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ABSTRACT

Smartphones have became an easy and convenient mean to

acquire documents. In this paper, we focus on the automatic

segmentation of identity documents in smartphone photos

or videos using visual saliency (VS). VS-based approaches,

which pertain to computer vision, have not be considered yet

for this particular task. Here we compare different VS meth-

ods, and we propose a new VS scheme, based on a recent

distance belonging to the scope of mathematical morphology.

We show that our resulting saliency maps are competitive

with state-of-the-art visual saliency methods, and that such

approaches are very promising for use in identity document

detection and segmentation, even without taking into account

any prior knowledge about document contents. In particular

they can perform in real-time on smartphones.

Index Terms— Document detection, Visual saliency,

Identity document, Mathematical morphology, Smartphone-

based acquisition.

1. INTRODUCTION

Smartphones are able to easily capture images and take

videos; thanks to this convenience, many users use smart-

phones as a tool to acquire documents instead of a traditional

scanner. In this paper, we focus on the detection of identity

documents, such as visas, passports, and identity cards, in

photos or videos acquired by a smartphone. This detection

task can be actually seen as the segmentation of the image into

two parts: the document and the background—note that the

term “document segmentation” usually refers to the segmen-

tation of the document contents into several parts. Knowing

the precise area of the document allows to guide the user dur-

ing the image acquisition, to check for forgeries, to properly

archive the document, and also to identify the model of doc-

ument [1, 2]. There are many difficulties in such a real-world

mobile-based application: the scene background is unknown;

lighting conditions are highly variable (with poor contrast,

and unreliable color tones); illumination defects can appear

(inhomogeneity, shadows, specular reflections); last, some

problems due to the acquisition can occur (out-of-focus blur,

motion blur, optical distortions, and noise). In this paper, we

assume that the type of identity document present in an im-

age to process is unknown. Typically, we consider situations

where we can have passports from different countries, such as

in an airport. That implies that documents can have different

kinds of contents (layout, text zones, pictures, background).

As said before, we want to delineate precisely the document

boundary, so its contents (presence of a face photo or of text)

is actually of poor help.

To detect documents, the most classical approach is to ex-

tract lines from contours as candidates for being a document

side [3] (see also [4], which presents a survey on camera-

based analysis of documents, and the recent paper [5]). Here

we put aside theses approaches, since we are going to explore

a radically different approach, the visual saliency-based one.

That is why Sec. 2 only focuses on salient object detection1.

Many salient object detection methods, for use in computer

vision, have been recently defined using the Minimum Barrier

Distance (MBD) [6], the first ones being [7, 8], and the most

recent one being [9]. This particular distance and a distance

which derives from it [10], whose computation is very fast,

are detailed in Sec. 2. That latter distance is the cornerstone

of the method that we present in Sec. 3 to detect documents.

This method computes a saliency map, that is, an intensity

image where the pixels of salient objects are brighter than the

other pixels. Then we binarize this map to obtain the final

segmentation result.

The two main contributions of this paper are:

1. an extension to color images (Sec. 3.2) of the Dahu dis-

tance, originally defined on gray-level images [10], which al-

lows for computing saliency maps,

2. and a study (Sec. 4) that compares different saliency-based

methods for the segmentation / detection of identity docu-

† This work has been conducted in the context of the MOBIDEM project,

part of the “Systematic Paris-Region” and “Images & Network” Clusters

(France). This project is partially funded by the French Government and

its economic development agencies.
1It also explains that a comparison between saliency-based methods and

some more classical line/contour-based methods is left as future work. Our

intent here is only to see whether using saliency can be effective to document

detection and segmentation.



ments.

2. SALIENT DOCUMENT DETECTION

This section describes the saliency map we will use in the

document segmentation method presented in Sec. 3.

