
Monads in Common Lisp

Jim Newton

November 2016

Abstract

In this article we explain monads so they can be understood to the
Lisp programmer. We base the explanation on a very clean explanation
presented in the Scala programming language. We then proceed to re-
present the concepts using mostly simple Common Lisp concepts. We
do not attempt to justify the motivation behind the definitions, and we
do not attempt to give any examples of applications. Most notably, we
do not attempt to explain the connection monads have to modeling side
effects.

1 Scala Perspective

1.1 Scala for the Lisper in two paragraphs

Although the notation and syntax are quite different, a Lisp programmer should
be able very quickly to understand a simple Scala program. Just as does Com-
mon Lisp [5], Scala [3, 2] comes equipped with a large library of accessories which
of course have to be learned and pose difficulties to the beginner. Nevertheless,
just as one can approach Common Lisp as a language whose evaluation model
[1] is based on the untyped lambda calculus and extended by lots of libraries,
Scala can be viewed as an extension of the typed lambda calculus[4] augmented
by a large library.

The lisp programmer may think of a Scala trait as a class which can only
be used for mix-in; it cannot be instantiated. A trait may provide method im-
plementations, or it may provide specifications declarations for methods which
have no implementation but do have type signatures. In such a case Scala
requires that any instantiatable class inheriting from such a trait provide an
implementation for any such specified method.

1.2 The monad in Scala

In the Scala programming language a monad is a parameterized type (rep-
resented as a trait) which implements a particular interface, consisting of a
flatMap function and a unit function. Moreover, the interface obeys three
monadic laws.

The interface for the monad M[T] looks like this.

1



trait M[T] {

def flatMap[U](f: T => M[U]): M[U]

}

def unit[T](x: T): M[T]

M is a monad if, given the following:

• types T, U, and V,

• a function f: T=>M[U],

• a function g: U=>M[V],

• an object x of type T, and

• an object m of type M[T],

the three laws are as follows.

Left unit: f(x) == unit(x) flatMap f

and is an object of type M[U].

Right unit: m == m flatMap unit

Associativity: m flatMap f flatMap g

== m flatMap (x => f(x) flatMap g)

and is an object of type M[V].

The syntax might seem bizarre to the Lisp programmer. In Scala certain
binary functions can be written using either prefix notation or infix notation. In
prefix notation, parentheses and commas are required, as flatMap(f(x),g). In
infix notation the same expression may be written without the commas, as (f(x)
flatMap g), in which case the outer parenthesis may be omitted according to
the precedence rules.

Another bit of Scala syntax: x => f(x) flatMap g is the anonymous func-
tion syntax. Although there is no such lambda syntax in Scala, you can think
of it as λx.(flatMap (f x) g)

2 Lisp Perspective

2.1 Lisp types and notation

In Common Lisp a type is simply a set of values. The set may be empty, finite,
or infinite. The behavior of a type is determined by the functions which are
defined to accept or return values of this type. Some Common Lisp types have
notation, and some do not. For example NIL denotes the empty set; T denotes
the universal set of all values; fixnum denotes the set of integers which are not
bignums. However, the set of lists of strings does not have a standardized type

2



name, and the Common Lisp specification does not directly define a notation
to specify such a type.

The set of functions is denoted function. The set of binary functions which
accept a fixnum and a float and return a string is denoted (function (fixnum
float) string).

In type theory literature it is more customary to denote function types us-
ing so-called arrow arrow notation. The Common Lisp type will hereinafter be
referred to as (fixnum, float)→string. The type of unary functions may be de-
noted with or without the parenthesis; the following are equivalent (fixnum)→string
and fixnum→string. And the type 0-ary functions returning an object of type
string is denoted ()→string.

Some types are sets of containers such as list of fixnum, or vector of
function mapping fixnum to string. Such types have no standard notation in
Common Lisp, but we will refer to such types using so-called bracket notation
such as list[fixnum] or vector[fixnum→string].

It is customary in type theory literature to use T as a variable representing
a type. However, we will refrain from using T to represent such a variable lest it
be confused with the Common Lisp type universal type, also denoted T. Instead,
we’ll typically use letters such as S, U , and V to represent type variables.

To denote that an object has a type or is an element of a type we use the colon
notation such as: i:fixnum denotes i is of type fixnum, and f :fixnum→string
denotes f is a function mapping fixnum to string.

2.2 Uniform type monad

First we’ll discuss the uniform type monad or simple monad over a type S,
denoted M [S] or simply M , is a container type but which is also associated with
two well behaved auxiliary functions: a unary function called its unit:S→M
function and a binary function called its bind:(S→M,M)→M function. The
laws which unit and bind must adhere to are as follows.

Left unit: (f x) is equivalent to (bind f (unit x)) whenever f :S→S and x:S

Right unit: m is equivalent to (bind unit m) whenever m:M

Associativity: (bind g (bind f m)) is equivalent to (bind (λx (bind g (f x))) m)
whenever m:M , f :S→M , and g:S→M

These laws may seem somewhat difficult to grasp so an example may help
to clarify. Consider the Common Lisp container type list of fixnum, which we’ll
denote as list[fixnum]. This container type is a simple monad if we can identify
an appropriate unit and bind functions of the correct types and satisfying the
three monadic laws.

