
Analysis of Algorithms Calculating the Maximal Disjoint
Decomposition of a Set

Jim Newton

November 7, 2017

Abstract
In this article we demonstrate 4 algorithms for calculating the maximal disjoint decom-

position of a given set of types. We discuss some advantages and disadvantages of each,
and compare their performance. We extended currently known work to describe an efficient
algorithm for manipulating binary decision diagrams representing types in a programming
language which supports subtyping viewed as subsets.

1 Introduction

A1

1

A2
2

A33
4

5
6 7

A4

8 A5

9

A6
10

A7
11

A8
12

13

Figure 1: Example Venn Diagram

The problem we examine in this article is that of using Boolean operations to decompose a set
of partially overlapping regions into a valid partition. In particular, given V “ tA1, A2, ..., AMu,
suppose that for each pair pAi, Ajq, we know which of the relations hold: Ai Ă Aj , Ai Ą Aj ,
Ai K Aj . We would like to compute the maximal disjoint decomposition of V . We define precisely
what we mean by maximal disjoint decomposition in Definition 10 of Section 3.4.

An illustration should help give an intuition of the problem. The Venn diagram in Figure 1 is
an example for V “ tA1, A2, ..., A8u. The maximal disjoint decomposition D “ tX1, X2, ..., X13u
of V in Figure 1. D is the largest possible set of pairwise disjoint subsets of

Ť

V , for which ever
element thereof can be expressed as a Boolean combination of elements of V . I.e. the largest
possible disjoined subset of pV whose union is

Ť

V .
Solving this when you are permitted to look into the sets has been referred to as union find

[PBM10, GF64]. However, we wish to solve the problem without knowledge of the specific ele-
ments; i.e. we are not permitted to iterate over or visit the individual elements. Rather, we have

1

Disjoint Set Derived Expression
X1 A1 XA2 XA3 XA4 XA6 XA8
X2 A2 XA3 XA4
X3 A2 XA3 XA4
X4 A3 XA2 XA4
X5 A2 XA3 XA4
X6 A2 XA4 XA3
X7 A3 XA4 XA2
X8 A4 XA2 XA3 XA8
X9 A5
X10 A6
X11 A7
X12 A8 XA4
X13 A4 XA8 XA5

Table 1: Disjoint Decomposition of Sets from Figure 1

knowledge of the subset, superset, disjoint-ness relations between any pair of sets. The correspon-
dence of types to sets and subtypes to subsets thereof is also treated extensively in the theory of
semantic subtyping [CF05].

1.1 Why study this problem?
Newton et al. [NDV16] presented this problem when attempting to determinize automata used to
recognize rational type expressions.

Another potential application of this problem, which is still an open area of active research, is
the problem of re-ordering clauses in a typecase in Common Lisp, or similar constructs in other
programming languages. The property to note is that given an expression such as the following:

(typecase ob j e c t
(number . . .)
(symbol . . .)
(array . . .)
. . .)

The clauses can be freely reordered provided the types are disjoint. Re-ordering the clauses is
potentially advantageous for computational efficiency if the type which is most likely to occur at
run-time appears first. Another reason to to reorder is so that types can be simplified. Consider
the following:

(typecase ob j e c t
((and number (not i n t e g e r)) E1)
(i n t e g e r E2)
(array E3)
. . .)

The clauses of this typecase cannot be simplified, but we are allowed to swap the first and
second clause the type yielding E1 can be simplified as follows.

(typecase ob j e c t
(i n t e g e r E2)
(number E1)
(array E3)
. . .)

Thus it may be interesting to compute a disjoint type decomposition in order to express

2

unsigned-byte
bit

fixnum

rational

float

number

Figure 2: Example of some CL types

intermediate forms, which are thereafter simplified to more efficient carefully ordered clauses of
intersecting types.

Finally, still another reason for studying this problem is because it allows us to examine lower
level algorithms and data structures, the specifics of which may themselves have consequences
which outweigh the type disjunction problem itself. There are several such cases in this technical
report: including techniques and practices for using BDDs to represent lisp type specifiers (section
7) and techniques for optimizing programs characterized by heavy use of subtypep (section 9).

1.2 A Common Lisp based solution
As mentioned in Section 3.5, in the Common Lisp programming language, a type can also be
thought of as a set of (potential) values [Ans94, Section Type]. Moreover, the language defines
several built-in types and several subtype and disjoint relations between some of the types. Fig-
ure 2 illustrates a few of the subtypes of number. As the illustration shows, Common Lisp types
are sets, and many intuitions about sets applies directly to Common Lisp types. Subtype rela-
tions correspond to subset relations. Intersecting types correspond to intersecting sets. Disjoint
types are disjoint sets. As shown in the illustration fixnum is a subtype (subset) of rational;
unsigned-byte intersections fixnum; float and fixnum are disjoint.

For such an algorithm to calculate the maximal disjoint decomposition as is explained in this
paper to work, we must have operators to test for type-equality, type disjoint-ness, subtype-
ness, and type-emptiness. It turns out that given a subtype predicate, a way to express a type
intersection, and a way to express the empty type, the other predicates can be constructed. The
emptiness check: A “ H ðñ A Ă H. The disjoint check: A K B ðñ A X B Ă H. Type
equivalence A “ B ðñ A Ă B and B Ă A.

The Common Lisp language has a flexible type calculus which makes type related computation
possible. If T1 and T2 are Common Lisp type specifiers, then the type specifier (and T1 T2)
designates the intersection of the types. Likewise (and T1 (not T2)) and (and (not T1) T2)
are the two type differences. Furthermore, the Common Lisp function subtypep can be used as
the subtype predicate, and nil designates the empty type. Consequently subtypep can be used
to decide whether two designated types are in a subtype relation, or whether the two types are
disjoint.

There is an important caveat. The subtypep function is not always able to determine whether
the named types have a subtype relationship or not [Bak92, New16]. In such a case, subtypep
returns nil as its second value. This situation occurs most notably in the cases involving the
satisfies type specifier. For example, to determine whether the (satisfies F) type is empty,

3

it would be necessary to solve the halting problem, finding values for which the function, F, returns
true.

The remainder of this article proceeds as follows: Section 2 summarizes programmatic ma-
nipulation of Common Lisp type specifiers. Section 4 summarizes a simple easy to understand,
easy to implement algorithm; Section 5 summarizes an algorithm based on a connectivity graph;
Section 6 discusses an alternate solution by viewing this problem as a variant of the SAT problem;
Section 7 discuses solving the problem with the aid of the binary decision diagram (BDD) data
structure; and Section 9 discusses the performance of the various algorithms.

2 Type specifier manipulation
The Common Lisp language represents type specifiers not as opaque data structures with well de-
fined APIs but rather as s-expressions. An s-expression such as (and number (not (or bignum
bit))) specifies a valid type. You may think of types as sets. In fact the Common Lisp spec-
ification defines them as such. In particular if number indicates the set of all Common Lisp
numbers, bignum as the set of all Common Lisp bignums, and bit as the set of all the two ob-
jects, 0 and 1, then the type specified by (and number (not (or bignum bit))) indicates the
set number X bignumY bit.

There are a few notable areas of caution.

• t and nil represent respectively the universal type and the empty type.

• The Common Lisp specification defines what a valid type specifier is, but it does not explain
what an invalid type specifier is. This causes confusion in several cases. In particular it is
unclear whether it is possible to determine whether a given s-expression is a type specifier.
For example, if there is no such type named xyzzy, then is (or xyzzy number) even a type
specifier. Some might say that it is a type specifier, just not a valid one. Others might say
that it is not a type specifier at all. A related question is compliant behavior of evaluating
(subtypep t (gensym))?

• Given a unary Boolean valued function F, the type specified by (satisfies F) is the set of
Common Lisp objects for which F returns non-nil. However it is not specified as to what the
meaning of (not (satisfies F)) is. In particular the function oddp triggers an error if its
argument is not an integer. Thus one should logically conclude that 3.4 is not an element
of (satisfies oddp), as (oddp 3.4) does not return non-nil. It is not clear whether 3.4
is an element of (not (satisfies oddp)).

• Given a function that never returns, e.g. loops-forever, it is not clear whether 3.4 is an
element of (satisfies loops-forever) or of (not (satisfies loops-forever)).

• The subtypep function is allowed to return nil,nil in many situations which cause grief for
the application programmer. For example, the Common Lisp specification allows subtypep
to return nil,nil whenever at least one argument involves one of these type specifiers: and,
eql, the list form of function, member, not, or, satisfies, or values.

2.1 S-expression manipulation
Even with certain limitations, s-expressions are an intuitive data structure for programmatic
manipulation of type specifiers. Given two type specifiers, we may compute type specifiers repre-
senting their intersection, union, and relative complement simply by familiar s-expression manip-
ulation.

4

(defun type´ i n t e r s e c t i on (t1 t2)
‘ (and , t1 , t2))

(defun type´union (t1 t2)
‘ (or , t1 , t2))

(defun type´relative´complement (t1 t2)
‘ (and , t1 (not , t2)))

Another example comes in analyzing and reasoning about type specifiers. The sbcl imple-
mentation of subtypep has several notable limitations: (subtypep ’(member :x :y) ’keyword)
returns nil,nil, whereas it should return t,t. This is in-keeping with the specification because
one of the arguments involves member. However, the user can implement a smarter version of
subtypep to handle this case. Regrettable, the user cannot force the system to use this smarter
version internally.
(de f type not´type´spec ()
"Type spec o f the form (not type) "
’ (cons (eq l not)))

(defun smarter´subtypep (t1 t2)
(multiple´value´bind (T1<=T2 OK) (subtypep t1 t2)

(cond
(OK
(va lue s T1<=T2 t))

((typep t1 ’ (cons (member eq l member))) ; (eq l obj) or (member obj1 . . .)
(va lue s (every #’(lambda (obj)

(d e c l a r e (n o t i n l i n e typep))
(typep obj t2))

(cdr t1))
t))

; ; T1 <: T2 ==> not (T2) <: not (T1)
((and (typep t1 ’ not´type´spec)

(typep t2 ’ not´type´spec))
(smarter´subtypep (cadr t2) (cadr t1)))

; ; T1 <: T2 ==> not (T1 <= not (T2))
((and (typep t2 ’ not´type´spec)

(smarter´subtypep t1 (cadr t2)))
(va lue s n i l t))

; ; T1 <: T2 ==> not (not (T1) <= T2)
((and (typep t1 ’ not´type´spec)

(smarter´subtypep (cadr t1) t2))
(va lue s n i l t))

(t
(va lue s n i l n i l)))))

2.2 Boolean algebra
After applying the operations several times as shown in Section 2.1 it is not uncommon to result
in type specification which are no longer easily human readable. Such as:

5

(or
(or (and (and number (not bignum))

(not (or fixnum (or b i t (eq l ´1)))))
(and (and (and number (not bignum))

(not (or fixnum (or b i t (eq l ´1)))))
(not (or fixnum (or b i t (eq l ´1))))))

(and (and (and number (not bignum))
(not (or fixnum (or b i t (eq l ´1)))))

(not (or fixnum (or b i t (eq l ´1))))))

This type specifier actually may be reduced simply to (and number (not bignum) (not
fixnum)). Not only is this an improvement in human readability, but it also not surprisingly
allows calls to typep and subtypep execute more efficiently.

A Common Lisp function which does such type reduction may use a recursive descent reduction
function to re-write sub expressions, incrementally moving the expression toward a canonical from.
We’ve chosen to convert the expression to a sum of minterms form. This means it is an OR of
ANDs of leaf level types specifiers and complements thereof, where none of the leaf level expression
involve OR nor AND. Below are some examples of the cases of transformation which take place.

• Reductions of AND expressions.

– (and (and a b) x y) –> (and a b x y)

– (and x) –> x

– (and) –> t

– (and nil x y) –> nil

– (and number float x) –> (and float x)

– (and float string) –> nil

– (and A (or x y) B) –> (or (and A B x) (and A B y))

• Reductions of OR expressions.

– (or) –> nil

– (or A) –> A

– (or A t B) –> t

– (or A nil B) –> (or A B)

– (or string (member 1 2 3) (eql 4) (member 2 5 6)) –> (or string (member 1
2 3 4 5 6))

– (or fixnum string (member 1 2 "hello" a b)) –> (or fixnum string (member
a b))

– (or number (not (member 1 2 a b))) –> (or number (not (member a b)))

– (or number (not (member a b))) –> (not (member a b))

– (or number (not number)) –> t

– (or A (and A B C D) E) –> (or A E)

– (or (and A B) (and A B C D) E F) –> (or (and A B) E F)

– (or A (and A (not B))) –> (or A B)

• Reductions of NOT expressions.

– (not nil) –> t

– (not t) –> nil

6

– (not atom) –> (not atom)

– (not (not A)) –> A

– (not (or A B C)) –> (and (not A) (not B) (not C))

– (not (and A B C)) –> (or (not A) (not B) (not C))

• Reductions of MEMBER and EQL expressions.

– (and (member a b 2 3) symbol) –> (member a b)

– (and (member a 2) symbol) –> (eql a)

– (and (member a b) fixnum) –> nil

– (and X Y (not (member 1 2 a)) (not (member 2 3 4 b))) –> (and X Y (not (member
1 2 3 4 a b)))

• Consensus terms

– (or (and A B) (and A (not C)) (and B C)) –> (or (and A B) (and A (not B)))

– (or (and A B U) (and A (not C) U) (and B C U)) –> (or (and A B U) (and A
(not C) U))

The function handling the reduction should call itself recursively on each argument of AND, OR,
and NOT either before or after applying any case whose pattern matches. Moreover, this entire
process must repeat multiple times; in fact it much repeat until a fixed point is found; i.e. it must
repeat until the expression no longer changes with an additional application of the function.

Here is an example step by step reduction of the expression given above:

1. (or
(or (and (and number (not bignum))

(not (or fixnum (or b i t (eq l ´1)))))
(and (and (and number (not bignum))

(not (or fixnum (or b i t (eq l ´1)))))
(not (or fixnum (or b i t (eq l ´1))))))

(and (and (and number (not bignum))
(not (or fixnum (or b i t (eq l ´1)))))

(not (or fixnum (or b i t (eq l ´1))))))

2. (or
(or (and (and number (not bignum))

(not fixnum))
(and (and (and number (not bignum))

(not (or fixnum (or b i t (eq l ´1)))))
(not (or fixnum (or b i t (eq l ´1))))))

(and (and (and number (not bignum))
(not (or fixnum (or b i t (eq l ´1)))))

(not (or fixnum (or b i t (eq l ´1))))))

3. (or
(or (and number (not bignum) (not fixnum))

(and (and (and number (not bignum))
(not (or fixnum (or b i t (eq l ´1)))))

(not (or fixnum (or b i t (eq l ´1))))))
(and (and (and number (not bignum))

(not (or fixnum (or b i t (eq l ´1)))))
(not (or fixnum (or b i t (eq l ´1))))))

7

4. (or
(and number (not bignum) (not fixnum))
(and (and (and number (not bignum))

(not (or fixnum (or b i t (eq l ´1)))))
(not (or fixnum (or b i t (eq l ´1))))))

5. (or
(and number (not bignum) (not fixnum))
(and (and number (not bignum) (not fixnum))

(not (or fixnum (or b i t (eq l ´1))))))

6. (or
(and number (not bignum) (not fixnum))
(and (and number (not bignum) (not fixnum))

(not fixnum)))

7. (and number (not bignum) (not fixnum))

3 Rigorous Development
In this section we define exactly what we mean by the term maximal disjoint decomposition. The
main result of this section is Theorem 5 which claims the existence and uniqueness of the maximal
disjoint decomposition. The reader who does not care about the rigorous treatment may skip most
of this section, as long as he grasps the definition of maximal disjoint decomposition (Definition 10)
and the claims of its existence and uniqueness (Theorem 5).

The presentation order used in this section is bottom-up; i.e., we attempt to define and prove
everything needed before it is actually used. This order, may cause some difficulty to the reader
as it may not be clear at each point why something is being introduced. We attempt to alleviate
some of this problem by providing motivational discussions as as prelude to each section and by
giving lots of examples, so that even if the reader does not foresee how something will be used
later, exactly why it is being presented, at least the reader can get a rigorous definition but also
an intuitive feeling of the concept.

Some of the results presented in this section are also useful in Sections 4.2 and 5.5 where we
argue for the correctness of the algorithms presented in Sections 4.1 and 5.1 respectively.

3.1 Partitions and Covers
In this report we often refer to the relation of disjoint-ness or intersection between two sets. For
this reason we introduce a notation which some reader may find non-standard.

Notation 1. We use the symbol, K, to indicate the disjoint relation between sets. In particular
we take A K B to mean AXB “ H. We also say A M B to mean AXB ‰ H.

Example 1. t1, 3, 5u K t2, 4u, and t1, 3, 5u M t2, 3u.

Definition 1. Let D “ tX1, X2, ..., XMu, with Xi Ă U for 1 ď i ďM . If Xi ‰ Xj ùñ Xi K Xj ,
then D is said to be disjoined in U . I.e., a disjoined set is a set of mutually disjoint subsets of a
given U .

Example 2. The set tt1, 3, 5u, t0, 2u, t4, 6u,Hu is disjoined because its elements are sets, none
of which have a common element. By contrast, the set tt1, 2, 3u, t2, 4uu is not disjoined as 2 is
common to t1, 2, 3u and t2, 4u.

Notation 2. We denote the cardinality of set A, i.e. the number of elements, by |A|. We say
that an infinite set has infinite cardinality; otherwise it has finite cardinality.

8

Example 3. |H| “ 0.

Example 4. If A “ tX,Y u then 1 ď |A| ď 2 because A is not empty, and it might be that
X “ Y .