2.1. Saliency based on the Minimum Barrier Distance

The Minimum Barrier Distance (MBD) has been defined in

the seminal paper [6], and later studied in [11, 12]. Consider-

ing that the image domain is a graph, where vertices represent

the discrete points of the domain, we can define paths on this

graph. A gray-level image (such as in Fig. 1(a)) is then a

vertex-valued graph (such as in Fig. 1(b)). The barrier τ of

a path π = 〈..., πi, ...〉 (πi being a vertex of the graph) in a

gray-level image u is defined by:

τu(π) = max
πi∈π

u(πi) − min
πi∈π

u(πi). (1)

The barrier thus represents the gray-level dynamics in u along

a path. The minimum barrier distance between x and x′ in u
is then defined by:

d MB

u (x, x′) = min
π∈Π(x, x′)

τu(π), (2)

where Π(x, x′) denotes the set of all paths between two ver-

tices x and x′. The minimum barrier distance is thus the min-

imum gray-level dynamics that we can have along a path be-

tween two vertices.

A simple illustration is given in Fig. 1. In the graph-

based representation depicted in Fig. 1(b), between the two

red vertices, multiple paths are possible. The path π corre-

sponding to the sequence of values 〈1, 3, 0, 0, 2〉 is such as

τu(π) = 3− 0 = 3; it is not minimal since we can have paths

with a lower barrier value. A minimal path w.r.t. the MBD is

depicted in blue, and we have d MB

u (x, x′) = 2.

From a distance, we can derive a saliency map, that is, an

image where the image value at a point x is the distance of x
to a given set of points X ′; formally:

S MBD

u (x, X ′) = min
x′∈X′

d MB

u (x, x′). (3)

The computation of a saliency map using the exact MBD is

costly [11]; yet some fast but approximate algorithms exist,

based on the minimum spanning tree of the image [8]. The

next section presents a variant of the MBD, which is also

based on the notion of barrier (Eq. (1)), and which leads to

an exact and efficient computation of saliency maps.

2.2. The Dahu Distance and the Tree of Shapes

In [10], a “continuous” version of the MBD has been defined,

where a gray-level image is interpreted as a surface. An illus-

tration is given in Fig. 1(d) for the image in Fig. 1(a). We can
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(f) A minimal path in a u<− ũ.

Fig. 1. Image representations for computing barrier distances.

define paths on this surface, and a minimal path is depicted in

blue in Fig. 1(d), having a barrier of 1 gray-level. This contin-

uous representation of images thus leads to a slightly different

distance. Let us now recall briefly how the continuous version

of the MBD is defined in [10].

A gray-level image can be seen as a function u : Z2 → N,

but such a function is inappropriate to represent a surface such

as the one in Fig. 1(d). In [10] the authors have proposed

to replace the domain Z
2 by the topological space H

2 of 2D

cubical complexes, and the co-domain N by the set IN of in-

tervals on natural numbers. Briefly put, a 2D cubical com-

plex is a set of elements that have a geometrical interpreta-

tion: it is composed of squares (2D elements), of segments

(1D elements), and of points (0D elements). Fig. 1(e) depicts

these elements, where segments and points are respectively

drawn as rectangles and tiny squares. The 2D elements cor-

respond to the original pixels of the image (in salmon pink

in Fig. 1(e)), whereas the other elements correspond to “what

lies between the pixels”. From a scalar-valued image u we

construct an interval-valued image ũ which really represents

the surface corresponding to u.

For instance, the scalar image u in Fig. 1(a) can be seen as

the surface depicted in Fig. 1(d). The corresponding interval-

valued image ũ depicted in Fig. 1(e), and in 3D in Fig. 1(c),

is a way to represent this surface. Actually, the 0D and 1D

elements of the complex which have non-degenerated interval

values (in yellow in Fig. 1(e)) encode the vertical parts of the

surface. For instance, the 1D element e with the purple border

in Fig. 1(e) is such as ũ(e) = [2, 3]; it represents the vertical
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(c) Tree S(u).

Fig. 2. The tree of shapes of an image allows to easily express

and compute the Dahu distance and saliency maps.

part of the image surface depicted in purple both in Fig. 1(c)

and in Fig. 1(d).