In fact if we take the list function as unit and the mapcan function as the
bind we can verify that the types conform and the laws are satisfied. First,
consider the types.

• S — fixnum

3



• M [S] — list[fixnum]

• unit:S→M — list:fixnum→list[fixnum]

• bind:(S→M,M)→M —mapcan : (fixnum→list[fixnum], list[fixnum])→list[fixnum]

To see this in action lets define a few lisp objects, then test the laws. m is
defined as a list[fixnum]. x is defined as a fixnum. f and g are both defines
as fixnum→list[fixnum].

(defvar m ’(1 3 5 -7 -11))
(defvar x -12)
(defun f (i) (list (* i 10)))
(defun g (i) (list (+ i 1)))
(defun unit (i) (list i))
(defun bind (fun data) (mapcan fun data))

The Left unit law says that (f x) is equivalent to (bind f (unit x)), and we
can see that is verified in the following test.

CL-USER> (f x)
(-11)
CL-USER> (bind #’f (unit x))
(-11)
CL-USER> (equal (f x)

(bind #’f (unit x)))
T

The right unit law says that m is equivalent to (bind unit m), and we can
see that is verified in the following test.

CL-USER> m
(1 3 5 -7 -11)
CL-USER> (bind #’unit m)
(1 3 5 -7 -11)
CL-USER> (equal m

(bind #’unit m))
T

The Associativity law says (bind g (bind f m)) is equivalent to (bind (λx (bind g (f x)))m),
and we can see that is verified in the following test.

CL-USER> (bind #’g (bind #’f m))
(11 31 51 -69 -109)
CL-USER> (bind (lambda (x) (bind #’g (f x))) m)
(11 31 51 -69 -109)
CL-USER> (equal (bind #’g (bind #’f m))

(bind (lambda (x) (bind #’g (f x))) m))
T

2.3 Arbitrary type monad

In the above example of the simple type monad we looked at the list containing of
fixnums. However, this concept can be made more general to be more permissive
with regard to the types of the objects in the container. Consider the following
example.

(defun f (num)
(declare (type fixnum num))
(list (format nil "~D" num)))

4



(defun g (str)
(declare (type string str))
(list (float (with-input-from-string (stream str)

(read stream)))))

Notice that f :fixnum→list[string] and g:string→list[float].
CL-USER> (f 3)
("3")
CL-USER> (g "3")
(3.0)

The functions, f and g have been constructed so that they no longer compose
with each other as in the previous example of the simple monad. Nevertheless,
they maintain their behavior with respect to their interaction with mapcan.

CL-USER> (mapcan #’g (f 3))
(3.0)

Given any list of fixnums we can produce the corresponding list of strings
with mapcan.

CL-USER> (mapcan #’f (list 1 3 5 -7 -11))
("1" "3" "5" "-7" "-11")

And given a such list of strings we can further produce the corresponding
list of floats with mapcan.

CL-USER> (mapcan #’g (list "1" "3" "5" "-7" "-11"))
(1.0 3.0 5.0 -7.0 -11.0)

Notice that the three monadic laws are still satisfied.
The Left unit law says that (f x) is equivalent to (bind f (unit x)), and we

can see that is verified in the following test.

CL-USER> (defvar i 12)
I
CL-USER> (f i)
("12")
CL-USER> (mapcan #’f (list i))
("12")
CL-USER> (equal (f i)

(mapcan #’f (list i)))
T

The right unit law is unchanged from before. It says that m is equivalent to
(bind unit m), and we can see that is verified in the following test.

CL-USER> (defvar m (list 1 3 5 -7 -11))
M
CL-USER> m
(1 3 5 -7 -11)
CL-USER> (mapcan #’list m)
(1 3 5 -7 -11)
CL-USER (equal m

(mapcan #’list m))
T

The Associativity law says (bind g (bind f m)) is equivalent to (bind (λx (bind g (f x)))m),
and we can see that is verified in the following test.

CL-USER> (defvar m (list 1 3 5 -7 -11))
M

5



CL-USER> (mapcan #’g (mapcan #’f m))
(1.0 3.0 5.0 -7.0 -11.0)
CL-USER> (mapcan #’(lambda (i) (mapcan #’g (f i))) m)
(1.0 3.0 5.0 -7.0 -11.0)
CL-USER> (equal (mapcan #’g (mapcan #’f m))

(mapcan #’(lambda (i)
(mapcan #’g (f i)))

m))
T

3 Conclusion

Although monads are generally seen as obtuse, in this article we have presented
a very simple description in terms of straightforward Common Lisp mechanism.
We have not made any attempt to justify any of the axioms and made no effort
to give examples of their applications.

References

[1] H. Abelson and G. J. Sussman. Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, MA, USA, 2nd edition, 1996.

[2] P. Chiusano and R. Bjarnason. Functional Programming in Scala. Manning
Publications Co., Greenwich, CT, USA, 1st edition, 2014.

[3] M. Odersky, L. Spoon, and B. Venners. Programming in Scala: A Compre-
hensive Step-by-step Guide. Artima Incorporation, USA, 1st edition, 2008.

[4] B. C. Pierce. Types and Programming Languages. The MIT Press, 1st
edition, 2002.

[5] Ansi. American National Standard: Programming Language – Common
Lisp. ANSI X3.226:1994 (R1999), 1994.

6