Definition 2. If V is a set of subsets of U , then we define the unary
Ť

operator as follows:

ď

V “

$

’

’

&

’

’

%

H if V “ H
X if |V | “ 1 and V “ tXu
Ť

XPV

X if |V | ą 1

Definition 3. If V is a set of subsets of U , then we define the unary
Ş

operator as follows:

č

V “

$

’

’

&

’

’

%

U if V “ H
X if |V | “ 1 and V “ tXu
Ş

XPV

X if |V | ą 1

Example 5. Let V “ tt1u, t1, 2u, t1, 2, 4u, t1, 3, 4, 5uu, then
č

V “ t1u X t1, 2u X t1, 2, 4u X t1, 3, 4, 5u “ t1u

and
ď

V “ t1u Y t1, 2u Y t1, 2, 4u Y t1, 3, 4, 5u “ t1, 2, 3, 4, 5u

The values of
Ť

V and
Ş

V in the cases where |V | “ 0 and |V | “ 1 are defined as such so that
the notation is consistent. In particular, the following identities hold:

ď

pV Y V 1q “ p
ď

V q Y p
ď

V 1q
č

pV Y V 1q “ p
č

V q Y p
č

V 1q

A more extensive treatment of these identies can be found in Appendix A.
Note that the definitions of

Ť

V and
Ş

V in no way make a claim or supposition about the
cardinality of V . We may use the same notation whether V is infinite or finite.

Definition 4. A partition of a set V is a disjoined set P with the property that
Ť

P “ V . A
disjoined set is said to partition its union.

Example 6. D “ tt0u, t2, 4, 6, 8u, t1, 3, 5, 7, 9uu is a partition of t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u, because
the three sets (the elements of D) are mutually disjoint and

ď

D “ t0u Y t2, 4, 6, 8u Y t1, 3, 5, 7, 9u “ t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u

Example 7. The set V “ tt1u, t1, 2u, t2, 4u, t3, 4, 5uu from Example 5 is not a partition of
t1, 2, 3, 4, 5u because the elements of V are not mutually disjoint. However, V does cover t1, 2, 3, 4, 5u.
The definition of cover is given below (Definition 5).

Notation 3. By 2U we denote the power set of U , i.e. the set of subsets of U . Consequently we
may take V Ă 2U to mean that V is a set of subsets of U .

Example 8. If U “ t1, 2, 3u, then 2U “ tH, t1u, t2u, t3u, t1, 2u, t1, 3u, t2, 3u, t1, 2, 3uu. Notice
that |U | “ 3 and |2U | “ 23 “ 8. It holds in general that |2U | “ 2|U |.

Definition 5. If V Ă 2U and C Ă 2U , C is said to be a cover of V , or equivalently we say that
C covers V , provided

Ť

V Ă
Ť

C. Furthermore, if
Ť

V “
Ť

C we say that C is an exact cover of
V or that C exactly covers V .

Example 9. If U “ t1, 2, 3, 4u then V “ tt1, 2, 3u, t2, 4, 6u,Hu covers U . However, V is not an
exact cover of U because 6 P

Ť

V but 6 R U , i.e.
Ť

V Ć U .

9

3.2 The Boolean Closure
The purpose of the next several definitions is to define the set pV which is intended to be the set
of all Boolean combinations of sets in a given set V . pV is defined in Definition 8, and is proved to
exist and be unique in Corollary 1.

Lemma 1. If V is a set of subsets of U , and DX0 P V such that X P V ùñ X0 Ă X, then
X0 “

Ş

V .

Proof. X P V ùñ X0 Ă X, therefore X0 Ă
Ş

V .

Case 1: p
Ş

V qzX0 “ H, therefore
Ş

V Ă X0

Case 2: p
Ş

V qzX0 ‰ H, so let α P p
Ş

V qzX0. This means α R X0, rather α P
Ş

V . α P
Ş

V
means that @X P V, α P X, which is a contradiction because X0 P V .

Intuitively, Lemma 1 says that given a set of subsets, if one of those subsets happens to be a
subset of all the given subsets, then it is in fact the intersection of all the subsets.

Example 10. Let V “ tH, t1u, t2uu. Notice that there is an X0, namely X0 “ H, which has
the property that it is a subset of every element of V , i.e., X P V ùñ X0 Ă X. Therefore,
Ş

V “ X0 “ H.

Example 11. Let V “ tt1u, t1, 2u, t1, 2, 3u, t1, 2, 3, 4u, ..., t1, 2, 3, 4, ..., Nuu for some N . Notice
that there is an X0, namely X0 “ t1u, which has the property that it is a subset of every element
of V , i.e., t1u is a subset of every element of V , or X P V ùñ X0 Ă X. Therefore,

Ş

V “ t1u.

Definition 6. Let V Ă U , and let F be a set of binary functions mapping UˆU ÞÑ U . A superset
V 1 Ą V is said to be a closed superset of V under F if α, β P V 1 and f P F ùñ fpα, βq P V 1.

Example 12. If V “ t1u, and F “ t`u, then the set of integers Z is closed superset of V under
F . Why, because V Ă Z, and α, β P Z ùñ α` β P Z.

Definition 7. Let V Ă U , and let F be a set of binary functions mapping U ˆ U ÞÑ U . The
closure of V under F , denoted closF pV q, is the intersection of all closed supersets of V under F .

Example 13. If V “ t1u, and F “ t`u, then closF pV q is the set of positive integers, N.

Proof. To show this we argue that N is a closed superset of V and that if V 1 is a closed superset
of V then N Ă V 1.

1 P N so V Ă N. If α, β P N, then α` β P N, so N is closed.
Let V 1 be a closed superset of V . N Ă V 1 can be shown by induction. 1 P V 1 because 1 P V Ă

V 1. Now assume k P V 1. Is k ` 1 P V 1? Yes, because tku Y t1u “ tk, 1u Ă V 1 ùñ k ` 1 P V 1.
Therefore N Ă V 1.

So by Lemma 1, N “ closF pV q.

Theorem 1. If V Ă U , and if F is a set of binary functions defined on U , then there exists a
unique closF pV q.

Proof. Existence: Define a sequence tΦnu8n“0 of sets as follows:

• Φ0 “ V

• If i ą 0, then Φi “ Φi´1 Y
Ť

fPF

tfpx, yq|x P Φi´1, y P Φi´1u

10

Define the set Φ “
8
Ť

i“0
Φi. We know that V “ Φ0 Ă

8
Ť

i“0
Φi. Next, let α P Φ, β P Φ, f P F ; take

n ě 0 such that α P Φn and β P Φn. By definition fpα, βq P Φn`1 Ă Φ. Thus Φ satisfies the
definition of closF pV q.

Uniqueness: Suppose Ψ is the set of all sets satisfying the definition of closF pV q. Set Φ “
Ş

Ψ.
We will show that Φ satisfies the definition of closF pV q. V is a subset of every element of Ψ so
V Ă

Ş

Ψ “ Φ. Now, take α P Φ, β P Φ, and f P F . Since α P Φ, that means α is in every element
of Ψ, similarly for β, so fpα, βq is an element of very element of Ψ, which means fpα, βq P

Ş

Ψ “ Φ.
Therefore, Φ is uniquely defined and satisfies the definition of closF pV q.

α β αY β αX β
H H H H

H t1, 2u t1, 2u H

H t2u t2u H

H t2, 3u t2, 3u H

H t1, 2, 3u t1, 2, 3u H

t1, 2u H t1, 2u H

t1, 2u t1, 2u t1, 2u t1, 2u
t1, 2u t2u t1, 2u t2u
t1, 2u t2, 3u t1, 2, 3u t2u
t1, 2u t1, 2, 3u t1, 2, 3u t1, 2u
t2u H t2u H

t2u t1, 2u t1, 2u t2u
t2u t2u t2u t2u
t2u t2, 3u t2, 3u t2u
t2u t1, 2, 3u t1, 2, 3u t2u
t2, 3u H t2, 3u H

t2, 3u t1, 2u t1, 2, 3u t2u
t2, 3u t2u t2, 3u t2u
t2, 3u t2, 3u t2, 3u t2, 3u
t2, 3u t1, 2, 3u t1, 2, 3u t2, 3u
t1, 2, 3u H t1, 2, 3u H

t1, 2, 3u t1, 2u t1, 2, 3u t1, 2u
t1, 2, 3u t2u t1, 2, 3u t2u
t1, 2, 3u t2, 3u t1, 2, 3u t2, 3u
t1, 2, 3u t1, 2, 3u t1, 2, 3u t1, 2, 3u

Table 2: Closure under a set of operations

Example 14. Let V “ tt1, 2u, t2, 3uu, and F but the set containing the set-union and set-
intersection operations, denoted F “ tY,Xu. Then closF pV q “ tH, t1, 2u, t2u, t2, 3u, t1, 2, 3uu,
because if we take α, β P tH, t1, 2u, t2u, t2, 3u, t1, 2, 3uu then both αYβ and αXβ are also therein.
This can be verified exhaustively as in Table 2.

Any smaller set would not fulfill the definition of closF pV q. In particular if either or t1, 2u or
t2, 3u were omitted, then it would no longer be a superset of V , and if any of tH, t2u, t1, 2, 3uu
were omitted, then it would no longer be a closed superset of V . Finally, if any element were
added, such as V 1 “ V Y t3u, it would no longer fulfill the intersection requirement; i.e. V 1 Ć V
so V 1 is not the intersection of all closed supersets of V under F .

Definition 8. If V Ă U , and F is the set of three primitive set operations union, intersection,
and relative complement, (F “ tY,X, zu) then we denote closF pV q simply by pV and call it the
Boolean closure of V .

11

Corollary 1. If V Ă U , the closure pV exists and is unique.

Proof. Simple application of Theorem 1.

Example 15. Let V “ tt1, 2u, t2, 3uu as in Example 14.
pV “ tH, t1u, t2u, t3u, t1, 2u, t1, 3u, t2, 3u, t1, 2, 3uu. I.e., pV “ 2t1,2,3u.

3.3 Disjoint Decompositions
In this section we define the notion of disjoint decomposition along with some examples. We also
present and prove two results, Lemma 2 which is used to prove Theorem 4, and Lemma 4 which
is used to prove Lemma 2. Lemma 2 in particular sheds insight on how one might create an
algorithm to improve or refine a given disjoint decomposition.

Notation 4. We use the symbol,
Ů

, to indicate union of mutually disjoint sets. Moreover, if we
write

Ů

Xn then we claim or emphasize that i ‰ j ùñ Xi K Xj .

Theorem 2. If V Ă 2U with |V | ă 8, a disjoint decomposition of V has finite cardinality.

Proof. A disjoint decomposition of V is a set of Boolean combinations of elements of V . There
are finitely many such Boolean combinations of elements of V , and any subset of a finite set is
finite.

An argument that there are finitely many Boolean combinations of a finite set is presented in
Appendix B.

Theorem 3. If V Ă 2U with |V | ă 8, then there are only finitely many disjoint decompositions.

Proof. Each disjoint decomposition is a set of Boolean combinations of elements of V . The set of
all Boolean combinations of elements of V is finite. And the set of subsets of a finite set is finite.

As stated in Theorem 2, an argument that there are finitely many Boolean combinations of a
finite set is presented in Appendix B.

Definition 9. Given a set of non-empty, possibly overlapping sets V Ă 2U , set D is said to be a
disjoint decomposition of V , if D is disjoined, D Ă pV , and D exactly covers V .

Another way of thinking about Definition 9 is that if D is a disjoint decomposition of V , then
D is a partition of

Ť

V , and that every element of D is a Boolean combination of elements of V .
We will see in Theorem 4 that each of these Boolean combinations is an intersection with some
element of V .

Example 16. Let V “ tt1, 2u, t2, 3uu as in Example 14. D “ tt1u, t2, 3uu Ă pV is a disjoint
decomposition because t1u K t2, 3u, and

Ť

D “ t1u Y t2, 3u “ t1, 2u Y t2, 3u “
Ť

V .

Lemma 2. Suppose D is disjoint decomposition of V , and X P D. If there exist distinct α, β P pV ,
both different from H such that tα, βu is a disjoint decomposition of tXu, then tα, βuYDztXu is
a disjoint decomposition of V with cardinality |D| ` 1.

Proof. First we show that both α and β are disjoint from all elements of DzX. Proof by contra-
diction. Without loss of generality take H ‰ γ P DzX such that α M γ. So H ‰ α X γ Ă DzX.
So αX γ Ć X. But since α Ă X we also have αX γ Ă X. Contradiction!

Since αY β “ X,
Ť

D “ αY β Y
Ť

DztXu. Thus tα, βu YDztXu is a cover of V .
Now since α and β are disjoint from all elements of DztXu and disjoint from each other, we

know α R DzX and β R DztXu, |tα, βuYDztXu| “ |tα, βu|` |DztXu| “ 2`|D|´1 “ |D|`1

A brief intuitive explanation of Lemma 2 may be useful. The lemma basically says that if we
start with a disjoint decomposition, D but one of the elements, X, of that disjoint decomposition

12

can itself be decomposed into tα, βu Ă pV , then we can construct a better disjoint decomposition
having exactly one additional element, simply be removing X and adding back α and β. I.e.
starting with D, if X is a decomposable element of D, decomposable into tα, βu, then a better
disjoint decomposition is tα, βu YDztXu.

Example 17. Let V “ tt1, 2u, t2, 3uu as in Example 14.
Recall that pV “ tH, t1u, t2u, t3u, t1, 2u, t1, 3u, t2, 3u, t1, 2, 3uu.

D “ tt1u, t2, 3uu is a disjoint decomposition of V . Let X “ t2, 3u, α “ t2u, β “ t3u. Notice
that α “ t2u P pV and β “ t3u P pV , that t2u K t3u, and that X “ t2, 3u “ t2u Y t3u “ αY β.

According to Lemma 2, tα, βuYDztXu is a disjoint decomposition of V with cardinality |D|`1.
Is this true? Yes!

D1 “ tα, βu YDztXu

“ tt2u, t3uu Y tt1u, t2, 3uuztt2, 3uu
“ tt1u, t2u, t3uu.

Moreover, |D| “ 2, whereas |D1| “ 3.

Lemma 3. If A Ă U and B Ă U , with |A| “ |B| ă 8 but A ‰ B, then AzB ‰ H and BzA ‰ H.

Proof. Proof by contradiction: If AzB “ BzA “ H then A “ B. Contradiction! So without loss
of generality assume AzB “ H, and AzB ‰ H. We have |AzB| “ 0, and |BzA| ą 0.

A “ AzB YAXB
AzB K AXB, so |A| “ |AzB YAXB| “ |AzB| ` |AXB| “ 0` |AXB| “ |AXB|.
B “ BzAYAXB.
BzA K AXB, so |B| “ |BzAYAXB| “ |BzA| ` |AXB| ą |AXB|
|A| “ |B| ą |AXB| “ |A|. Contradiction!

Example 18. Let A “ t1, 2, 3u, B “ t1, 2, 4u. This A and B fulfill Lemma 3. In particular
|A| “ |B| “ 3 ă 8, and A ‰ B. The lemma claims that AzB ‰ H and BzA ‰ H, and this is in
fact the case. AzB “ t1, 2, 3uzt1, 2, 4u “ t3u ‰ H. BzA “ t1, 2, 4uzt1, 2, 3u “ t4u ‰ H.

Lemma 4. If D1 and D2 are disjoint decompositions of V , such that D1 ‰ D2 and |D1| “ |D2|,
then there exists a disjoint decomposition of V with higher cardinality.

Proof. Denote N “ |D1| “ |D2|. Denote D1 “ tX1, X2, ..., XNu and D2 “ tY1, Y2, ..., YNu. By
Lemma 3 we can take Yj P D2 such that Yj R D1, i.e. Yj P D2zD1. Since Yj Ă

Ů

D2 “
Ů

D1,
take Xi P D1 such that Yj M Xi. Yj M Xi ùñ Yj XXi ‰ H.

Case 1: Xi Ć Yj ùñ XizYJ ‰ H. Xi “ XizYj YXiXYj , with XizYj K XiXYj , so by Lemma 2,
tXizYj , Xi X Yju YD1ztXiu is disjoined and has cardinality N ` 1.

Case 2: Xi “ Yj . Impossible since Xi P D1 while Yj P D2zD1.

Case 3: Xi Ĺ Yj ùñ YjzXi ‰ H. Yj “ YjzXi YXi X Yj , with YjzXi K Xi X Yj , so by Lemma 2,
tYjzXi, Xi X Yju YD2ztYju is disjoined and has cardinality N ` 1.

Example 19. Let V “ tt1, 2u, t2, 3uu as in Example 14. Let D1 “ tt1u, t2, 3uu and D2 “
tt1, 2u, t3uu. Notice that both D1 and D2 are both disjoint decompositions of V , and they fulfill
the assumptions of Lemma 4. In particular, D1 ‰ D2 and |D1| “ |D2| “ 2.

The lemma claims that there is therefore a disjoint decomposition with cardinality 3. Moreover,
the proof of Lemma 4 suggests a way to find such a disjoint decomposition. To do this we must

13

take X P D1 and Y P D2 such that X ‰ Y , and X M Y .

Let’s take X “ t2, 3u P D1

and Y “ t1, 2u P D2.

This choice suffices because X ‰ Y and X M Y .
We can now construct two sets D11 and D12, and one of these or the other (or perhaps both)

will be a disjoint decomposition of cardinality 3.

D11 “ tXzY,X X Y u YD1ztXu

“ tt2, 3uzt1, 2u, t2, 3u X t1, 2uu Y tt1u, t2, 3uuztt2, 3uu
“ tt3u, t2uu Y tt1uu
“ tt1u, t2u, t3uu

D12 “ tY zX,X X Y u YD2ztY u

“ tt1, 2uzt2, 3u, t2, 3u X t1, 2uu Y tt1, 2u, t3uuztt1, 2uu
“ tt1u, t2uu Y tt3uu
“ tt1u, t2u, t3uu

We see, in this case, that both D11 and D12 are disjoint decompositions of cardinality 3.
It happens in this example that D11 “ D12. This equality is, however, not an immediate

consequence of Lemma 4.

3.4 Maximal Disjoint Decomposition
Definition 10. If D is a disjoint decomposition such that for any other disjoint decomposition
D1 it holds that |D| ą |D1|, then D is said to be a maximal disjoint decomposition.