Let us denote by <− the relation between a scalar image

and an interval-valued image stating that the values of the pix-

els of the former are “included” in the interval values of the

pixels of the latter; formally: u<− ũ ⇔ ∀x, u(x) ∈ ũ(x).
Fig. 1(f) depicts a scalar image u which is “included” in the

interval-valued image ũ depicted in Fig. 1(e). The adaptation

of the minimum barrier distance to an interval-valued image /

function, called the Dahu distance [10], is the following:

d DAHU

u (x, x′) = min
u<− ũ

d MB

u (hx, hx′) (4)

= min
u<− ũ

min
π∈Π(hx, hx′ )

τu(π), (5)

where hx and hx′ are the 2D elements of the complex cor-

responding to x and x′. Fig. 1(f) depicts in blue a minimal

path w.r.t. the Dahu distance; it is obtained with a particular

scalar image included in the interval-valued image ũ depicted

in Fig. 1(e). This minimal path corresponds to the one de-

picted on the surface of u in Fig. 1(d), and gives a distance of

1 gray-level between the two red pixels.

As compared to the minimum barrier distance (see Eq. (2))

there is an extra combinatorial layer with the minimization

“minu<− ũ”. Yet, this new distance can be very easily and

efficiently computed thanks to a tree-based representation of

the image. The tree of shapes [13, 14] is a morphological

decomposition of gray-level images into connected com-

ponents, called shapes, which can be arranged into a tree;

indeed, two shapes are either disjoint or nested. Quickly

said, a shape is the interior of an iso-level line. In Fig. 2, an

illustration of a tree of shapes is given and, for instance, the

sub-tree B ∪ D ∪ E corresponds to a shape, the contour of

which being a dark-gray iso-level line. In Fig. 2(a), the blue

path between the two points (x, x′) indicated by red bullets

in u starts from region B, then goes through A and C, and

finally ends in region F. Such a path is minimal because every

path in Π(x, x′) should at least cross this same set of level

lines to go from x to x′; thus the Dahu distance corresponds

to the level dynamics of this set of lines. Actually this path

in the image space is exactly the path on the tree of shapes

between the nodes tx and tx′ containing respectively the two

red endpoints x and x′; see the blue path on the tree depicted

in Fig. 2(c). In the following, a path on a tree is denoted by
•

π
(to distinguish it from paths in the image space).

The Dahu distance between x and x′ can therefore be re-

expressed directly on the tree of shapes S(u) of u as being

the minimum barrier distance between the nodes tx and tx′ :

d DAHU

u (x, x′) = d MB

S(u)(tx, tx′)

= max
t∈

•

π(tx, tx′ )

µu(t) − min
t∈

•

π(tx, tx′ )

µu(t), (6)

where µu(t) denotes the gray-level associated with the node

t of S(u). For instance, in Fig. 2(c), the blue path gives the

sequence of node values 〈0, 1, 2, 1〉, so the Dahu distance is

2 − 0 = 2. Eventually, there is no need to find the best

scalar image u<− ũ, nor the best path π ∈ Π(x, x′) in the

image space; it thus means that the primary definition of the

Dahu distance (Eq. (5)) is not used as is. The new expression

of the distance (Eq. (6)) is just a barrier computation (such

as Eq. (1)), but on the trivial path
•

π(tx, tx′) of nodes of the

tree of shapes.

2.3. Saliency based on the Dahu Distance

A saliency map of an image u can be derived from this new

distance, such as in Eq. (3), except that this new saliency map

has a direct expression on the tree of shapes S(u). With a set

of points X ′, the corresponding set of nodes on S(u) is:

TX′ = { tx′ ; x′ ∈ X ′ } ⊂ S(u). (7)

The saliency map from X ′ based on the Dahu distance can

then be expressed by:

S DAHU

u (x,X ′) = min
x′∈X′

d DAHU

u (x, x′) = S MBD

S(u)(tx, TX′). (8)

The major difference with a classical saliency map, defined

in the image space (such as the one of Eq. (3)), is that the

tree structure is one-dimensional. Since the Dahu distance on

the tree (given by Eq. (6)) has the form of a barrier “max -

min”, the saliency map S MBD

S(u) expressed on the tree can be

computed by a two-pass procedure (here, downwards then

upwards) like the very classical computation of a chamfer

distance map [15]. Afterward, getting the 2D saliency map

S DAHU

u means reading for each x the value of S MBD

S(u) at tx.

