(R))2

can be interpreted as a segmentation error. Let ∂R be the
boundary of region R, we define the interior context region
Rε

in(∂R) and exterior context region Rε
out(∂R) as the sets

of points at a distance less than ε from ∂R, respectively
inside and outside the region R. We use the measurement
defined as:

E(f, ∂R) =
V (f, Rε

in(∂R)) + V (f, Rε
out(∂R))

V (f, Rε
in(∂R) ∪Rε

out(∂R))
. (1)

This measurement is between 0 and 1, and is low when
the segmentation error is much lower for two classes than
for one class, meaning that the curve is an object contour.
See [15], [16] for more details about the context-based
energy and its computation. The regions in the max-tree
representation that have a small context-based energy value
defined in Equation (1) correspond to the tissues to be
extracted. Usually too many nodes may be selected, and
markers can then be helpful, as used in the previous steps
(Section II). Unfortunately for white matter hyperintensities,
inside markers are difficult to obtain. Therefore we propose
a selecting and discarding process to extract the objects,
relying on the fact that the hyperintense regions are disjoint
connected components. More precisely, we first spot the
“most likely” region R∗1 among all the regions in the tree,
based on the energy value, and discard all the ancestors and
descendants of R∗1. Then we retrieve a second “most likely”
region R∗2 among the remaining regions in the tree, and
discard again its descendants and ancestors. This selecting
and discarding process is repeated until all the regions are
either spotted or discarded. Finally, a set of regions {R∗i , i =
1, . . . , n} are spotted, where the number of spotted objects
n is decided by the algorithm. Only the regions having a
relatively small energy value (e.g. smaller than 0.5) and a
high average grey level intensity (e.g. larger than 0.8 for

an image normalized between 0 and 1) are considered as
candidate hyperintensity regions.

For each candidate hyperintensity region, we compute the
relative difference of grey levels compared to its surrounding
white matter region. A hyperintensity region should have
a high relative difference. We use this criterion to further
filter out some candidate hyperintensity regions. Note that
some manual corrections can be applied easily to refine the
extraction of white matter hyperintensities.

IV. RESULTS AND CONCLUSION

We have developed a graphical interface integrating each
step of the pipeline, which makes the step by step application
of all operations easy. We have also integrated some manual
corrections that enable the user to improve the segmentation
results for each tissue without much effort. The manual
corrections are summarized as follows: remove a whole
existing region by selecting an inside point; remove part of
an existing region by drawing a closed contour; add a region
by drawing a closed contour; select a region by drawing
a closed contour; select an existing region by choosing an
inside point. These manual corrections (usually only very
few are needed) are easy to perform, and help to improve
the segmentation results.

To validate the robustness of the detection of white matter
hyperintensities, we have selected ten axial T2 weighted
images of premature newborns (born between 28 and 29
weeks of gestation) whose clinical status, transfontanellar
ultrasound, and electroencephalogram were all normal. The
images were acquired at term-equivalent age (between 39
and 40 weeks of gestation) on a 1.5 MRI device with an
8-element head coil. The acquisition parameters were as
follows: TR = 3750 ms; TE = 110 ms; Turbo-factor = 16.
The MRI slices were acquired without interpolation, with
pixel size from 0.36×0.36 to 0.7×0.7mm2. An example is
shown in Figure 1. Pixel size varies from 0.36× 0.36mm2

to 0.7 × 0.7mm2 depending on the cases. Slice thickness
varies from 2 to 4mm. Due to the high anisotropy of the
data, the whole processing was applied on 2D slices.

Fig. 1. One axial slice of a T2 MRI volume of a premature newborn brain.

One senior observer has manually segmented the different
brain tissues. Two senior observers have manually detected
and segmented potential white matter hyperintensities to



assess the inter-individual variability. Because of the few po-
tential manual corrections applied during the semi-automated
segmentation, the variability of the use of the software was
assessed by two successive applications of the method with
one month delay. Dice similarity indices were calculated to
evaluate the quality and reproducibility of the segmentation
of the algorithm.

Results on one case are illustrated in Figure 2 on the
example in Figure 1. Visually results are good. It should
be noted that precise boundaries are difficult to determine
on such images because of the partial volume effect induced
in particular by the slice thickness.

Table I provides the results, averaged over all cases, for the
main brain structures (Section II), comparing the results of
the proposed method (Auto) and of the manual segmentation
by the senior observer (Obs), and two usages of the automatic
method (Auto1 and Auto2), with potentially different manual
interactions. It shows that the results of the proposed method
are good, with generally high Dice similarity index. The fact
that this index is quite sensitive with respect to shape (smaller
indices are generally observed on small or thin structures)
may explain the smaller values obtained for the grey matter,
which is anyway known to be very difficult to observe on
such images, in particular due to the strong partial volume
effect on thin structures. Moreover the manual segmentation
was sometimes incomplete. The stability of the algorithm
according to the potential manual corrections is excellent.

TABLE I
AVERAGE DICE SIMILARITY INDEX FOR THE DIFFERENT BRAIN

STRUCTURES.

Structure Obs vs Auto Auto1 vs Auto2
CSF 0.76 0.96
LV 0.85 0.99

BGT 0.95 0.99
GM 0.59 0.97
WM 0.75 0.94

Table II provides results for the hyperintensities. As shown
in [8], deciding visually whether hyperintensities are present
or not is a highly subjective matter, and the precise delin-
eation of the corresponding regions is even more difficult.
This is confirmed by the lower values of dice index. However,
the algorithm remains very reproducible, which is a main
improvement over manual detection, and the variability with
respect to observers is of the same order as the variability
between observers (Obs1 and Obs2). More qualitatively, all
hyperintensities detected by the senior observer are also
detected by the automatic method, and no additional one was
found. Only the limits and spatial extent can be detected
differently. These results are illustrated visually for two
patients in Figure 3.

These preliminary results demonstrate the potential of the
proposed semi-automatic method, with very limited user
interactions, for segmenting brain structures and indicating
potential hyperintensities in standard neonatal 1.5T MRI
imaging data. The high reproducibility of the algorithm is
an important improvement over existing visual assessment

methods. It will thereby constitute a powerful tool with useful
clinical applications.

TABLE II
AVERAGE DICE SIMILARITY INDEX FOR THE DETECTIONS OF

POTENTIAL HYPERINTENSITIES.

Obs1 vs Obs2 Obs1 vs Auto Obs2 vs Auto Auto1 vs Auto2
0.49 0.42 0.49 0.98
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Fig. 2. Segmentation results on the example in Figure 1. (a) ICC. (b) CSF and ventricles. (c) LV. (d) BGT before regularization. (e) BGT after
regularization). (f) GM. (g) WM. (h) Candidates for hyperintensities. (i) Selected candidates for hyperintensities. Each structure is superimposed in red on
the original slice.

Fig. 3. Hyperintensity detection for two patients. (A) original image. (B, C) Manual detection of potential white matter intensity by two different
senior observers. (D) Semi-automatic detection with the proposed method. Values in yellow and blue indicate the normalized average intensities in the
hyperintensities (red regions) and the relative difference of grey levels compared to their surroundings in the white matter (delimited by the green contours).