The intuition here is that the maximal disjoint decomposition of a given set V of subsets of
U is the most thorough partitioning of

Ť

V which is possible when we are only allowed to use
Boolean combinations of the sets given in V . I.e., while it might be possible to conceive of a better
partitioning (more complete) and in fact, it may not even be possible in general to find the most
thorough partitioning in general, when restricted to using only Boolean combinations of elements
of V , we can think of the most thorough such partitioning.

There is a potential confusion if we informally use a term such as largest decomposition. By
most thorough, we mean the set, D “ tX1, X2, ..., Xnu of subsets for which D has the maximum
possible number of elements (maximizing n), not such that the X’s themselves has as many
elements as possible. I.e., we want a large collection of small sets, rather than a small collection
of large sets.

Example 20. Let V “ tt1, 2u, t2, 3, 4uu; pV “ tH, t1u, t2u, t1, 2u, t3, 4u, t1, 3, 4u, t2, 3, 4u, t1, 2, 3, 4uu.
D “ tH, t1u, t2u, t3, 4uu is the maximal disjoint decomposition of V .
Why? Clearly D is a disjoint decomposition of V . The only way to decompose further would

be to consider the set D1 “ tH, t1u, t2u, t3u, t4uu. However, D1 is not the maximal disjoint
decomposition of V because D1 Ć pV . Notice that t3u R pV (and neither is t4u). There is no way to
produce the set t3u (nor t4u) starting with the elements of V and combining them finitely many
times using intersection, union, and relative complement.

Theorem 4. If D is a maximal disjoint decomposition of V , then @X P D D A P V such that
X Ă A.

14

Proof. Proof by contradiction: Let D be a maximal disjoint decomposition of V . Since
Ť

D “
Ť

V , let Y P V such that X M Y . By contrary assumption X Ć Y ùñ XzY ‰ H. So
X “ XzY YXXY , XzY K XXY , so by Lemma 2, tXzY,XXY uY

Ť

DzX is disjoint decomposition
of V with greater cardinality than D, which is impossible since D was assumed to be a maximal
disjoint decomposition. Contradiction!

Theorem 4 basically says that every element of a maximal disjoint decomposition of V is
a subset of some element of V . This means that if we want to construct a maximal disjoint
decomposition algorithmically, an interesting strategy might be to start with the elements of V
and look at cleverly constructed intersections thereof. This is in fact the strategy we will apply in
the algorithms explained in Section 4 and 5.

Example 21. As in Example 20, let V “ tt1, 2u, t2, 3, 4uu. D “ tH, t1u, t2u, t3, 4uu is the
maximal disjoint decomposition of V . For each X P D we can find an A P V such that X Ă A.
Note, that A is not necessarily unique. In particular.

D Q H Ă t1, 2u P V
D Q t1u Ă t1, 2u P V
D Q t2u Ă t2, 3, 4u P V

D Q t3, 4u Ă t2, 3, 4u P V

Theorem 5. There exists a unique maximal disjoint decomposition.

Proof. Let D˚ be the set of all disjoint decompositions of V . D˚ is a finite set by Theorem 3. Let
C be the set of cardinalities of elements of D˚, each of which is finite by Theorem 2. C is a finite
set of integers, let M “ maxpCq. Let Dmax be the set of elements X P D˚ such that |X| “ M .
We now show that |Dmax| “ 1.

Case |Dmax| “ 0: Impossible because there exists at least one decomposition, namely the trivial
one: t

Ť

V u.

Case |Dmax| ą“ 2: Impossible because if α, β P Dmax, α ‰ β, then by Lemma 4 there exists
another disjoint decomposition, γ such that |γ| ą |α|, which would mean that
α is not maximal.

Case |Dmax| “ 1: Since |Dmax| cannot be negative, 0, nor greater than 1, it must be equal to 1.

Thus there is exactly one disjoint decomposition whose cardinality is larger than any other
disjoint decomposition.

3.5 Some definitions from the Common Lisp specification
The Common Lisp specification defines several terms which may in some cases be helpful and in
some cases confusing with regard to the definitions given in Section 1. The terms we have already
introduced, are defined in terms of general sets. In Common Lisp, types are defined in a way
which is isomorphic to sets. Some of the Common Lisp terms describing types are analogous to
definitions we have made in terms of sets. These definitions come verbatim from the Common
Lisp specification.[Ans94, Glossary] More explanation is given in Section 1.2.

exhaustive partition: n. (of a type) a set of pairwise disjoint types that form an exhaustive union.

exhaustive union: n. (of a type) a set of subtypes of the type, whose union contains all elements
of that type.

pairwise: adv. (of an adjective on a set) applying individually to all possible pairings
of elements of the set. “The types A, B, and C are pairwise disjoint if A and
B are disjoint, B and C are disjoint, and A and C are disjoint.”

15

type: n.

1. a set of objects, usually with common structure, behavior, or purpose.
(Note that the expression “X is of type Sa” naturally implies that “X
is of type Sb” if Sa is a subtype of Sb.)

2. (immediately following the name of a type) a subtype of that type. “The
type vector is an array type.”

type equivalent: adj. (of two types X and Y) having the same elements; that is, X is a subtype
of Y and Y is a subtype of X.

type expand: n. [sic]1 to fully expand a type specifier, removing any references to derived
types. (Common Lisp provides no program interface to cause this to occur,
but the semantics of Common Lisp are such that every implementation must
be able to do this internally, and some situations involving type specifiers are
most easily described in terms of a fully expanded type specifier.)

type specifier: n. an expression that denotes a type. “The symbol random-state, the
list (integer 3 5), the list (and list (not null)), and the class named
standard-class are type specifiers.”

In terms of these definitions from Common Lisp, we may think of a disjoint decomposition of
V Ă 2U as an exhaustive partition of

Ş

V . The distinction between the two concepts is subtle.
To find an exhaustive partition, we start with a single set and partition it into disjoint subsets
whose union is the original set. To find a disjoint decomposition, we start with a set of possibly
overlapping subsets of a given set, whose union is not necessarily the entire site, and we proceed
by finding another set of subsets which is pairwise disjoint and which has the same union as the
given set of subsets.

4 Simple set disjoint decomposition
This section presents both a conceptually simple algorithm for calculating the maximal decompo-
sition (Section 4.1), and thereafter argues for the correctness of the algorithm (Section4.2). The
algorithm suffers some performance problems which are addressed in Section 5.

4.1 Algorithm for set disjoint decomposition
The algorithm used in the Common Lisp package regular-type-expressions2 [NDV16] for calculating
the maximal disjoint decomposition is shown in Algorithm 1.3 This algorithm is straightforward
and brute force. A notable feature of this algorithm is that it easily fits in 40 lines of Common
Lisp code, so it is easy to implement and easy to understand, albeit not the most efficient possible

1Type expand is a verb, but the specification contains what seems to be a typo claiming it to be a noun.
2https://gitlab.lrde.epita.fr/jnewton/regular-type-expression, The Common Lisp package source code is avail-

able from the EPITA/LRDE website.
3Many thanks to Dr. Alexandre Duret-Lutz for more than a few white board discussions to help me express

these ideas.

16

in terms of run-time performance.
Algorithm 1: Finds the maximal disjoint decomposition
Input: A finite non-empty set U of sets
Output: A finite set V of disjoint sets

1.1 V ÐH

1.2 begin
1.3 while true do
1.4 V 1 Ð tu P U |u1 P Uztuu ùñ u K u1u
1.5 V Ð V Y V 1

1.6 U Ð UzV 1

1.7 if U “ H then
1.8 return V
1.9 else

1.10 Find X P U and Y P U such that X K Y
1.11 if X Ă Y then
1.12 U Ð UztY u Y tY zXu

1.13 else if Y Ă X then
1.14 U Ð UztXu Y tXzY u
1.15 else
1.16 U Ð UztX,Y u Y tX X Y,XzY, Y zXu

1.17 return V

Notes about Algorithm 1:

Line 1.4: we find the set, V 1 of all elements of U which are disjoint from all other elements of U .
Notice that in line 1.4, if U is a singleton set, then V 1 is that singleton element, thus
U ÐH on line 1.6.

Line 1.4: This is of course an Opn2q search, and what is worse, it is repeated each time through
the loop headed on line 1.3. Part of the motivation of the algorithm in Section 5 is to
eliminate this Opn3q search.

Line 1.8: If U “ H then we have collected all the disjoint sets into V .

Line 1.10: this search is Opn2q.

Line 1.10: It is guaranteed that X and Y exist, because |U | ą 1, and if all the elements of U were
mutually disjoint, they would have all been collected in line 1.4.

Line 1.11: The case analysis here does the following: U Ð tXXY,XzY, Y zXuYUztHu. However,
some elements of tXXY,XzY, Y zXu may beH or in fact X or Y depending on the subset
relation between X and Y , thus the three cases specialize the possible subset relations.

Line 1.12: If X Ă Y , then XXY “ X and XzY “ H. Thus update U by removing Y , and adding
Y zX.

Line 1.14: If Y Ă X, then XXY “ Y and Y zX “ H. Thus update U by removing X, and adding
XzY .

Line 1.16: Otherwise, update U by removing X and Y , and adding X X Y , XzY , and Y zX.

17

4.2 Correctness of the simple algorithm

5 Set disjoint decomposition as graph problem
One of the sources of inefficiency of the algorithm explained in Section 4 is at each iteration of the
loop, an Opn2q search is made to find sets which are disjoint from all remaining sets. This search
can be partially obviated if we employ a little extra book-keeping. The fact to realize is that if
X K A and X K B, then we know a priori that X K AXB, X K AzB, X K BzA. This knowledge
eliminates some of useless operations.

TODO: need a proof that the algorithm terminates, and that it gets the correct answer.

5.1 The Algorithm

7 2

3

4

1

8

5

6

Node Boolean expression
1 A1
2 A2
3 A3
4 A4
5 A5
6 A6
7 A7
8 A8

Figure 3: State 0: Topology graph

This algorithm is semantically very similar to the algorithm shown in Section 4 but rather than
relying on Common Lisp primitives to make decisions about connectivity of sets/types, it initializes
a graph representing the initial relationships, and thereafter manipulates the graph maintaining
connectivity information. This algorithm is more complicated in terms of lines of code, 250 lines
of Common Lisp code as opposed to 40 lines for the algorithm in Section 4.

This more complicated algorithm is presented here for two reasons. (1) It has much faster
execution times, especially for larger sets types. (2) We hope that presenting the algorithm in a
way which obviates the need to use Common Lisp primitives makes it evident how the algorithm
might be implemented in a programming language other than Common Lisp.

Figure 3 shows a graph representing the topology (connectedness) of the diagram shown in
Figure 1. Nodes 1 , 2 , ... 8 in Figure 3 correspond respective to X1, X2, ... X8 in Figure 1.

5.2 Graph-based Disjoint Decomposition Algorithm
The algorithm commences by constructing a graph from a given set of subsets (Section 5.2.1), and
proceeds by breaking the green and blue connections, one by one, in controlled ways until all the
nodes become isolated. Sometimes it is necessary to temporarily create new connections which
certain connections are broken as is seen below. There are a small number of cases to consider
as are explained in detain in Sections 5.2.2, 5.2.3, 5.2.4, and 5.2.5. Repeat alternatively applying
both tests until all the nodes become isolated.

There are several possible flows that variations of the algorithm. We start by two alternative

18

basic flows in Algorithms 2 and 3. We discuss variations of these flows in Section 9.2.
Algorithm 2: DecomposeByGraph-1
Input: U : A finite non-empty set of sets, i.e. U has no repeated elements and no empty

elements.
Output: The maximal decomposition of U

2.1 begin
2.2 GÐ ConstructGraphpUq
2.3 while G.blue or G.green do
2.4 for pX Ñ Y q P G.blue do
2.5 BreakRelaxedSubsetpG,X, Y q;
2.6 for tX,Y u P G.green do
2.7 BreakTouchingpG,X, Y q;

2.8 return G.disjoint

Algorithm 3: DecomposeByGraph-2
Input: U : A finite non-empty set of sets, i.e. U has no repeated elements and no empty

elements.
Output: The maximal decomposition of U

3.1 begin
3.2 GÐ ConstructGraphpUq
3.3 while G.blue or G.green do
3.4 for pX Ñ Y q P G.blue do
3.5 BreakStrictSubsetpG,X, Y q;
3.6 for tX,Y u P G.green do
3.7 BreakTouchingpG,X, Y q;
3.8 for pX Ñ Y q P G.blue do
3.9 BreakLooppG,X, Y q;

3.10 return G.disjoint

5.2.1 Graph construction

To construct this graph first eliminate duplicate sets. I.e., if X Ă Y and X Ą Y , then discard
either X or Y . It is necessary to consider each pair pX,Y q of sets, Opn2q loop. Algorithm 4

19

describes the graph construction, and uses functions defined in Algorithms 6, 7, 8, and 9.
Algorithm 4: ConstructGraph
Input: A finite non-empty set U of sets, i.e. U has no repeated elements.
Output: A graph, G, in particular a set of blue ordered edges and green ordered edges.

The nodes of nodes of G are some (or all) of the elements of U
4.1 begin
4.2 G.blueÐH

4.3 G.greenÐH

4.4 G.nodesÐ set of of labeled nodes, seeded from U
4.5 G.disjointÐH

4.6 for tX,Y u Ă U do
4.7 if X Ă Y then
4.8 AddBlueArrowpG,X, Y q
4.9 else if X Ą Y then

4.10 AddBlueArrowpG, Y,Xq
4.11 else if X M Y then
4.12 AddGreenLinepG,X, Y q
4.13 else if X K Y then
4.14 Nothing
4.15 else
4.16 AddGreenLinepG,X, Y q

4.17 for α P G.nodes do
4.18 MaybeDisjointNodepG,αq

4.19 return G

Notes about Algorithm 4:

Line 4.4: Each labeled node is a record with fields tlabel, subsets, supersetsu. The label represents
the Boolean expression for the subset in question. originally this label is identically the
element coming from U , but at the end of the algorithm this label has become a Boolean
expression expression some combination of elements of U .

Line 4.6: Notice that X ‰ Y are different because tX,Y u is a two element set.

Line 4.6: Notice that once tX,Y u has been visited tY,Xu cannot be visited later, because it is the
same set.

Line 4.16: This final Else clause covers the case in which it is not possible to determine whether
whether X Ă Y or whether X K Y . In this case the worst case, that they are non-disjoint,
and draw green line between X and Y .

Because sometimes it is the case that the relation of two sets cannot be determined, we must
interpreted as follows:

• a blue arrow between two nodes means a subset relation

• no blue arrow nor green line between two nodes means the disjoint relation.

• a green line between two nodes means the sets may touch.

20

Algorithm 5: MaybeDisjointNode
Input: G: a graph
Input: X: a node of G
Side Effects: Perhaps modifies G.nodes and G.disjoint.

5.1 begin
5.2 if X.label “ H then
5.3 Delete X from G.nodes

5.4 else if H “ X.touches “ X.supersets “ X.subsets then
5.5 Delete X from G.nodes
5.6 Push X onto G.disjoint

21

Notes about Algorithm 5:

Line 5.2: Section 5.2.6 explains in more details, but here we simply avoid collecting the empty set.

Line 5.6: This push should have set-semantics. I.e., if there is already a set in G.disjoint which
is equivalent to to this one, then do not push a second one.

Algorithm 6: AddGreenLine
Input: G: a graph
Input: X: a node of G
Input: Y : a node of G
Side Effects: Modifies G adding a green line between X and Y

6.1 begin
6.2 Push tX,Y u onto G.green
6.3 Push X onto Y.touches
6.4 Push Y onto X.touches

Algorithm 7: DeleteGreenLine
Input: G, a graph
Input: X: a node of G
Input: Y : a node of G
Side Effects: Modifies G deleting the green line between X and Y . Perhaps extends

G.disjoint and shortens G.nodes.
7.1 begin
7.2 Remove tX,Y u from G.green
7.3 Remove X from Y.touches
7.4 Remove Y from X.touches
7.5 MaybeDisjointNodepG,Xq
7.6 MaybeDisjointNodepG, Y q

Algorithm 8: AddBlueArrow
Input: G: a graph
Input: X: a node of G
Input: Y : a node of G
Side Effects: Modifies G adding a blue arrow from X to Y

8.1 begin
8.2 Push pX,Y q onto G.blue
8.3 Push X onto Y.subsets
8.4 Push Y onto X.supersets

Algorithm 9: DeleteBlueArrow
Input: G: a graph
Input: X: a node of G
Input: Y : a node of G
Side Effects: Modifies G removing the blue arrow from X to Y . Perhaps extends

G.disjoint and shortens G.nodes
9.1 begin
9.2 Remove pX,Y q from G.blue
9.3 Remove X from Y.subsets
9.4 Remove Y from X.supersets
9.5 MaybeDisjointNodepG,Xq
9.6 MaybeDisjointNodepG, Y q

22

This construction assures that no two nodes have both a green line and also a blue arrow
between them.

There is an important design choice to be made: How to represent transitive subset relation-
ships. There are two variations. We call these variations implicit-inclusion vs. explicit-inclusion.

The graph shown in Figure 3 uses explicit-inclusion. In the graph A5 Ă A8 Ă A1. The question
is whether it is necessary to include the blue arrow from 5 to 1 . Explicit inclusion means that all
three arrows are maintained in the graph: 5 to 8 , 8 to 1 and explicitly 5 to 1 . Implicit-inclusion
means that the arrow from 5 to 1 is omitted.

The algorithm which we explain in this section can be made to accommodate either choice as
long as the choice is enforced consistently. Omitting the arrow obviously lessens the number of
arrows to have to maintain, but makes some of the algorithm more tedious.

As far as the initialization of the graph is concerned, in the variation of implicit-inclusion is it
necessary to avoid creating arrows (or remove them after the fact) which are implicit.