Eventually, once computed the tree of shapes S(u), the com-

putation of a saliency map x 7→ S DAHU

u (x, X ′) is instanta-

neous, whatever the set X ′.

Last, let us mention that the representation of an image

into a tree of connected components is not memory consum-

ing and is very easy to manipulate [16]. The tree of shapes

of an image can be computed in quasi-linear time complex-

ity w.r.t. the number of image pixels [17], and can be paral-

lelized [18].



3. PROPOSED METHOD

We now present a method that relies on saliency maps based

on the Dahu distance (Eq. (8)) to detect identity documents.

3.1. Overview of the Method

The method we propose is composed of four steps. 1. We rely

on the SLIC algorithm [19] to simplify the image into super-

pixels (clusters of pixels, i.e., very tiny regions). This step is

interesting because it removes unnecessary image details, and

the image can now been seen as a graph of superpixels, which

has a reasonable size (instead of a huge matrix of pixels). That

drastically reduce the number of elements to deal with for the

next steps. 2. To each superpixel we assign its average color,

and a tree of shapes is computed from this graph. 3. We then

produce a saliency map from this structure, and we normalize

this map (Sec. 3.3). 4. Finally, we apply a detection step to

obtain the resulting detection (Sec. 3.4).

Let us remark that steps 2 and 3 require to compute re-

spectively the tree of shapes and Dahu distances on a color-

valued graph; yet both this tree and this distance are originally

defined on scalar data (gray-valued images and graphs). So,

before giving the method details, we first have to extend these

notions to color data.

3.2. Extension to Color Data

The tree of shapes, primarily defined on gray-level images,

has been recently extended to multi-valued data [20]; this ex-

tension is called the Multivariate Tree of Shapes (MToS). It

yields that we can represent color images by a tree mapping

the inclusion of shapes, that is, connected components with-

out holes. Such a representation is of prime importance for

computer vision [21] because it satisfies some strong invari-

ance properties featured by natural images, such as local con-

trast changes [22].

However, the definition of the Dahu distance on the tree of

shapes Eq. (6) cannot be used as is; it shall be adapted to take

into account that we have color data. Let us now consider that

u is a color image, t is a node of the MToS of u, and µu(t)
is the color associated with node t. A superscript i is used to

stand for taking one component of the color given by µ. We

can then re-write the Dahu distance as follows:

with τ (i)
u

(
•

π) = max
t∈

•

π

µ(i)
u
(t) − min

t∈
•

π

µ(i)
u
(t), (9)

d DAHU

u
(x, x′) =

∑
i∈{R,G,B} τ

(i)
u (

•

π(tx, tx′) ). (10)

This distance is therefore the sum of the lengths of the 3 sides

of the minimum 3D bounding box of the set of colors cor-

responding to the nodes along the path between tx and tx′ .

This modified Dahu distance can now be used to compute the

saliency map of Eq. (8). 2

2 Please note that, although Eq. (10) looks simple, we have here a strong

(a) Input (b) 4 saliency maps (c) Fusion

Fig. 3. Effect of fusing four side-specific maps using Eq. (11).

3.3. Obtaining a Relevant Saliency Map

We assume that the four sides of the image boundary are

mostly composed of the scene background (i.e., the document

does not predominantly touch the image boundary). Hence,

from each boundary side of the image, we compute a saliency

map; for instance, with Xtop being the set of pixels of the im-

age top row, we have the saliency map S DAHU

u
(x, Xtop). We

end up with 4 saliency maps, depicted in Fig. 3(b), that we

combine in a pixel-wise way using:

S DAHU

u
(x) =

∑
i∈{top, left, right, bottom} S

DAHU

u
(x, Xi) / 4. (11)

An example is given in Fig. 3. As we can see in Fig. 3(a), the

fact that the document touches the top row gives an irrelevant

saliency map S DAHU

u
(x, Xtop), marked T in Fig. 3(b). How-

ever, after the fusion of the 4 maps, we obtain a satisfy result,

which is depicted in Fig. 3(c).

Similarly to some previous works [23, 11, 12], we normal-

ize the saliency map by using “a - b” normalization (with a =
0.1 and b = 0.8), followed by an adaptive contrast enhance-

ment with a sigmoid mapping. The saliency map in Fig. 3(c)

is depicted after normalization in the 2nd row of Fig. 5(f).