5.2.2 Strict sub-set

Before

0

Y

2

1

X

3

After

0

Y

2

1

X

3

Node Relabeled Boolean expression
X X
Y Y XX

Figure 4: Strict sub-set before and after mutation

23

Algorithm 10: BreakStrictSubset: Breaks a strict subset edge if possible
Input: G is a graph.
Input: X: a node in G
Input: Y : a node in G
Output: G
Side Effects: Possibly deletes a vertex and changes a label.

10.1 begin
10.2 if Y R X.supersets then
10.3 Nothing
10.4 else if X.subsets ‰ H then
10.5 Nothing
10.6 else if X.touches ‰ H then
10.7 Nothing
10.8 else
10.9 Y.labelÐ Y XX

10.10 DeleteBlueArrowpG,X, Y q

10.11 return G

As shown in Algorithm 10, blue arrows indicate sub-set/super-set relations, they point from a
sub-set to a super-set. A blue arrow from X to Y may be eliminated if conditions are met:

• X has no blue arrows pointing to it, and

• X has no green lines touching it.

These conditions mean that X represents a set which has no subsets elsewhere in the graph,
and also that X represents a set which touches no other set in the graph.

Figure 4 illustrates this mutation. Node Y may have other connections, including blue arrows
pointing to it or from it, and green lines connected to it. However node X has no green lines
connected to it, and no blue arrows pointing to it; although it may have other blue arrows pointing
away from it.

On eliminating the blue arrow, replace the label Y by Y XX.
In Figure 3, nodes 5 and 6 meet this criteria. A node, such as 5 may have multiple arrows

leaving it. Once the final such arrow is broken, the node becomes isolated.

X Y

0

Figure 5: Subtle case

The restriction that the node X have no green line touching it is subtle. Consider the graph
in Figure 5. If either the blue arrow from X to 0 or the blue arrow from Y to 0 is broken by the
rule Strict sub-set, then the other of the two arrows becomes incorrect. Therefore, we have the
restriction for the Strict sub-set rule that X and Y have no green lines connecting to them. The
Relaxed sub-set condition is intended to cover this case.

In the variation of implicit-inclusion is it necessary to add all the superclasses of Y to become
also superclasses of X. This means in the graph, for each blue arrow from Y to n , we must add
blue arrows leading from X to n . In in the example 4, if we were using implicit-inclusion, the
arrow from X to 2 would be missing as it would be implied by the other arrows. Therefore, the
blue arrow from X to 2 would need to be added in the After graph of Figure 4.

24

5.2.3 Relaxed sub-set

Before

5 0 Y 1

2

4 X 3

After

5 0 Y 1

2

4 X 3

Node Relabeled Boolean expression
X X
Y Y XX

Figure 6: Relaxed sub-set before and after mutation

Algorithm 11 is similar to the Strict sub-set algorithm except that the sub-set nodeX is allowed
to touch other nodes. But special attention is given if X touches a sibling node; i.e. if X has
a green line connecting to a intermediate node which also has a blue arrow pointing to Y . This
case is illustrated in the Before graph in Figure 6. This graph can be mutated to the After graph
shown in Figure 6.
Algorithm 11: BreakRelaxedSubset
Input: G: a graph
Input: X: a node in G
Input: Y : a node in G
Output: G
Side Effects: Perhaps changes a label, and some blue vertices removed or converted to

green.
11.1 begin
11.2 if Y R X.supersets then
11.3 Nothing
11.4 else if X.subsets ‰ H then
11.5 Nothing
11.6 else
11.7 Y.labelÐ Y XX
11.8 for α P pX.touchesX Y.subsetsq do
11.9 AddGreenLinepG,α, Y q

11.10 DeleteBlueArrowpG,α, Y q

11.11 DeleteBlueArrowpG,X, Y q

11.12 return G

25

Notes about Algorithm 11:

Line 11.8: α iterates over the intersection of X.touches and Y.subsets.

Line 11.10: Be careful to add and delete in that order. Reversing the order may cause the function
DeleteBlueArrow to mark the node as disjoint via a call to MaybeDisjointNode.

The node label transformations for this case are exactly the same for the Strict sub-set con-
dition. The only different consequence is that each node connected to Y with a blue arrow (such
as 3 in the Before graph of Figure 6) which is also connected to X by a green line must be
transformed from a blue arrow to a green line as shown in the After graph.

In the variation of implicit-inclusion is it necessary to add all the superclasses of Y to become
also superclasses of X and to all of the children of Y which touch X. This means in the graph,
for each blue arrow from Y to n , we must add blue arrows leading from X to n and also from 3

to n . In the example 6, if we were using implicit-inclusion, the arrows from X to 2 and from 3

to 2 would be missing as they would be implied by the other arrows. Therefore, the blue arrows
from X to 2 and from 3 to 2 would need to be added in the After graph.

5.2.4 Touching connections

Before

0 X Y

3

1

2

4

After

0 X

3

Y 1

2

Z

4

Node Relabeled Boolean expression
X X X Y
Y X X Y
Z X X Y

Figure 7: Touching connections before and after mutation

Green lines indicate partially overlapping sets. A green line connecting X and Y may be
broken if the following condition is met:

• Neither X nor Y has a blue arrow pointing to it; i.e. neither represents a super-set of
something else in the graph.

26

Eliminating the green line separates X and Y . To do this X and Y must be relabeled and a new
node must be added to the graph. Algorithm 12 explains this procedure.
Algorithm 12: BreakTouching
Input: G: a graph
Input: X: a node in G
Input: Y : a node in G
Output: G
Side Effects: Perhaps removes some vertices from G, and adds new nodes and vertices.

12.1 begin
12.2 if Y R X.touches then
12.3 Nothing
12.4 else if X.subsets ‰ H then
12.5 Nothing
12.6 else if Y.subsets ‰ H then
12.7 Nothing
12.8 else
12.9 pX.label, Y.labelq Ð pX X Y , Y XXq

12.10 Z Ð G.AddNodepq
12.11 Z.labelÐ X X Y
12.12 for α P pX.supersetsY Y.supersetsq do
12.13 AddBlueArrowpG,Z, αq

12.14 for α P pX.touchesX Y.touchesq do
12.15 AddGreenLinepG,Z, αq

12.16 DeleteGreenLinepG,X, Y q

12.17 return G

Notes about Algorithm 12:

Line 12.9: This is a parallel assignment. I.e., calculate X X Y and Y XX before assigning them
respectively to X.label and Y.label.

Line 12.11: Introduce new node labeled X X Y .

Line 12.12: Blue union, draw blue arrows from this node, X X Y , to all the nodes which either X
or Y points to. I.e., the super-sets of X X Y are the union of the super-sets of X and of
Y .

Line 12.14: Green Intersection, draw green lines from X X Y to all nodes which both X and Y
connect to. I.e. the connections to X X Y are the intersection of the connections of X
and of Y .

Line 12.15: Exception, if there is (would be) a green and blue vertex between two particular nodes,
omit the green one.

Line 12.16: Be careful to add and delete in that order. CallingDeleteGreenLine beforeAddGreenLine
cause the functionDeleteGreenLine to mark the node as disjoint via a call toMaybeDisjointNode.

Figure 7 illustrates the step of breaking such a connection between nodes X and Y by intro-
ducing the node Z .

5.2.5 Loops

This step can be omitted if one of the previous conditions is met: either strict subset or touching
connection. The decision of whether to omit this step is not a correctness question, but rather a
performance question which is addressed in Section 9.2.

27

Before

X Y

3 6 4

2 5

1

After

X Y

3 6 4

2 Z 5

1

Node Relabeled Boolean expression
X X X Y
Y Y
Z X X Y

Figure 8: Graph meeting the loop condition

As is detailed in Algorithm 13 a green line connecting X and Y may be removed if the following
conditions are met:

• X has no blue arrow pointing to it.

• Y has at least one blue arrow pointing to it.

The rare necessary for this operation arises in graphs such as the green line connecting X and Y

in Figure 8. To eliminate this green line proceed by splitting node X into two nodes: the part
that is included in set Y and the part that is disjoint from set Y . The result of the mutation is
shown in the After graph.

• Remove the green line between X and Y

• Create a new node Z copying all the green and blue connections from X .

• Create a blue arrow from Z to Y , because Z “ X X Y Ă Y .

• Create a blue arrow from Z to X , because Z “ X X Y Ă X.

• Z Ð X X Y . I.e. label the new node.

• X Ð X X Y . I.e. relabel X .

• For each node n which is a parent of either X or Y (union), draw an blue arrow from Z

to n .

28

This graph operation effectively replaces the two nodes X and Y with the three nodes X X Y ,
X X Y , and Y . This is a reasonable operation because X Y Y “ X X Y YX X Y Y Y .
Algorithm 13: BreakLoop
Input: G: a graph
Input: X: a node in G
Input: Y : a node in G
Output: G
Side Effects: Perhaps removes some with some of its green vertices, and adds new nodes

and blue vertices.
13.1 begin
13.2 if Y R X.touches then
13.3 Nothing
13.4 else if X.subsets ‰ H then
13.5 Nothing
13.6 else if Y.subsets “ H then
13.7 Nothing
13.8 else
13.9 Z Ð G.AddNodepq

13.10 Z.labelÐ X X Y

13.11 X.labelÐ X X Y
13.12 for α P X.touches do
13.13 AddGreenLinepG,Z, αq

13.14 for α P pX.supersetsY Y.supersetsq do
13.15 AddBlueArrowpG,Z, αq

13.16 AddBlueArrowpG,Z, Y q
13.17 AddBlueArrowpG,Z,Xq
13.18 DeleteBlueArrowpG,X, Y q

13.19 return G

5.2.6 Discovered Empty Set

During the execution of the algorithm it may happen that derived sets are discovered to be empty.
This occurrence is a consequence of the semantics of the green lines and blue arrows. Recall
that a green line connecting two nodes indicates that the corresponding sets are not known to be
disjoint. A consequence is this semantic is that two nodes representing disjoint sets are connected
by a green line, when the intersection of the two sets is eventually calculated, it the intersection
will be found to be empty.

2

3

1 Name Definition
A1 t1, 2, 3, 4u
A2 t1, 2, 3, 5u
A3 t1, 2, 3, 6u

Figure 9: Setup for Discovered Empty Set

Example 22. Consider the definitions and graph shown in Figure 9. If we break the connection
between node 1 and 2 , the configuration in Figure 10 results. The resulting graph shows a green
line connecting 1 and 3 and also a green line connecting 2 and 3 .

29

Before

2

3

1

After

2

3

41

Node Relabeled Set
A1 “ t4u A3 XA2
A2 “ t5u A3 XA2
A3 “ t1, 2, 3, 6u A3
A4 “ t1, 2, 3u A1 XA2

Figure 10: Connection between disjoint sets

This does not cause a problem in the semantics of the representation, but rather a performance
issue. Figure 11 shows the result of breaking the green line connecting 2 and 3 . Node 2 becomes
isolated which correctly represents the set t5u, and 5 is derived which represents H.

The semantics are preserved because
5
Ť

n“1
An “ t1, 2, 3, 4, 5u, and the isolated nodes 2 and 5

represent disjoint sets. t5u K H

Another case where a set may be discovered to be empty is when the relative complement
is performed between a superset and subset. If the two sets are actually equal (recall that A “
B ùñ A Ă B) then the relative complement is empty, (A “ B ùñ AXB “ H).

30

Before

2

3

41

After

2 4

5

1

3

Node Relabeled Set
A1 “ t4u A1
A2 “ t5u A2 XA3
A3 “ t1, 2, 3, 6u A2 XA3
A4 “ t1, 2, 3u A4
A5 “ H A2 XA3

Figure 11: Discovered Empty Set

31

2 3

1

Name Definition
A1 t1, 2, 3, 4u
A2 t1, 2, 3u
A3 t4u

Figure 12: Setup for Discovered Equal Sets

Before

2 3

1

After

2 3

1

Node Relabeled Set
A1 “ t4u A1 XA2
A2 “ t1, 2, 3u A2
A3 “ t4u A3

Figure 13: Connection between equal sets

Example 23. Consider the definitions and graph shown in Figure 12. In Figure 13 we break the
blue arrow from 2 to 1 , then a blue arrow remains from 3 to 1 , which represents a set which is
a subset of itself. As in Example 22, this is not an error in the semantics of the representation,
but rather a performance problem. In Figure 14 we break the connection from 3 to 1 resulting in
three isolated nodes representing the sets H, t1, 2, 3u, and t4u which are three disjoint sets whose
union is correct is t1, 2, 3, 4u as expected.

32

Before

2 3

1

After

2 3

1

Node Relabeled Set
A1 “ H A1 XA3
A2 “ t1, 2, 3u A2
A3 “ t4u A3

Figure 14: Connection between equal sets

33

Since intersection and relative complement operations may result in the empty set, as illustrated
in Examples 22 and 23, the implementation of the set disjoint decomposition algorithm must take
this into account. There are several possible approaches.

Late check: The simplest approach is to check for vacuity once a node has been discon-
nected from the graph. Once a node has no touching nodes, no subset nodes,
and not superset nodes, it should be removed from the graph data structure,
checked for vacuity, and if non-empty, and the set it represents added to a list
of disjoint sets.

Correct label: Test for H each time a label of a node changes, i.e., it thereafter represents a
smaller set than before.

Correct connection: Each time the label of a node changes, i.e. it thereafter represents a smaller
set than before, all of the links to neighbors (green lines and blue arrows)
become suspect. I.e., when a label changes, re-validate all the touching, subset,
and superset relationship ships and update the blue arrows and green lines
accordingly.

The choice of data structure used for the algorithm may influence how expensive the vacuity
check is, and thus may influence which approach is taken.

X 1

2

3

Figure 15: Discovered emptyset

When a node is discovered to represent the empty set, its connections must be visited. Consider
the graph in Figure 15.

Touching node: A green line connecting the node to another node can be deleted, because the
empty set is disjoint from every set including from the empty set. In Figure 15 if
X is discovered to represent , then the green line between X and 1 can simply be
deleted.

Superset: A blue arrow from the node to another node may be deleted. In Figure 15 if X is
discovered to represent , then the blue arrow from X to 2 can be deleted. This
is because if we attempted to relabel A2 as A2 X X we’d result again with A2
because A2zH “ A2.

Subset: A blue arrow from another node to the node in question can be removed, and
the other node can be inferred to represent the empty set. Thus the empty set
reduction can be applied recursively to that node. In Figure 15 if X is discovered
to represent , then we know that A3 Ă and thus A3 “ H. This means we can
delete the blue arrow from 3 to X , and then recursively apply the reduction to 3 .

5.3 Recursion and Order of Iteration
It is natural to wonder whether the order in which the nodes are visited may have an effect on the
execution time of the algorithm. The manner in which the traversal order effects the calculation
performance has been investigated and is explained in Section 9.2.

34

Our implementation represents nodes of the graph as objects, where each node object has
three slots containing lists of subset, superset, and touching nodes. Thus graph reduction, in our
implementation, involves iterating over the nodes, and repeating the iteration until they all loose
all their connections.

An alternate implementation might as well represent connections as objects, thus allowing the
reduction algorithm to directly iterate over the connections until they are eliminated. We have
not investigated this approach.

Given that our algorithm is required to visit each node, there are several obvious strategies to
choose the order of iteration. This boils down to sorting the list of nodes into some order before
iterating over it. We have investigated five such strategies.

SHUFFLE: Sort the list into random order.

INCREASING-CONNECTIONS: Sort the nodes into order of increasing number of connections;
i.e., number of touching nodes plus the number of subset nodes
plus the number of superset nodes.

DECREASING-CONNECTIONS: Sort the nodes into order of decreasing number of connections.

BOTTOM-TO-TOP: Sort into increasing order according to number of superset nodes.
This sort assumes supersets are explicitly represented in the con-
nections, because a subset node will also contain connections to
the supersets of its direct supersets.

TOP-TO-BOTTOM: Sort into decreasing order according to number of superset nodes.

All of the graph operations described in Section 5.1 depend on a node not having subset nodes.
An additional detail of the strategy which can be (and has been) employed in addition to the node
visitation order is whether to recursively apply the reduction attempts to subset nodes before
superset nodes. I.e., while iterating over the nodes, would we recursively visit subset nodes? The
hope is that a node is more likely to be isolate-able if we attempt to break subclass relations
directly when encountered, rather than treating the nodes when they appear in the visitation
order.

5.4 Running the algorithm on an example

7

6

5

2

3

4

1

8

Node Boolean expression
1 A1 XA5 XA6
2 A2
3 A3
4 A4 XA5
5 A5
6 A6
7 A7
8 A8 XA5

Figure 16: State 1: Topology graph, after isolating 5 and 6.

Nodes 5 and 6 in Figure 3 meet the strict sub-set conditions, thus the arrow connecting
them to their super-sets, 5 Ñ 1, 5 Ñ 4, 5 Ñ 8, and 6 Ñ 1 can be eliminated and the super-set

35

nodes relabeled. I.e. 8 relabeled A8 ÞÑ A8 X A5, 4 relabeled A4 ÞÑ A4 X A5, and 1 relabeled
A1 ÞÑ A1 X A5 X A6. The result of these operations is that nodes 5 and 6 have now severed all
connections, and are thus isolated. The updated graph is shown in Figure 16.

7

6

5

9

3

1

4

2

8

Node Boolean expression
1 A1 XA5 XA6

2 A2 XA4 XA5
3 A3
4 A4 XA5 XA2
5 A5
6 A6
7 A7
8 A8 XA5
9 A2 XA4 XA5

Figure 17: State 2: Topology graph after disconnecting 2 from 4

The green line between nodes as 2 and 4 in Figure 16 meets the touching connections condi-
tions. The nodes can thus be separated by breaking the connection, deleting the green line. To
do this we must introduce a new node which represents the intersection of the sets 2 and 4 . The
new node is labeled as the Boolean intersection: A2 XA4 XA5, and is labeled 9 in Figure 17.

We must also introduce new blue lines from 9 to any node that either 2 points to or 4 points
to, which is 1 in this case.

In addition we must draw green lines to nodes which both 2 and 4 have green lines touching.
In this cases that is only the node 3 . So a green line is drawn between 9 and 3 .

The green line between 2 and 4 is deleted. The two nodes are relabeled: 2 : A2 ÞÑ A2XA4 XA5
and 4 : A4 XA5 ÞÑ A4 XA5 XA2.

These graph operations should continue until all the nodes have become isolated. Observing
Figure 17 we see that several green lines meet the touching connections: 2 — 3 , 3 — 4 , 3 —
9 , and 4 — 8 . It is not clear which of these connections should be broken next. I.e. what is
the best strategy to employ when choosing the order to break connections. This is a matter for
further research; we don’t suggest any best strategy at this time. Nevertheless, we continue the
segmentation algorithm a couple more steps.

In Figure 17, consider eliminating the green connection 4 — 8 . We introduce a new node 10

representing the intersection, thus associated with the Boolean expression A4XA5XA2XA8XA5.
The union of the super-sets of 4 and 8 , i.e. the union of the destinations of the arrows leaving
4 and 8 is just the node 1 , thus we must introduce a blue arrow 10 Ñ 1 . There are no nodes
which both 4 and 8 touch with a green line, so no green lines need to be added connecting to
10 . We now relabel 4 and 8 with the respective relative complements. 8 ÞÑ 8X 4 and 4 ÞÑ 4X 8.
The Boolean expressions are shown in Figure 18.

Observing Figure 18 we see it is possible to disconnect 8 from 1 and thereafter disconnect 10

from 1 . Actually you may choose to do this in either order. We will operate on 8 and then on
10 , to result in the graph in Figure 19.

From Figure 19 it should be becoming clear that the complexity of the Boolean expressions
in each node is becoming more complex. If we continue this procedure, eliminating all the blue
arrows and green connecting lines, we will end up with 13 isolated nodes (each time a green line is
eliminated one additional node is added). Thus the Boolean expressions can become exceedingly
complex. A question which arises is whether it is better to simplify the Boolean expressions at

36

7

6

5

9

3

1

4

2

8 10
Node Boolean expression
1 A1 XA5 XA6

2 A2 XA4 XA5
3 A3

4 A4 XA5 XA2 XA8 XA5
5 A5
6 A6
7 A7

8 A8 XA5 XA4 XA5 XA2
9 A2 XA4 XA5
10 A4 XA5 XA2 XA8 XA5

Figure 18: State 3: Topology graph after disconnecting 4 from 8

each step, or whether it is better to wait until the end. The algorithm shown in Section 7 promises
to obviate that dilemma.

There are some subtle corner cases which may not be obvious. It is possible in these situations
to end up with some disjoint subsets which are empty. It is also possible also that the same subset
is derived by two different operations in the graph, but whose equations are very different.

This phenomenon is a result of a worst case assumption, green intersection in the algorithm.
Consider a case where nodes A , B , and C mutually connected with green lines signifying that
the corresponding sets touch (are not disjoint). If the connection A — B is broken, a new green
line must be drawn between the new node D and C . Why? Because it is possible that the set
represented by AXB M C. However, this it is not guaranteed. It may very well be the case that
both A M C and B M C while A X B K C. Consider the simple example A “ t1, 2u, B “ t2, 3u,
C “ t1, 3u. A M C, B M C, but AXB “ t2u K t1, 3u “ C.

This leads to the possibility that there be green lines in the topology graph which represent
phantom connections. Later on in the algorithm when the green line between D and C is broken
redundant sets may occur. Nodes C and D will be broken into three, C XD, C XD, and DXC.
But C XD “ H, C “ C XD and D “ D XD. If a similar phenomenon occurs between C and
some other set, say E, then we may end up with multiple equivalent sets with different names,
and represented by different nodes of the topology graph: C “ C XD “ C X E.

To identify each of these cases, each of the resulting sets must be checked for vacuity, and
uniqueness. No matter the programming language of the algorithm implementation, it is necessary
to be implement these two checks.

In Common Lisp there are two possible ways to check for vacuity, i.e. to detect whether a
type is empty. (1) Symbolically reduce the type specifier, e.g. (and fixnum (not fixnum)) to
a canonical form with is nil in case the specifier specifies the nil type. (2) Use the subtypep
function to test whether the type is a subtype of nil. To test whether two specifiers specify
the same type there are two possible approaches in Common Lisp. (1) Symbolically reduce each
expression such as (or integer number string) and (or string fixnum number) to canonical
form, and compare the results with the equal function. (2) Use the subsetp function twice to
test whether each is a subtype of the other.

See section 9 for a description of the performance of this algorithm.

37

10

8

7

6

5

9

3

1

4

2

Node Boolean expression
1 A1 XA6 XA8 XA5 XA4 XA5 XA2 XA4 XA5 XA2 XA8 XA5

2 A2 XA4 XA5
3 A3

4 A4 XA5 XA2 XA8 XA5
5 A5
6 A6
7 A7

8 A8 XA5 XA4 XA5 XA2
9 A2 XA4 XA5
10 A4 XA5 XA2 XA8 XA5

Figure 19: State 4: Topology graph after isolating 8 and 10

5.5 Correctness of the graph based algorithm

6 Type disjoint decomposition as SAT problem
This problem of how to decompose sets, like those shown in Figure 1into disjoint subsets as shown
in Table 1 can be viewed as a variant of the well known Satisfiability Problem, commonly called
SAT.[JEH01] The problem is this: given a Boolean expression in n variables, find a solution. This
is to say: find an assignment (either true or false) for each variable which makes the expression
evaluate to true. This problem is known to be NP-Complete.

The approach is to consider the correspondence between the solutions of the Boolean equation:
A1 ` A2 ` ... ` AM , versus the set of subsets of A1 Y A2 Y ... Y AM . Just as we can enumerate
the 2M ´ 1 “ 255 solutions of A1 ` A2 ` ... ` AM , we can analogously enumerate the subsets of
A1 YA2 Y ...YAM .

discard 0000 0000 A1 XA2 XA3 XA4 X A5 XA6 XA7 XA8
1 1000 0000 A1 XA2 XA3 XA4 X A5 XA6 XA7 XA8
2 0100 0000 A1 XA2 XA3 XA4 X A5 XA6 XA7 XA8
3 1100 0000 A1 XA2 XA3 XA4 X A5 XA6 XA7 XA8

... ...
254 1111 1110 A1 XA2 XA3 XA4 XA5 XA6 XA7 XA8
255 1111 1111 A1 XA2 XA3 XA4 XA5 XA6 XA7 XA8

Figure 20: Correspondence of Boolean true/false equation with Boolean set equation

If we assume M “ 8 as in Figure 1, the approach here is to consider every possible solution of
the Boolean equation: A1 ` A2 ` ... ` A8. There are 28 ´ 1 “ 255 such solutions, because every

38

8-tuple of 0’s and 1’s is a solution except 0000 0000. If we consider the enumerated set of solutions:
1000 0000, 0100 0000, 1100 0000, ... 1111 1110, 1111 1111. We can analogously enumerate the
potential subsets of the union of the sets shown in Figure 1: A1YA2YA3YA4YA5YA6YA7YA8.
Each is a potential solution represents an intersection of sets in tA1, A2, A3, A4, A5, A6, A7, A8u.
Such a correspondence is shown in Figure 20.

It remains only to eliminate the intersections which can be proven to be empty. For example,
we see in 1 that A1 and A7 are disjoint, which implies H “ A1 X A7, which further implies that
every line of Table 20 which contains A1 and A7 is H. That is 64 lines eliminated. For example
line 255: H “ A1 XA2 XA3 XA4 XA5 XA6 XA7 XA8, and 63 other lines.

In this as all SAT problems, certain of these 28 possibilities can be eliminated because of known
constraints. The constraints are derived from the known subset and disjoint-ness relations of the
given sets. Looking at the Figure 1 we see that A5 Ă A8, which means that A5 X A8 “ H. So
we know that all solutions where A5 “ 1 and A8 “ 0 can be eliminated. This elimination by
constraint A5 X A8 “ H and the previous one A1 X A7 “ H are represented each in the boolean
equation as a multiplication (Boolean multiply) by A1A7 and A5A8: pA1 `A2 `A3 `A4 `A5 `

A6 `A7 `A8q ¨A1A7 ¨A5A8.
There are as many as 8¨7

2 “ 28 possible constraints imposed by pair relations. For each
tX,Y u Ă tA1, A2, A3, A4, A5, A6, A7, A8u:

Subset If X Ă Y , multiply the by constraint XY “ pX ` Y q

Super-set If Y Ă X, multiply by the constraint XY “ pX ` Y q

Disjoint If X X Y “ H, multiply by the constraint XY “ pX ` Y q.

Otherwise no constraint.

A SAT solver will normally find one solution. That’s just how they traditionally work. But the
SAT flow can easily be extended so that once a solution is found, a new constraint can be generated
by logically negating that solution, allowing the SAT solver to find a second solution. For example,
when it is found that 1111 0000 (corresponding to A1XA2XA3XA4XA5XA6XA7XA8) is a solution,
the equation can thereafter be multiplied by the new constraint pA1 A2 A3 A4 A5 A6 A7 A8q,
allowing the SAT solver to find yet another solution if such exists.

The process continues until there are no more solutions.
As a more concrete example of how the SAT approach works when applied to Common Lisp

types, consider the case of the three types array, sequence, and vector. Actually, vector is the
intersection of array and sequence.

First the SAT solver constructs (explicitly or implicitly) the set of candidates corresponding
to the lisp types.

(and array sequence vec to r)
(and array sequence (not vec to r))
(and array (not sequence) vec to r)
(and array (not sequence) (not vec to r))
(and (not array) sequence vec to r)
(and (not array) sequence (not vec to r))
(and (not array) (not sequence) vec to r)
(and (not array) (not sequence) (not vec to r))

The void one (and (not array) (not sequence) (not vector)) can be immediately dis-
regarded.

Since vector is a subtype of array, all types which include both (not array) and also
vector can be disregarded: (and (not array) sequence vector) and (and (not array) (not
sequence) vector). Furthermore, since vector is a subtype of sequence, all types which in-
clude both (not sequence) and also vector can be disregarded. (and array (not sequence)
vector) and (and (not array) (not sequence) vector) (which has already been eliminated
by the previous step). The remaining ones are:

39

(and array sequence vec to r) = vec to r
(and array sequence (not vec to r)) = n i l
(and array (not sequence) (not vec to r)) = (and array (not vec to r))
(and (not array) sequence (not vec to r)) = (and sequence (not vec to r))

array

vector

sequence

Figure 21: Relation of vector, sequence, and array

The algorithm returns a false positive. Unfortunately, this set still contains the nil, empty,
type (and array sequence (not vector)). Figure 21 shows the relation of the Common Lisp
types array, vector, and sequence. We can see that vector is the intersection of array and
sequence. The algorithm discussed above failed to introduce a constraint corresponding to this
identity which implies that array X sequenceX vector “ H.

It seems the SAT algorithm greatly reduces the search space, but is not able to give the
minimal answer. The resulting types must still be tested for vacuity. This is easy to do, just
use the subtypep function to test whether the type is a subtype of nil. E.g., (subtypep ’(and
array sequence (not vector)) nil) returns t. There are cases where the subtypep will not
be able to determine the vacuity of a set. Consider the example: (and fixnum (not (satisfies
oddp)) (not (satisfies evenp))).

7 Binary Decision Diagrams
A Boolean equation can be represented by a data structure called a Binary Decision Diagram
(BDD) [Bry86, Bry92, Ake78][Knu09, Section 7.1.4]. Henrik Reif Andersen summarized many of
the algorithms for efficiently manipulating BDDs [And99]. Not least important in Andersen’s dis-
cussion is how to use a hash table and dedicated constructor function to eliminate any redundancy
with a tree of within a forest of trees.

Figure 22 shows an example of a BDD which represents a particular function of three Boolean
variables: A1, A2, and A3.

7.1 BDD Grammar
A simple grammar defining the BDD is:

B :“ 0 | 1 | a?B : B
and is subject to the following interpretation:

J0K “ Empty

J1K “ Universe

Ja?B1 : B2K “ pa^ JB1Kq _ p a^ JB2Kq

40

Z1

Z2

Z3 Z3

T⊥

Figure 22: BDD for pA1 ^A2q _ pA1 ^ A2 ^A3q _ p A1 ^ A3q

Castagna [Cas16] introduces the connection of BDDs to type theoretical calculations, and
provides straightforward algorithms for implementing set operations (intersection, union, relative
complement) of types using BDDs. The algorithms for computing the BDDs which represent
the common Boolean algebra operators are straightforward. Let B, B1, and B2 denote BDDs,
B1 “ a1?C1 : D1 and B2 “ a2?C2 : D2.

41

1_B “ 1
B _ 1 “ 1
1^B “ B

B ^ 1 “ B

0_B “ B

B _ 0 “ B

0^B “ 0
B ^ 0 “ 0
0 z B “ 0
B z 0 “ B

B z 1 “ 0
1 z pa?B1 : B2q “ a?p1zB1q : p1zB2q

B1 _B2 “

$

’

&

’

%

a1?C1 _ C2 : D1 _D2 for a1 “ a2

a1?C1 _B2 : D1 _B2 for a1 ă a2

a2?B1 _ C2 : B1 _D2 for a1 ą a2

B1 ^B2 “

$

’

&

’

%

a1?C1 ^ C2 : D1 ^D2 for a1 “ a2

a1?C1 ^B2 : D1 ^B2 for a1 ă a2

a2?B1 ^ C2 : B1 ^D2 for a1 ą a2

B1 z B2 “

$

’

&

’

%

a1?C1 z C2 : D1 z D2 for a1 “ a2

a1?C1 z B2 : D1 z B2 for a1 ă a2

a2?B1 z C2 : B1 z D2 for a1 ą a2

Notice that the formulas for B1 _ B2, B1 ^ B2, and B1 z B2 are similar to each other. If
˝ P t_,^, zu then

B1 ˝ B2 “

$

’

&

’

%

a1?C1 ˝ C2 : D1 ˝ D2 for a1 “ a2

a1?C1 ˝ B2 : D1 ˝ B2 for a1 ă a2

a2?B1 ˝ C2 : B1 ˝ D2 for a1 ą a2

array

vector

nil t

number

t nil

Figure 23: BDD representing (or number (and array (not vector)))

7.2 Boolean variable ordering
A remarkable fact about this representation subject to these rules is that any two equivalent
Boolean expressions have exactly the same BDD representation, provided the terms (variable
names) are totally ordered.[Knu09, Section 7.4.1 Page 73] For example the expression from Fig-
ure 22, pA1 ^A2q _ pA1 ^ A2 ^A3q _ p A1 ^ A3q is equivalent to pp A1 _ A2q ^ p A1 _
A2 _ A3q ^ pA1 _A3qq. So they both have the same shape as shown in the figure.

In order to assure an unambiguous representation of a type in terms of a BDD, it is necessary
that the type specifiers be totally ordered. It really doesn’t matter the ordering chosen, as long
as it is a complete ordering. For any three type specifiers: A, B , and C, the following hold.

42

• If A ă B and B ă C, then A ă C.

• If A ă B then B ą A.

• A “ B if and only if A ă B is false and B ă A is false.

Typically this is done by alphabetizing them. However, type specifiers in Common Lisp cannot
necessarily be compared alphabetically. So the solution we use is to compare them alphabetically
when possible. And tree-comparing the s-expressions otherwise. For example integer type speci-
fier is itself a string, and the (member 1 2 3). If the type specifiers being compared are of different
types, then alphabetize them according to their type names: list precedes symbol. And for each
type which might be encountered the natural ordering is used:

list: compare the first two elements which are not equal

number: compare with numerical <, =, or >.

symbol: compare the package name alphabetically, and if the symbols belong to the same package
compare their printable names.

The Common Lisp code for the function function used to compare two type specifiers is given
in Appendix F.

7.3 Optimized BDD construction
In order to assure the minimum number of BDD allocations possible, and thus ensure that BDDs
which represent equivalent types are actually represented by the same BDD, the suggestion by
Anderson [And99] is to intercept the BDD constructor function. This constructor should assure
that it never returns two BDD which are equal but not eq to each other.

The BDD constructor takes three arguments: a type specifier (also called a label), and two
BDDs called the left and right subtree. Several optimizations are in place to reduced the total
number of trees.

Table 3 lists the reductions which are performed by the BDD constructor function. The table
contains a Frequency column which shows an estimated result of how often this case occurs in
a typical run. It can be seen in the final line of the table that a new BDD allocation need only
occur about 1.7% of the time.

Reduction Frequency Section
eq children 26% 7.3.1
found in table 63% 7.3.2
reduce and test eq 2.5% 7.3.3
found in table 7.0% 7.3.3
compare to child 0.5% 7.3.4
reduce to t or nil 0.03% 7.3.5
allocate bdd 1.7 % 7.3.2

Table 3: BDD reductions

7.3.1 Equal right and left subtrees

The most notable optimization is that if the left and right subtrees are identical then simply return
one of them, without allocating a new tree [And99].

A

B

t nil

B

t nil

Ñ
B

t nil
.

43

7.3.2 Caching BDDs

Whenever a new BDD is allocated, an entry is made into a hash table so that the next time a
request is made with the exactly same label, left child, and right child, the already allocated tree
can be returned. For this to work, we associate each new tree created with an integer, and create
a hash key which is a list (a triple) of the type specifier followed by two integers corresponding to
the left and right trees.

7.3.3 Reduction in the presence of subtypes

When the nodes of the BDD represent types, other optimizations can be made. The cases include
situations where types are related to each other in certain ways: subtype, supertype, and disjoint
types. In particular there are 12 optimization cases, detailed in Table 4. Each of these optimiza-
tions follows a similar pattern: when constructing a BDD with label X, search in either the left
or right subtree to find a subtree, Y

L R
, whose label is Y having left and right subtrees L and R.

If X and Y have a particular relation, then the Y

L R
tree reduces either to L or R.