3.4. Final Detection Step

The final detection step consists in deducing a binary image

from the saliency map obtained by Eq. (11). Our detection

step is still experimental (briefly put, we only search for a

threshold so that the result looks like a quadrilateral); it is not

emphasized in this paper, since we focus on comparing gray-

level saliency maps w.r.t. all possible thresholds in Sec. 4.2.

Though, with this simple detection step, some preliminary re-

sults are depicted in Fig. 5(g) with the following color code:

white for true positives, red for false negatives, and green for

false positives.

result. To be able to compute visual saliency maps (efficiently, and based

on the very effective Minimum Barrier Distance) while taking into account

colors, we need to compute a particular distance between two points. This

distance is the one of an optimal path between two points in the image space,

this path being such that the set of colors on the path has the smallest bound-

ing box in the color space. Precisely, the distance between the 2 points is the

diameter (with the L1 norm) of this 3D bounding box. This is a highly com-

binatorial problem, far to be trivial, and which cannot be solved efficiently in

the image space. Our contribution here is to turn this problem into an efficient

straightforward computation in a tree space.



Method MAE Fβ

GS [24] 0.328 0.573

MR [25] 0.299 0.642

SO [26] 0.265 0.7461

Dahu 0.178 0.7465
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Fig. 4. Numerical comparison of saliency maps.

4. EXPERIMENTAL RESULTS

To know how our Dahu-distance-based saliency method per-

forms in the context of identity document segmentation, we

are going to compare it with some other similar approaches.

4.1. Some Other Saliency Detection Methods

Let us now present three state-of-the-art methods of salient

object detection, that we are going to compare our method

with. In [24] the saliency detection is based on a geodesic

distance (GS) which uses background priors. The major as-

sumptions are that the background is usually large, homoge-

neous, and located near the boundary of the image. In [25] the

saliency detection relies on a bottom-up approach to choose

some regions by manifold ranking (MR) on a graph of su-

perpixels. Such as in Sec. 3.3, the authors compute 4 maps

and fuse them. In these maps, the superpixels are ranked

w.r.t. the similarity with some seeds located in the image

boundaries. In [26], a saliency optimization method (SO) is

proposed which combines multiple saliency measures, one of

them using the notion of “boundary connectivity”. Note that

all these methods also rely on a post-processing step to “nor-

malize” the resulting saliency maps.

4.2. Dataset and Experiments

For our experiments, we have built a dataset of identity docu-

ments3. We have a dozen of different types of visas and pass-

ports from various countries. We recorded over 100 videos

under different environment conditions, using several kinds

of smartphones. From these videos, we selected 100 frames

to create our dataset, so that it presents some realistic diffi-

culties such as out-of-focus and motion blur, inhomogeneous

illuminations, etc. Then, we generated semi-automatically the

corresponding ground-truth images.

We compare our method with the state-of-the-art saliency-

based detection methods presented in the previous section.

3Available at http://publications.lrde.epita.fr/movn.18.das

We use two distinct measures: 1. the Mean Absolute Error

(MAE), which is the average difference between a saliency

map S (gray-level image) and a ground-truth image GT (bi-

nary image): MAE = (
∑

x |GT (x) − S(x)|) /N, with N
being the number of pixels, and 2. an Fβ-measure defined

by: Fβ = (1 + β2) × P × R/ (β2 × P + R), where P
and R are respectively the precision and the recall, and with

β2 = 0.3 (it is the classical setting in the visual saliency com-

munity). To compute the precision and recall scores, for each

image to process, we simply binarize the corresponding gray-

level saliency map with a threshold sliding from 0 to 255.

Then, for every threshold, we compare the obtained binary

map with the ground-truth map. For a given threshold, we

depict in Fig. 4(b) the average Fβ-measure obtained on the

dataset of 100 images. The “global” Fβ-measure, averaged

for all thresholds (and all images), is denoted by Fβ . The val-

ues of Fβ and the MAE scores for all the compared methods

are depicted in the table in Fig. 4(a); note that the better a

method is, the lower MAE values are, and the higher Fβ val-

ues are. First, we can observe that, over the years, the state-

of-the-art methods give better results (first GS, then MR, and

last SO). Second, the Dahu-based approach gives the lowest

MAE score, and slightly outperforms the SO method for the

Fβ criterion.