Case Child to search Relation Reduction

1 X.left X K Y Y Ñ Y.right
2 X.left X K Y Y Ñ Y.left
3 X.right X K Y Y Ñ Y.right
4 X.right X K Y Y Ñ Y.left

5 X.right X Ą Y Y Ñ Y.right
6 X.right X Ą Y Y Ñ Y.left
7 X.left X Ą Y Y Ñ Y.right
8 X.left X Ą Y Y Ñ Y.left

9 X.left X Ă Y Y Ñ Y.left
10 X.left X Ă Y Y Ñ Y.right
11 X.right X Ă Y Y Ñ Y.left
12 X.right X Ă Y Y Ñ Y.right

Table 4: BDD optimizations

Case 1: If X X Y “ H and Y

L R
appears in leftpXq, then Y

L R
reduces to R.

For example: If X “ number and Y “ string, we have

number

A

C string

L R

B
Ñ

number

A

C R

B

because pnumber X string “ Hq.

Case 2: If X X Y “ H and Y

L R
appears leftpXq, then Y

L R
reduces to L.

For example: If X “ string and Y “ number, we have

string

A

C not-number

L R

B
Ñ

string

A

C L

B

because string X number “ H.

44

Case 3: If X X Y “ H and Y

L R
appears rightpXq, then Y

L R
reduces to R.

For example: If X “ number and Y “ string, we have

not-number

A B

string

L R

C
Ñ

not-number

A B

R C

because number X string “ H.

Case 4: If X X Y “ H and Y

L R
appears rightpXq, then Y

L R
reduces to L.

For example: If X “ string and Y “ number, we have

non-string

A B

not-number

L R

C
Ñ

non-string

A B

L C

because string X number “ H.

Case 5: If Y Ă X and Y

L R
appears in rightpXq, then Y

L R
reduces to R.

For example: If X “ number and Y “ integer, we have

number

A B

integer

L R

C
Ñ

number

A B

R C

because integer Ă number.

Case 6: If Y Ă X and Y

L R
appears in rightpXq, then Y

L R
reduces to L.

For example: If X “ number and Y “ integer, we have

number

A B

not-integer

L R

C
Ñ

number

A B

L C

because integer Ă number.

Case 7: If Y Ă X and Y

L R
appears in leftpXq, then Y

L R
reduces to R.

For example: If X “ string and Y “ integer, we have

string

A

C integer

L R

B
Ñ

string

A

C R

B

because integer Ă string.

Case 8: If Y Ă X and Y

L R
appears in leftpXq, then Y

L R
reduces to L.

For example: If X “ integer and Y “ number, we have

not-number

A

C not-integer

L R

B
Ñ

not-number

A

C L

B

because integer Ă number.

Case 9: If X Ă Y and Y

L R
appears in leftpXq, then Y

L R
reduces to L.

For example: If X “ integer and Y “ number, we have

integer

A

C number

L R

B
Ñ

integer

A

C L

B

because integer Ă number.

45

Case 10: If X Ă Y and Y

L R
appears in leftpXq, then Y

L R
reduces to R.

For example: If X “ integer and Y “ string, we have

integer

A

C string

L R

B
Ñ

integer

A

C R

B

because integer Ă string.

Case 11: If X Ă Y and Y

L R
appears in rightpXq, then Y

L R
reduces to L.

For example: If X “ not´ integer and Y “ number, we have

not-integer

A B

number

L R

C
Ñ

not-integer

A B

L C

because integer Ă number.

Case 12: If X Ă Y and Y

L R
appears in rightpXq, then Y

L R
reduces to R.

For example: If X “ integer and Y “ number, we have

not-integer

A B

not-number

L R

C
Ñ

not-integer

A B

R C

because integer Ă number.

7.3.4 Reduction to subtree

The list of reductions described in Section 7.3.3 fails to apply on several important cases. Most
notably there is no reduction on a case where the root node itself needs to be eliminated. For

example, since vector Ă array we would like the following reduction:
array

vector

t nil

nil Ñ
vector

t nil
.

Another, less trivial example is:

atom

bit

t nil

bit-vector

t boolean

t broadcast-stream

t nil

Ñ
bit

t nil
.

Still another example is:

arithmetic-error

nil array

base-string

nil t

nil

Ñ

array

base-string

nil t

nil.

The solution in place in this case is that before constructing a new tree, we first ask whether
the resulting tree is type-equivalent to either the left or right subtrees. If so, we simply return the
appropriate subtree without allocating the parent tree.

Because of the way the caching is done, this expensive type-equivalence check need only be
done once per triple. Thereafter, the result is in the hash table, and it will be discovered as
discussed in Section 7.3.2.

7.3.5 More complex type relations

There are a few more cases which are not covered by the above optimizations. Consider the
following BDD:

46

integer

nil ration

nil rational

t nil

This represents the type (and (not integer) (not ratio) rational), but in Common Lisp
rational is identically (or integer ratio), which means (and (not integer) (not ratio)
rational) is the empty type. For this reason, as a last resort before allocating a new BDD, we
check, using the Common Lisp function subtypep, whether the type specifier specifies the nil
or t type. To call the subtypep function we must generate a serialization of the BDD which
is conforming with the Common Lisp type specifier syntax. See Section 7.5 for details of this
serialization.

Another example of a BDD which reduces to nil is:
array

built-in-class

cell-error

nil t

cell-error

t nil

nil.

Again this check is expensive, but the expense is mitigated in that the result is cached.

7.4 Other BDD related optimizations
It was observed doing profiling analysis that by far the largest consumer of computation time
in BDD operations while calculating disjoint type decomposition is the subtypep function. The
function is called orders of magnitude more often than any other function. We observed that there
seem to be three sources of calls to this function: direct calls from within smarter-suptypep,
calls from disjoint-types-p, and recursive calls from within subtypep itself.

Since we have not attempted to modify the implementation of the Common Lisp we are using
(sbcl), we have not attempted to change the implementation of subtypep to make it more intelli-
gent. So the only way to reduce the number of recursive calls to the function, is simply to reduce
the total number of calls to the function.

7.4.1 Calls to smarter-subtypep

The main entry point to the subtypep function in our program is through the smarter-subtypep
function. This function was written to patch some of the shortcomings of subtypep. The archi-
tecture of smarter-subtypep is that it first calls subtypep and returns the values it returns as
long as the second value is t. However, if the second value is nil, meaning that subtypep was
not able to determine the subtype relation, when we call a helper function, which tries several
different formulations, and memoizes its result if possible–possible means that it is called within
a dynamic scope which proves a particular dynamic variable used as a memoization table. The
code is shown in Appendix G.

7.4.2 Calls from disjoint-types-p

A well known technique to determine whether two types are disjoint is to ask whether their
intersection is empty, such as with the following function poor-disjoint-types-p.

(defun poor´disjoint´types´p (T1 T2)
(subtypep ‘ (and ,T1 T2) n i l))

The function, like subtypep, returns a second value indicating whether the Boolean semantic
of the first return can be trusted. Unfortunately, subtypep called in this way returns nil, nil far
two often. The consequence is that algorithms such as the one described in Sections 8.1 and 8.2
must assume worst case that the types intersect.

TODO document cases where disjoint-types-p finds results which subtypep is not able to
find.

47

The function, disjoint-types-p, whose code is given in Appendix H is the function we have
developed to answer this question. The function incorporates both memoization techniques, as well
as several set theoretical relations to determine the disjoint relation in the case subtypep is unable
to determine the result. It makes use of the function dispatch:specializer-intersections
which returns the list of least specific subclasses of two given classes.

7.5 Serializing a BDD
The BDD can be serialized to a CL type-specifier in many different ways. Two such serializations
are as DNF (disjunctive normal form) and ITENF (if then else normal form). Consider the type
specifier: (or (and sequence (not array)) number (and (not sequence) array))

TEST> (bdd´to´dnf (bdd ’ (or (and sequence (not array))
number

(and (not sequence) array))))
(or (and ARRAY (not SEQUENCE))

NUMBER
(and (not ARRAY) SEQUENCE))

TEST> (bdd´to´expr (bdd ’ (or (and sequence (not array))
number
(and (not sequence) array))))

(or (and ARRAY (not SEQUENCE))
(and (not ARRAY) (or NUMBER (and (not NUMBER) SEQUENCE))))

TEST>

The DNF is an OR of ANDs in which each AND expression is a simple type expression or the
NOT of such. The IFENF is of the form (or (and X Y) (and (not X) Z)).

The Common Lisp code for bdd-to-dnf can be found in Appendix I.
The IFENF closely matches the tree structure of the BDD. The IFENF is intended to be the

most efficient to calculate.
The Common Lisp code for bdd-to-dnf can be found in Appendix J.

7.6 Applying BDDs to type checking
The BDD can be used to re-implement typep. Such an implementation, guarantees each type
check is done only once, even if the same type specifier component appears multiple times in the
given type specifier. E.g., sequence appears twice in the type specifier (or (and sequence (not
array)) number (and (not sequence) array)), but when checking an object against this type
specifier using the BDD based approach, we are guaranteed that the object is only checked once
to be a sequence. This may not be important for a type like sequence which is fast to check, but
some user defined types may be arbitrarily expensive to check, such as (satisfies F).

7.6.1 Run-time type checking

Similar semantics to CL:TYPEP but takes a BDD or a Common Lisp type-specifier. If a Common
Lisp type specifier is given as second argument, it is interpreted as the corresponding BDD object,
via a call to the function BDD. Returns T if the object is an element of the specified type, Returns
NIL otherwise.

48

(defun bdd´type´p (obj bdd)
(e typecase bdd

(bdd´ fa lse
n i l)

(bdd´true
t)

(bdd´node
(bdd´type´p obj

(i f (typep obj (bdd´ label bdd))
(bdd´ le ft bdd)
(bdd´right bdd))))

(t
(bdd´type´p obj (the bdd (bdd bdd))))))

7.6.2 Compile time

This function has the same calling syntax as CL:TYPEP, but uses a BDD based algorithm.
(defun bdd´typep (obj t yp e´ s p e c i f i e r)

(bdd´type´p obj (bdd type´ s p e c i f i e r)))

(define´compiler´macro bdd´typep (obj t yp e´ s p e c i f i e r)
(typecase t yp e´ s p e c i f i e r

((cons (eq l quote))
(bdd´with´new´hash
(lambda (&aux (bdd (bdd (cadr t yp e´ s p e c i f i e r))))

‘ (f u n c a l l , (bdd´to´if´then´else´3 bdd (gensym)) , obj))))
(t
‘ (typep , obj , t yp e´ s p e c i f i e r))))

The compiler macro checks call-site syntax for something like (bdd-typep my-object ’(or
(and sequence (not array)) number (and (not sequence) array))) and expands (at com-
pile time) to something like the following.
(f u n c a l l
(lambda (#: g738)

(l a b e l s ((#: g742 ()
(i f (typep #:g738 ’ sequence)

t
n i l))

(#: g741 ()
(i f (typep #:g738 ’ number)

t
(#: g742)))

(#: g740 ()
(i f (typep #:g738 ’ sequence)

n i l
t))

(#: g739 ()
(i f (typep #:g738 ’ array)

(#: g740)
(#: g741))))

(#: g739)))
my´object)

If the compiler works hard enough at in-lining local function calls it can transform this code
to the following:

49

(f u n c a l l (lambda (x)
(i f (typep x ’ array)

(i f (typep x ’ sequence)
n i l
t)

(i f (typep x ’ number)
t
(i f (typep x ’ sequence)

t
n i l))))

my´object)

One disadvantage of expanding the code as shown here to nested if calls, is that the code
size may be large. Even if the execution time is linear as a function of the number of variables,
the code size is exponential in worst case. Notice that the function calls in the labels based
implementation, are all in tail position, and can thus be optimized away.
(f u n c a l l (lambda (obj)

(b lock n i l
(tagbody
1 (i f (typep obj ’ array)

(go 2)
(go 3))

2 (re turn (not (typep obj ’ sequence)))
3 (i f (typep obj ’ number)

(re turn t)
(go 4))

4 (re turn (typep obj ’ sequence)))))
X)

Notice in the if-then-else tree that no possible value of x will lead to (typep x ’sequence)
being evaluated more than once.

Caveat: reordering type specifiers within AND and OR. CL spec example of (and integer
(satisfies oddp)) does not work if re-ordered. We have no good solution for this. Possible non-
solutions, as none of them actually work.

• always sort (satisfies ...) to the end. Does not work because deftype might contain a
satisfies, no compliant way to expand a deftype, no way to order (satisfies F) vs checks
(satisfies G)

• re-interpret (satisfies F) as (satisfies (ignore-errors F))

• others?

8 Type decomposition using BDDs
Using the BDD data structure along with the algorithms described in Section 7 we can efficiently
represent an manipulate Common Lisp type specifiers. We may now programmatically represent
Common Lisp types largely independent of the actual type specifier representation. For exam-
ple in Common Lisp the two type specifiers denote the same set of values: (or number (and
array (not vector))) and (not (and (not number) (or (not array) vector))), and are
both represented by the BDD shown in Figure 7.1. Moreover, unions, intersections, and rela-
tive complements of Common Lisp type specifiers can be calculated using the reduction BDD
manipulation rules as well.

50

8.1 Improving the RTE algorithm using BDDs
We may revisit the algorithms described in Sections 4, 5, and 6, but this time use the BDD
as the data structure to represent the Common Lisp type specifications rather than using the
s-expression.

To decompose a set of types using the BDD approach we start with the list of type specifiers,
eliminate the ones which specify the empty type, and proceed as follows.

Seed the set, S, with one of the types. Iterate p through the remaining types, represented as
BDDs. For each p, iterate q through the elements of S. Calculate a slice–set of at most three
elements by calculating tp X q, p X q, p X quztHu, discarding any that are the empty type and
accumulating the non-empty types. After q has traversed completely through S, replace S by
the union of the slice–sets, and proceed with the next value of p. When calculating this union
of slice–sets, it is important to guard against duplicate elements, as some slice–sets may contain
common elements. After p finishes iterating through the given set of types, S remains the type
decomposition.

The Common Lisp function is implemented elegantly using the reduce function. The Common
Lisp code can be found in Appendix C.

Using BDDs in this algorithm allows certain checks to be made easily. For example, two types
are equal if they are the same object (pointer comparison). A type is empty if it is identically the
empty type (pointer comparison). Two BDDs which share equal common subtrees, actually share
the objects (shared pointers).

8.2 Improving the graph based algorithm using BDDs
We re-implemented the graph algorithm described in Section 5. The implementation is roughly
110 lines of Common Lisp code–roughly 3 times the size of the brute force algorithm described in
Section 4.

The skeleton of the code is straightforward and is shown in Appendix D.

9 Performance of type decomposition
Sections 4, 5, and 6 explained three different algorithms for calculating type decomposition. We
look here at some performance characteristics of the three algorithms. Section 9.1 describes
content and construction of data sets used both for optimizing and tuning the algorithm from
Section 8.2 and also for comparing the relative performances for the various algorithms. Section 9.2
describes how the tuning parameters were selected for the optimized BDD based graph algorithm.
Section 9.3 describes the relative performance of the rte algorithm from Section 4 using (1) its
s-expression based implementation and also (2) its BDD based implementation; the graph based
algorithm from Section 8.2 including (3) its s-expression based implementation and (4) its BDD
based implementation; and (5) the SAT like algorithm from Section 6.

9.1 Performance Test Setup
It has been observed that different sets of initially given types evoke different performance behavior
from the various algorithms. It is still an area of research to explain and characterize this behavior.
It would be ideal if from a given set of types, it were possible to predict with some amount of
certainly the time required to calculate the type decomposition. This is not currently possible.
What we have done instead put together several sets of types which can be used as pools or starting
sets for the decomposition.

9.1.1 Subtypes of number

This pool contains the type specifiers for all the subtypes of CL:NUMBER whose symbol name comes
from the "CL" package:

51

100 101 102

10´3

10´2

Size

T
im

e

DECOMPOSE-TYPES-BDD-GRAPH

LOCAL-MINIMUM

Figure 24: Tuning algorithm with subtypes of number

(sho r t´ f l oa t ar ray´ tota l´ s i ze f l oa t´ rad ix r a t i o r a t i o n a l b i t n i l
array´rank i n t e g e r l ong´ f l oa t r e a l double´ f l oat bignum signed´byte
f l o a t unsigned´byte s i n g l e´ f l o a t char´code number f l o a t´d i g i t s
fixnum char´ int complex)

This pool was used to generate the graph shown in Figure 24.

9.1.2 Subtypes of condition

101 102

10´3

10´2

Size

T
im

e

DECOMPOSE-TYPES-BDD-GRAPH

LOCAL-MINIMUM

Figure 25: Tuning algorithm with subtypes of condition

This pool contains the type specifiers for all the subtypes of CL:CONDITION whose symbol name
comes from the "CL" package:
(s imple´error s torage´cond i t ion f i l e´ e r r o r cont ro l´e r ro r

s e r i ou s´ cond i t i on cond i t i on divis ion´by´zero n i l parse´error
simple´type´error e r r o r package´error program´error stream´error
unbound´variable undef ined´ funct ion f l oat ing´po int´ i nexact
c e l l´ e r r o r f l oat ing´po int´over f l ow f loat ing´po int´ i nva l id´operat ion

52

simple´warning print´not´readable type´error
f loat ing´point´under f low style´warning end´of´ f i l e unbound´slot
reader´error s imple´condit ion ar i thmet i c´e r ro r warning)

This pool was used to generate the graph shown in Figure 25.

9.1.3 Subtypes of number or condition

101 102

10´3

10´2

Size

T
im

e

DECOMPOSE-TYPES-BDD-GRAPH

LOCAL-MINIMUM

Figure 26: Tuning algorithm with subtypes of number or condition

This pool contains the type specifiers for all the subtypes of CL:NUMBER and all the subtypes
of CL:CONDITION whose symbol name comes from the "CL" package. It is the union of the two
sets from Section 9.1.1 and 9.1.2.

This pool was used to generate the graph shown in Figure 26.