If we look at the Fβ-measure curves for the different

thresholds in Fig. 4(b), there are two main observations. First,

the methods SO (in gray) and Dahu (in red) have stables / flat

curves, which is an advantage, because the “best” threshold

remains unknown and depends on the image. Conversely, for

the GS and MR methods (respectively in blue and green), the

curves are not stable, which means that taking a threshold

might not be a very robust task. The second observation is

that the “best” method with respect to the Fβ-measure seems

to be the MR method, with a rather low threshold (around

50). Though, the MR method is computationally expensive

so it cannot run in real-time on smartphones, whereas the

Dahu-based approach can.

Some qualitative illustrations on a few images (Fig. 5(a))

are depicted in Fig. 5. The prominent observation is that the

compared saliency methods, from Fig. 5(b) to Fig. 5(f), have

rather different behaviors. The one based on the Dahu dis-

tance, so on the principle of a barrier (see Eq. (1), Eq. (6),

and Eq. (9)) is effective: the main barrier is visible around the

documents, even before normalization; see Fig. 5(e). Also we

can notice that the saliency values inside the documents are

much more uniform with the Dahu-based method than with

the other saliency-based methods.

4.3. Limitations and Perspectives

The major limitation of saliency-based methods is due to low

contrast; some failure cases are depicted in Fig. 5(i). The left

image is blurred and the contrast between the document and

the background is poor, so the document cannot be detected.

http://publications.lrde.epita.fr/movn.18.das


(a) Input (b) GS [24] (c) MR [25] (d) SO [26] (e) Dahu-based... (f) ...normalized (g) Detection (h) Ground truth

(i) Some failure cases of the Dahu-based approach

Fig. 5. Comparison of our saliency maps with other classical or state-of-the-art methods.

In the right image, the identity card has a color similar to the

one of the background, so the salient objects are the hand and

the portrait. Actually, as perspectives, the method we present

can be improved through taking into account some extra prior

information such as “text texture”, and can be combined with

more classical contour/line-based approaches.

5. RELATED WORK

Actually, there exists a short state of the art of document de-

tection, contrasting from methods to extract lines as candi-

dates for the document sides, and being related to the one

presented here. In [27], after down-sampling, some seeds

are located in the image, and the “geodesic object propos-

als” method [28] extracts from these seeds a set of regions;

the best candidate region is then elected as being the docu-

ment. In [29] and [30], the authors proposed a method based

on the tree of shapes [20]. For each shape (node of the tree

/ connected component without hole), an energy is computed

being the sum two terms: one measuring how the shape fits a

quadrilateral, and the other one measuring the degree of “text

texture” of the contents of the shape. The shape with the

highest energy is considered as the candidate for document

detection. This approach won the first challenge (detection

of a document page in videos captured by smartphones) of

the SMARTDOC competition, organized for ICDAR 2015 by

Burie et al. [3]. The work presented in this paper, relying

on a saliency map computed on the tree of shapes, is clearly

derived from it.

6. CONCLUSION AND PERSPECTIVES

In this paper, we have presented an extension of the Dahu

distance to color images, which allows for computing some

saliency maps for object detection purpose. We have pro-

posed a framework to detect identity documents in photos or

videos captured by smartphones based on saliency maps, with

very few prior knowledges about the documents and the im-

ages. We only take into account that the document looks like

a quadrilateral and does not mostly touch the image boundary.

Our main conclusion (and contribution) is that visual saliency

approaches are relevant to document detection. Moreover,

while remaining efficient (both in time and memory usage),

which is critical in embedded software, we have the poten-

tial to offer better results than the one presented here, using

some extra knowledge. Indeed, finding some text [31] or a

face photograph can help the final decision step in locating

the document, though that does not directly help delineating

the document boundary. Last, we will also consider images

acquired by tablets and webcams to test the robustness of the

saliency approach.
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