9.1.4 Subtypes of t

101 102

10´3

10´2

10´1

Size

T
im

e

DECOMPOSE-TYPES-BDD-GRAPH

LOCAL-MINIMUM

Figure 27: Tuning algorithm with subtypes of t

53

This pool contains the type specifiers for all the subtypes of CL:T whose symbol name comes
from the "CL" package:
(s imple´error sho r t´ f l oa t s torage´cond i t ion f i l e´ e r r o r

ar ray´ tota l´ s i ze f l oa t´ rad ix r a t i o cha rac t e r r e s t a r t package
r a t i o n a l cont ro l´e r ro r t vec to r method se r i ou s´ cond i t i on atom
gener i c´ funct i on cond i t i on b i t r eadtab l e divis ion´by´zero n i l
parse´error nu l l base´s t r ing base´char simple´type´error
synonym´stream e r r o r stream package´error array´rank pathname´host
standard´object i n t e g e r s imple´base´str ing keyword boolean
program´error pathname´directory f i l e´ s t r eam stream´error
unbound´variable sequence undef ined´ funct ion long´ f l oa t r e a l cons
f l oat ing´po int´ i nexact double´ f l oat concatenated´stream bit´vector
standard´method c e l l´ e r r o r f l oat ing´po int´over f l ow hash´table
method´combination pathname´name f loat ing´po int´ i nva l id´operat ion
simple´warning bignum signed´byte compi led´ funct ion f l o a t array
unsigned´byte s i n g l e´ f l o a t symbol pathname´device char´code
print´not´readable type´error func t i on simple´array
f loat ing´point´under f low s imple´ s t r ing number s imple´bit´vector
style´warning standard´char echo´stream standard´c lass
logical´pathname f l o a t´d i g i t s s t ruc ture´ob j e c t pathname´version
two´way´stream fixnum bui l t´ i n´c l a s s end´of´ f i l e unbound´slot
extended´char reader´error char´ int str ing´stream pathname
random´state standard´gener ic´ funct ion s imple´condit ion c l a s s l i s t
s t ru c tu r e´ c l a s s a r i thmet i c´e r ro r pathname´type broadcast´stream
warning complex s imple´vector s t r i n g)

This pool was used to generate the graph shown in Figure 27.

9.1.5 Subtypes in SB-PCL

101 102

10´3

10´2

Size

T
im

e

DECOMPOSE-TYPES-BDD-GRAPH

LOCAL-MINIMUM

Figure 28: Tuning algorithm with PCL types

This pool contains the type specifiers for all the types whose symbol is in the "SB-PCL" package:
(sb´pcl : system´c lass sb´mop : s tandard´ s l o t´de f in i t i on

sb´mop : funca l l ab l e´ s tandard´c l a s s sb´mop : standard´reader´method
sb´mop : s p e c i a l i z e r sb´mop : standard´writer´method
sb´mop : s l o t´d e f i n i t i o n sb´mop : e q l´ s p e c i a l i z e r
sb´mop : standard´accessor´method sb´mop : forward´ re f e renced´c las s

54

sb´mop : s tandard´d i r e c t´ s l o t´de f in i t i on
sb´mop : e f f e c t i v e´ s l o t´d e f i n i t i o n sb´mop : funca l lab l e´ s tandard´objec t
sb´mop : d i r e c t´ s l o t´de f i n i t i o n
sb´mop : s t anda rd´ e f f e c t i v e´ s l o t´de f i n i t i on)

This pool was used to generate the graph shown in Figure 28.

9.1.6 Specified Common Lisp types

101 102 103

10´3

10´2

10´1

Size

T
im

e

DECOMPOSE-TYPES-BDD-GRAPH

LOCAL-MINIMUM

Figure 29: Tuning algorithm with specified CL types

This pool contains the type specifiers for all the types directly described by the Common
Lisp specification. These are the 97 types listed in Figure 4-2. Standardized Atomic Type
Specifiers from the Common Lisp specification [Ans94, Section 4.2.3 Type Specifiers], which
every compliant Common Lisp implementation must support.
(a r i thmet i c´e r ro r func t i on s imple´condit ion
array gener i c´ funct i on s imple´error
atom hash´table s imple´ s t r ing
base´char i n t e g e r simple´type´error
base´ s t r ing keyword s imple´vector
bignum l i s t simple´warning
b i t logical´pathname s i n g l e´ f l o a t
b i t´vector l ong´ f l oa t standard´char
broadcast´stream method standard´c lass
bu i l t´ i n´c l a s s method´combination standard´gener ic´ funct ion
c e l l´ e r r o r n i l standard´method
charac t e r nu l l standard´object
c l a s s number s torage´cond i t ion
compi led´ funct ion package stream
complex package´error stream´error
concatenated´stream parse´error s t r i n g
cond i t i on pathname str ing´stream
cons print´not´readable s t ru c tu r e´ c l a s s
cont ro l´e r ro r program´error s t ruc ture´ob j e c t
divis ion´by´zero random´state style´warning
double´ f l oat r a t i o symbol
echo´stream r a t i o n a l synonym´stream
end´of´ f i l e reader´error t
e r r o r r eadtab l e two´way´stream

55

extended´char r e a l type´error
f i l e´ e r r o r r e s t a r t unbound´slot
f i l e´ s t r eam sequence unbound´variable
fixnum se r i ou s´ cond i t i on undef ined´ funct ion
f l o a t sho r t´ f l oa t unsigned´byte
f l oat ing´po int´ i nexact signed´byte vec to r
f l oa t ing´po int´ i nva l id´operat ion simple´array warning
f loat ing´po int´over f l ow simple´base´str ing
f loat ing´point´under f low simple´bit´vector)

This pool was used to generate the graph shown in Figure 29.

9.1.7 Intersections and Unions

101 102 103

10´3

10´2

10´1

Size

T
im

e

DECOMPOSE-TYPES-BDD-GRAPH

LOCAL-MINIMUM

Figure 30: Tuning algorithm with AND and OR combinations

This pool contains the type specifiers which are AND and OR combinations of the types in
Section 9.1.6. Starting from this list, we randomly generated type specifiers using and and or
combinations of names from this list such as the following:

(arithmetic-error function
(and arithmetic-error function)
(or arithmetic-error function)
array
(or function array)
sequence
(or function sequence)
...)

This pool was used to generate the graph shown in Figure 30.

9.1.8 Subtypes of fixnum using member

This pool contains type specifiers of various subtypes of FIXNUM all of the same form, using the
(member ...) syntax.
((member 2 6 7 9) (member 0 2 7 8 9) (member 0 2 5 6)
(member 0 1 2 4 6 8 10) (member 0 2 3 4 5 6 8 9) (member 1 2 3 4 5 6 10)
(member 3 5 6 7 8) (member 0 1 3 5 8 9) (member 1 2 4 5 8 10)
(member 0 2 5 6 8 9 10) (member 0 2 3 4) (member 1 4 5 6 7 9 10)

56

x
101 102

10´3

10´2

10´1

100

Size

T
im

e

DECOMPOSE-TYPES-BDD-GRAPH

LOCAL-MINIMUM

Figure 31: Tuning algorithm with MEMBER types

(member 0 2 3 4 5 7 9) (member 2 4 5) (member 3 4 5 9)
(member 0 1 2 3 6 10) (member 0 1 3 4 5 6 9 10) (member 1 2 8 10)
(member 1 3 6 7 8 10) (member 0 1 2 4 10) (member 0 1 2 3 4 6 7 9)
(member 0 1 2 4 5 6 7 8 10) (member 0 4 5 7 9 10) (member 1 3 4 6 9)
(member 1 3 6 7 8 9 10))

This pool was used to generate the graph shown in Figure 31.

9.2 Tuning the BDD based graph algorithm
Section 5 explains how to represent the problem of set decomposition as a graph problem. The
section explains how to construct the graph, and several deconstruction operations. What is not
explained is how to deconstruct the graph efficiently in terms of execution time. From the high
level view once the graph has been constructed, the algorithm proceeds by visiting each node and
apply some of a set of possible operations. In fact one in particular of these operations, the subset
extraction, there are two variations described in 5.2.2 and 5.2.3.

The natural question which arises is what is the best way to assemble these pieces into an
efficient algorithm? In this section (Section 9.2) we describe some experimentation we did to
attempt to determine an approach which is reasonable for a wide range of data sets.

Break subset: strict vs. relaxed, explained in Sections 5.2.2 and 5.2.3.

Break loop: yes vs. no, explained in Section 5.2.5.

Iteration topology: @ node @ operation vs. @ operation @ node, explained in Section 5.3.

Recursive: yes vs. no, explained in Section 5.2.6 and 5.3

Node visitation order: "SHUFFLE", "INCREASING-CONNECTIONS", "DECREASING-CONNECTIONS",
"BOTTOM-TO-TOP", "TOP-TO-BOTTOM", explained in Section 5.3.

Inclusion: implicit vs. explicit, explained in Section 5.2.1.

Empty set: late-check, vs. correct-label vs. correct-connection, explained in
Section 5.2.6.

Section 9.1 details several pools which were constructed to test various aspects of the disjoint
type decomposition algorithm.

57

Parameter value
Break subset relaxed
Break loop no
Iteration topology operations per node
Recursive yes
Node visitation order BOTTOM-TO-TOP
Inclusion not tested
Empty set not tested

Figure 32: Experimentally determined best parameter values

We have devised test suits which run on each of the data pools testing the performance of the
graph based algorithm as a function of each of the parameters described above, with the exception
of inclusion and empty-set. At this point in our experimentation we have not yet included these
parameter in our performance testing.

Some of the parameter options don’t make sense together. For example, we cannot use break
subset=relaxed along with break loop=no because this would result in some graphs which cannot
reduced at all. Of the remaining possible combinations we have construction 45 different variations
of the input parameters. Figures 24 through 31 show the performance results in terms of input size
vs. calculation time. The red curves indicates the default performance of the algorithm (having
been tuned by the analysis explained below). The black curve indicates the minimum time (best
possible) performance for this data pool. (The following paragraphs explain what we mean by best
performance). The plots show that although the default parameters do not yield the best results
on any one of the data sets, the results do seem reasonably good.

For each of the 8 test pools, 45 curves were plotted. In each case we wanted to determine
the fitness of the 45 curves. There are potentially many different ways of judging the curves for
fitness.

As all of our sampled data is positive (calculation time is always non-negative), we elected to
derive a norm for the curves. I.e., we can sort the curves from best to worst by sorting them in
increasing order of norm. Small norm means fast calculation time over the range sampled, and
large norm means slow calculation time. But even then, there are many ways of calculating a
norm of sampled functions. A simple Google search of the terms "metrics for sampled functions"
finds 726,000 results of scholarly papers.

Three possible norms are the following:

• Average value sum of y-values divided by number of samples.

• Average value based on numerical integral divided by size of domain

• RMS (root means square) distance from the extrapolated minimum curve.

The most reasonable of these for our needs is the average. The other two were dismissed
because they don’t give equal weighting to all samples. We believed that the latter of the two
would give inappropriately large weighting to large values of calculation time vs. sample size.

Once the norm of each curve was calculated, (45 for each pool, over 8 pools), we calculated a
student score for each curve in the same pool. If µ is the average norm for a pool and σ is the
standard deviation of the norms, then the student score, Z, is defined as follows. Zpfq “ ||f ||´µ

σ . By
this definition the smallest (most negative) Z indicates the best curve, i.e., the set of parameters
resulting in the least calculation time within the pool. Using the student score, allows us to
compare results from different pools, as each score has already been normalize by the standard
deviation of its respective pool.

Once each curve has been scored (via the student score), we then proceeded to determine which
sets of parameters lead to the best score. We considered, one by one, each of the parameters, and
for each possible value of the parameter, we calculated at the average student score (across all 8

58

pools). For example: there are two possible values for break sub: strict and relaxed. The average
student score for break sub=strict was 0.62518245 and for break sub=relaxed was -0.28656462.
From this we infer that relaxed is a better choice than strict. Figure 32 shows the experimentally
determined best values for the parameters of the graph based algorithm.

Given this experimentally determined set of default values for the parameters, we have a can-
didate default behavior for the function. The performance of this default function can be seen
relative to the other possible parameterizations can be seen in Figures 24 through 31. Each figure
shows the performance of the default function and the performance of the per-pool best function
along with the 43 other functions for that data pool. The red curve indicates the default perfor-
mance of the algorithm. The black curve indicates the minimum time (best possible) performance
for this data pool. The plots show that although the default parameters do not yield the best
results on any one of the data sets, the results do seem reasonably good.

Ranking Results
Parameter Value Average Score

Break subset relaxed -0.28656462
strict 0.62518245

Break loop no -0.49688414
yes 0.2650052

Iteration topology node first 0.0048906407
operation first 0.042273182

Recursive yes -0.29216018
no 0.14136852

Node visitation order

BOTTOM-TO-TOP -0.2333628
DECREASING-CONNECTIONS -0.17516118
SHUFFLE 0.10092279
INCREASING-CONNECTIONS 0.12181535
TOP-TO-BOTTOM 0.27254203

9.3 Analysis of Performance Tests
Figures 33, 37, 39, 41, 43, 45, and 47 contrast the the five effective algorithms in terms of execution
time vs sample size. Sample size is the integer product of the number of input types multiplied
by the number of output types. This particular plot was chosen as it heuristically seems to be the
best to demonstrate the relative performance for the different data sets.

The type specifiers used in Figure 33 are those designating all the subtypes of NUMBER whose
symbol name comes from the "CL" package as explained in Section 9.1.1.

The type specifiers used in Figure 35 are those designating all the subtypes of CONDITION
whose symbol name comes from the "CL" package as explained in Section 9.1.2.

The type specifiers used in Figure 37 are the set of symbols in the "CL" package specifying
types which are a subtype of either NUMBER or CONDITION as explained in Section 9.1.3.

The type specifiers used in Figure 39 are those designating all the subtypes of CL:T whose
symbol name comes from the "CL" package as explained in Section 9.1.4.

The type specifiers used in Figure 41 are those designating all the types named in the SB-PCL
package as explained in Section 9.1.5.

The type specifiers used in Figure 43 are those explained in Section 9.1.6.
The type specifiers used in Figure 45 are those explained in Section 9.1.7.
The type specifiers used in Figure 47 are those explained in Section 9.1.8.

59

101 102

10´3

10´2

10´1

100

101

102

Size

T
im

e

DECOMPOSE-TYPES

DECOMPOSE-TYPES-RTEV2

DECOMPOSE-TYPES-SAT

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Figure 33: Performance using subtypes of number

101.5 102 102.5

10´3

10´2

10´1

100

Size

T
im

e

DECOMPOSE-TYPES-RTEV2

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Figure 34: Performance using subtypes of number (best three)

60

101 102

10´3

10´2

10´1

100

101

Size

T
im

e

DECOMPOSE-TYPES

DECOMPOSE-TYPES-RTEV2

DECOMPOSE-TYPES-SAT

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Figure 35: Performance using subtypes of condition

101 102 103

10´3

10´2

10´1

100

101

Size

T
im

e

DECOMPOSE-TYPES-RTEV2

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Figure 36: Performance using subtypes of condition (best three)

61

101 102 103

10´3

10´2

10´1

100

101

102

Size

T
im

e

DECOMPOSE-TYPES

DECOMPOSE-TYPES-RTEV2

DECOMPOSE-TYPES-SAT

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Figure 37: Performance using subtypes of number-or-condition

101 102 103

10´3

10´2

10´1

100

101

Size

T
im

e

DECOMPOSE-TYPES-RTEV2

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Figure 38: Performance using subtypes of number-or-condition (best three)

62

101 102

10´3

10´2

10´1

100

101

Size

T
im

e

DECOMPOSE-TYPES

DECOMPOSE-TYPES-RTEV2

DECOMPOSE-TYPES-SAT

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Figure 39: Performance using subtypes of t

102 103

10´3

10´2

10´1

100

Size

T
im

e

DECOMPOSE-TYPES-RTEV2

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Figure 40: Performance using subtypes of t (best three)

63

101 102 103

10´3

10´2

10´1

100

101

102

Size

T
im

e

DECOMPOSE-TYPES

DECOMPOSE-TYPES-RTEV2

DECOMPOSE-TYPES-SAT

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Figure 41: Performance using PCL types

102 103

10´3

10´2

10´1

100

101

Size

T
im

e

DECOMPOSE-TYPES-RTEV2

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Figure 42: Performance using PCL types (best three)

64

101 102 103

10´3

10´2

10´1

100

101

102

Size

T
im

e

DECOMPOSE-TYPES

DECOMPOSE-TYPES-RTEV2

DECOMPOSE-TYPES-SAT

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Figure 43: Performance using CL types

102 103

10´3

10´2

10´1

100

101

Size

T
im

e

DECOMPOSE-TYPES-RTEV2

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Figure 44: Performance using CL types (best three)

65

100 101 102 103

10´3

10´2

10´1

100

101

102

Size

T
im

e

DECOMPOSE-TYPES

DECOMPOSE-TYPES-RTEV2

DECOMPOSE-TYPES-SAT

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Figure 45: Performance using CL combos

101 102 103

10´3

10´2

10´1

100

101

Size

T
im

e

DECOMPOSE-TYPES-RTEV2

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Figure 46: Performance using CL combos (best three)

66

101 102

10´3

10´2

10´1

100

101

102

Size

T
im

e

DECOMPOSE-TYPES

DECOMPOSE-TYPES-RTEV2

DECOMPOSE-TYPES-SAT

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Figure 47: Performance using MEMBER types

101.4 101.6 101.8 102 102.2 102.4

10´3

10´2

10´1

100

101

Size

T
im

e

DECOMPOSE-TYPES-RTEV2

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Figure 48: Performance using MEMBER types (best three)

67

10 Related work
The average and worst case of decision diagrams has been discussed in published works. For exam-
ple Butler et al. [SIHB97] discusses these measurements for symmetric multiple-valued functions.
Bryant [Bry86] discusses the effect of variable ordering on diagram sizes. Gröpl [GPS01] examines
the worst case size of qOBDDs, which are quasi-reduced BDDs; i.e. he omits some of the reduction
steps which we use.

As stated in Section 7.1, Castagna [Cas16] discusses the use of BDDs as a tool for type manip-
ulation. The usage therefor is in functional languages significantly different that Common Lisp.
A significant motivation for our research was (is) to investigate how these techniques might be
useful when applied to a more pragmatic type system such as in Common Lisp.

11 Known issues
Need to discuss where such an algorithm as described in Sections 1 is applicable. Is there an
application other than in RTE? One non-conclusive argument is that any reader of Castagna’s
paper who has a type system with subtyping may need the optimizations discussed here.

Another potential application is that the Common Lisp subtypep is known to be slow. Do
Common Lisp implementations use s-expressions as type specifiers to perform the type calculus?
If so, this could be made more efficient using BDDs. The application is not trivial because despite
my current efforts, my BDD calculus does depend on subtypep in some non-trivial cases.

12 Future work
There are many potential directions this research could lead next.

12.1 Common Lisp Pattern Matching
Section 7.6.2 discusses approaches for in-lining certain Common Lisp calls such as typep using
BDD related techniques. It is interesting to ask how much further this can be taken. There
are other aspects of functional-language-like pattern matching which could be implemented atop
something like Common Lisp typecase, and therein compile such constructs to efficient code using
techniques which are extensions of those discussed in Section 7.6.2.

12.2 More realistic test cases
Section 9 details work we have done attempting to characterize the performance difference between
the various algorithms and various tweaks of algorithms used for type decomposition. The test
cases used in the section are explained in the section but are admitted contrived. Having an
implementation of pattern matching (as described in Section 12.1) in Common Lisp which takes
advantage of type decomposition algorithms, could potentially give us a better set of data for
testing performance of the various algorithms.

12.3 Variable Ordering
It is known that the size of an ROBDD depends on the ordering chosen for the variables. Further-
more, it is known that finding the best ordering is NP-hard. However, we would like to experiment
with attempting to incrementally improve the size by changing the ordering, thus proving an intu-
ition of effort vs. improvement. The concept of the experiment would be to extend the techniques
used in Section ?? to also measure results of sampling different orderings of variables to measure
ROBDD size reduction. This sampling based search could be made as computationally light or
intensive as desired. The current guess is that more search time would result in better orderings

68

for a chosen Boolean expression. However, it is not known whether easy searches may incremen-
tally improve worst case size for a number of variables, or whether only every time and resource
consuming searches would be able to yield significant improvements.

12.4 Short-circuiting BDD operations
Section 7.3.3 explains an elegant but sometimes costly operation involving BDDs which is necessary
to model the Common Lisp subtype relation sufficiently with BDDs. We believe this (and some
other) BDD operations should be optimized. Sometimes we calculate the intersection or relative
complement of two given types for the purpose of finding out whether such operation results in
the empty type. We believe there are cases when the calculation might be abandoned once it has
been determined that the result is not the empty type. I.e. it is not necessary to know the exact
type, rather that it is different from the empty type.

12.5 Closed forms for average ROBDD size
In Section ?? we derive a formula for the worst case ROBDD size as a function of the number of
Boolean variables, and in Section ?? we experimentally develop graphs of the average and median
sizes. We would like to derive formulas for the expected ROBDD size, but it currently unclear
how to do this.

12.6 0-Sup-BDDs
Minato [Min93] suggests using a different set of reduction rules than those discussed in Section ??.
The resulting graph is referred to as a Zero-Suppressed BDD, or 0-Sup-BDDs. Minato claims this
data structure offers certain advantages over ROBDDs in modeling sets and expressing set related
operations. We see potentially application for this in type calculations, especially when types are
viewed as sets (Section 1.2). Additionally, Minato claims that 0-Sup-BDDs provide advantages
when the number of input variables is unknown, which is the case we encounter when dealing with
Common Lisp types, because we do not have a way of finding all user defined types.

We would like to experiment with 0-Sup-BDD based implementations of our algorithms and
contrast the performance results with those found thus far.

12.7 Hidden cost
When using ROBDDs or presumably 0-Sup-BDDs, one must incorporate a hash table of all the
BDDs encountered so var (or at least within a particular dynamic extent). The hash table was
mentioned in Section 7. The hash table is used to assure structural identity. However, the
hash table can become extremely large, even it its lifetime is short. Section ?? discusses the
characterization of the worst case size of an ROBDD as a function of the number of Boolean
variables. However, this characterization ignores the transient size of the hash table. So one
might argue that the size estimations in ?? are misleading in practice.

We would like to continue our experimentation and analysis to provide ways of measuring
or estimating the hash table size, and potentially ways of decreasing the burden incurred. For
example, we suspect that most of the hash table entries are never re-used. Even though both
Andersen[And99] and Minato [Min93] claim the necessity to enforce structural identity, it is not
clear whether in our case, the run time cost associated with this memory burden, outweighs the
advantage gained by structural identity. Furthermore, the approach used by Castagna [Cas16]
seems to favor laziness over caching, lending credence to our suspicion.

12.8 Lazy union BDDs
Castagna [Cas16] mentions the use of a lazy union strategy for representing type expressions as
BDDs. However, in this article, we have only implemented the strategy described by Andersen

69

[And99]. The Andersen approach involves allocating a hash table to memoize all the BDDs encoun-
tered in order to both reduce the incremental allocation burden when new Boolean expressions are
encountered, and also to allow occasional pointer comparisons rather than structure comparisons.
Castagna suggests that the lazy approach can greatly reduce memory allocation. We would like to
investigate which of these two approaches gives better performance, or allows us to solve certain
problems. Certainly it would be good to attain heuristics to describe situations which one or the
other optimization approach is preferable.

Additionally, from the description given by Castagna, the lazy union approach implies that
some unions involved in certain BDD related Boolean operations can be delayed until the results
are needed, at which time the result can be calculated and stored in the BDD data structure.
A question which naturally arises: can we implement a fully functional BDD which never stores
calculated values. The memory footprint of such an implementation would probably be smaller,
while incremental operations would be slower. It is not clear whether the overall performance
would be better or worse.

12.9 Improving the SAT based disjoint type algorithm using BDDs
Sections 8.1 and 8.2 describe re-implementing previously presented type decomposition algorithms
using the BDD data structure. For completeness, we should also re-implement the SAT based
algorithm using the BDD data structure.

70

References
[Ake78] S. B. Akers. Binary decision diagrams. IEEE Trans. Comput., 27(6):509–516, June 1978.

[And99] Henrik Reif Andersen. An introduction to binary decision diagrams. Technical report,
Course Notes on the WWW, 1999.

[Ans94] Ansi. American National Standard: Programming Language – Common Lisp. ANSI
X3.226:1994 (R1999), 1994.

[Bak92] Henry G. Baker. A decision procedure for Common Lisp’s SUBTYPEP predicate. Lisp
and Symbolic Computation, 5(3):157–190, 1992.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35:677–691, August 1986.

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Comput. Surv., 24(3):293–318, September 1992.

[Cas16] Giuseppe Castagna. Covariance and contravariance: a fresh look at an old issue. Technical
report, CNRS, 2016.

[CF05] Giuseppe Castagna and Alain Frisch. A gentle introduction to semantic subtyping.
In Proceedings of the 7th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, PPDP ’05, pages 198–199, New York, NY, USA,
2005. ACM.

[GF64] Bernard A. Galler and Michael J. Fisher. An improved equivalence algorithm.
Commununication of the ACM, 7(5):301–303, may 1964.

[GPS01] Clemens Gröpl, Hans Jürgen Prömel, and Anand Srivastav. On the evolution of the
worst-case OBDD size. Inf. Process. Lett., 77(1):1–7, 2001.

[JEH01] Jeffrey D. Ullman Johh E. Hopcroft, Rajeev Motwani. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 2001.

[Knu09] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise
Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley Professional, 12th edi-
tion, 2009.

[Min93] Shin-ichi Minato. Zero-suppressed bdds for set manipulation in combinatorial problems.
In Proceedings of the 30th International Design Automation Conference, DAC ’93, pages
272–277, New York, NY, USA, 1993. ACM.

[NDV16] Jim Newton, Akim Demaille, and Didier Verna. Type-Checking of Heterogeneous Se-
quences in Common Lisp. In European Lisp Symposium, Kraków, Poland, May 2016.

[New16] Jim Newton. Report: Efficient dynamic type checking of heterogeneous sequences. Tech-
nical report, EPITA/LRDE, 2016.

[PBM10] Md. Mostofa Ali Patwary, Jean R. S. Blair, and Fredrik Manne. Experiments on union-
find algorithms for the disjoint-set data structure. In Paola Festa, editor, Proceedings
of 9th International Symposium on Experimental Algorithms (SEA’10), volume 6049 of
Lecture Notes in Computer Science, pages 411–423. Springer, 2010.

[SIHB97] Tsutomu Sasao, Robert J. Barton III, David S. Herscovici, and Jon T. Butler. Aver-
age and worst case number of nodes in decision diagrams of symmetric multiple-valued
functions. IEEE Transactions on Computers, 46:491–494, 1997.

71

A Identities of Unary Union and Intersection
In Section 3.1 we introduced definitions for unary union and unary intersection of sets of sets.
In this appendix we present proofs of identities which were previously stated without proof in
Section 3.1. These is proofs are provided as an appendix for completeness and because the proofs
themselves are tedious, involving several cases. We feel that the proofs offer little insight into
the relations. On the other hand, we do offer in this appendex several examples of the identities
intended to provide some intuitive understanding.

As a reminder, we repeat the definitions from Section 3.1.

Definition 11. We define
Ť

: 22U

ÞÑ 2U by the following rule. If V is a set of subsets of U , then

ď

V “

$

’

’

&

’

’

%

H if V “ H (1)
X if |V | “ 1 and V “ tXu (2)
ď

XPV

X if |V | ą 1 (3)

Definition 12. We define
Ş

: 22U

ÞÑ 2U by the following rule. If V is a set of subsets of U , then

č

V “

$

’

’

&

’

’

%

U if V “ H (4)
X if |V | “ 1 and V “ tXu (5)
č

XPV

X if |V | ą 1 (6)

Theorem 6. If V, V 1 Ă 2U , then
ď

pV Y V 1q “ p
ď

V q Y p
ď

V 1q

Proof. We proceed tediously with three cases. Some of the cases themselves have sub-cases.

1. |V Y V 1| “ 0,

2. |V Y V 1| “ 1, and

3. |V Y V 1| ą 1.

Case 1: |V Y V 1| “ 0 ùñ V Y V 1 “ H ùñ V “ H and V 1 “ H.
ď

pV Y V 1q “
č

H

“ H by 1
“ HYH

“ p
ď

Hq Y p
ď

Hq by 1

“ p
ď

V q Y p
ď

V 1q

Case 2: |V Y V 1| “ 1. There are two sub-cases to consider: (2a) V “ V 1 and (2b) V ‰ V 1.

Sub-case 2a: V “ V 1

ď

pV Y V 1q “
ď

V

“ p
ď

V q Y p
ď

V q

“ p
ď

V q Y p
ď

V 1q

72

Sub-case 2b: V ‰ V 1 implies that either V or V 1 has cardinality 1 and the other is H.
Without loss of generality, assume V 1 “ H, so V Y V 1 “ V .

ď

pV Y V 1q “
ď

V

“ p
ď

V q YH

“ p
ď

V q Y p
ď

Hq by 1

“ p
ď

V q Y p
ď

V 1q

Case 3: |V Y V 1| ą 1. There are four sub-cases consider: (3a) V “ H or V 1 “ H, (3b) |V | “ 1
and |V 1| “ 1, (3c) exactly one of |V | “ 1 or |V | “ 1, and (3d) |V | ą 1 and |V 1| ą 1.

Sub-case 3a: V “ H or V 1 “ H. Without loss of generality, assume V 1 “ H.
ď

pV Y V 1q “
ď

V

“ p
ď

V q YH

“ p
ď

V q Y p
ď

Hq by 1

“ p
ď

V q Y p
ď

V 1q

Sub-case 3b: |V | “ 1 and |V 1| “ 1. Denote V “ tvu and V 1 “ tv1u.
ď

pV Y V 1q “
ď

ptvu Y tv1uq

“
ď

ptv, v1uq

“ v Y v1 by 3

“ p
ď

tvuq Y p
ď

tv1uq by 2

“ p
ď

V q Y p
ď

V 1q

Sub-case 3c: Exactly one of |V | “ 1 or |V 1| “ 1. Without loss of generality, assume
|V | ą 1, and |V 1| “ 1. Denote V 1 “ tv1u, so that

Ť

V 1 “
Ť

tv1u.
ď

pV Y V 1q “
ď

βPpVYV 1q

β by 3

“
ď

βPpVYtv1uq

β

“ p
ď

βPV

βq Y v1

“ p
ď

V q Y v1 by 3

“ p
ď

V q Y p
ď

tv1uq by 2

“ p
ď

V q Y p
ď

V 1q

Sub-case 3d: |V | ą 1 and |V 1| ą 1.
ď

pV Y V 1q “
ď

βPpVYV 1q

β by 3

“ p
ď

βPV

βq Y p
ď

βPV 1

βq

“ p
ď

V q Y p
ď

V 1q by 3

73

Theorem 6 states that the
Ş

function preserves unions. I.e. a union in 22U is mapped to a
union in 2U . One might be tempted to extrapolate to assume that intersections are also preserved.
But they are not. I.e., one might be tempted to guess that

Ť

pV XV 1q is identical to p
Ť

V qXp
Ť

V 1q.
A simple counterexample suffices to disprove this.

Example 24. Let V “ tt1, 2uu, and V 1 “ tt1, 3uu. We see that
ď

pV X V 1q “
ď

ptt1, 2uu X tt1, 3uuq “
ď

H “ H

As well
č

pV X V 1q “
č

ptt1, 2uu X tt1, 3uuq “
č

H “ H

while
p
ď

V q X p
ď

V 1q “ p
ď

tt1, 2uuq X p
ď

tt1, 3uuq “ t1, 2u X t1, 3u “ t1u

So we can conclude that in the general case there exist V and V 1 for which
ď

pV X V 1q ‰ p
ď

V q X p
ď

V 1q

However, the equation
ď

pV X V 1q “ p
ď

V q X p
ď

V 1q

does have solutions. E.g., V “ H, V 1 “ H satisfies the equation.

Theorem 7. If V, V 1 Ă 2U , then
č

pV Y V 1q “ p
č

V q X p
č

V 1q

Proof. This proof follows the proof of Theorem 6 very closely in form. A critical difference however,
can be found in several cases where H in Theorem 6 has been replaced with U here.

We proceed tediously with three cases. Some of the cases themselves have sub-cases.

1. |V Y V 1| “ 0,

2. |V Y V 1| “ 1, and

3. |V Y V 1| ą 1.

Case 1: |V Y V 1| “ 0 ùñ V Y V 1 “ H ùñ V “ H and V 1 “ H.
č

pV Y V 1q “
č

H

“ U by 4
“ U X U

“ p
č

Hq X p
č

Hq by 4

“ p
č

V q X p
č

V 1q

Case 2: |V Y V 1| “ 1. There are two sub-cases to consider: (2a) V “ V 1 and (2b) V ‰ V 1.

Sub-case 2a: V “ V 1

č

pV Y V 1q “
č

V

“ p
č

V q X p
č

V q

“ p
č

V q X p
č

V 1q

74

Sub-case 2b: V ‰ V 1 implies that either V or V 1 has cardinality 1 and the other is H.
Without loss of generality, assume V 1 “ H, so V Y V 1 “ V .

č

pV Y V 1q “
č

V

“ p
č

V q X U

“ p
č

V q X p
č

Hq by 4

“ p
č

V q X p
č

V 1q

Case 3: |V Y V 1| ą 1. There are four sub-cases consider: (3a) V “ H or V 1 “ H, (3b) |V | “ 1
and |V 1| “ 1, (3c) exactly one of |V | “ 1 or |V | “ 1, and (3d) |V | ą 1 and |V 1| ą 1.

Sub-case 3a: V “ H or V 1 “ H. Without loss of generality, assume V 1 “ H.
č

pV Y V 1q “
č

V

“ p
č

V q X U

“ p
č

V q X p
č

Hq by 4

“ p
č

V q X p
č

V 1q

Sub-case 3b: |V | “ 1 and |V 1| “ 1. Denote V “ tvu and V 1 “ tv1u.
č

pV Y V 1q “
č

ptvu Y tv1uq

“
č

ptv, v1uq

“ v X v1 by 6

“ p
č

tvuq X p
č

tv1uq by 5

“ p
č

V q X p
č

V 1q

Sub-case 3c: Exactly one of |V | “ 1 or |V 1| “ 1. Without loss of generality, assume
|V | ą 1, and |V 1| “ 1. Denote V 1 “ tv1u, so that

Ş

V 1 “
Ş

tv1u.
č

pV Y V 1q “
č

βPpVYV 1q

β by 6

“
č

βPpVYtv1uq

β

“ p
č

βPV

βq X v1

“ p
č

V q X v1 by 6

“ p
č

V q X p
č

tv1uq by 5

“ p
č

V q X p
č

V 1q

Sub-case 3d: |V | ą 1 and |V 1| ą 1.
č

pV Y V 1q “
č

βPpVYV 1q

β by 6

“ p
č

βPV

βq X p
č

βPV 1

βq

“ p
č

V q X p
č

V 1q by 6

75

Even after seeing the proofs, one may still wonder how this works with actual examples. In
particular, these identies do in fact hold, especially in the cases: V 1 “ H, V 1 “ 2U , V 1 “ tHu,
and V 1 “ tUu.

First, we look at V 1 “ H.

ď

V “
ď

pV YHq

“ p
ď

V q Y p
ď

Hq

“ p
ď

V q YH

“
ď

V

č

V “
č

pV YHq

“ p
č

V q X p
č

Hq

“ p
č

V q X U

“
č

V

Next, we look at V 1 “ 2U .

U “
ď

2U

“
ď

pV Y 2U q

“ p
ď

V q Y p
ď

2U q

“ p
ď

V q Y U

“
ď

U

H “
č

2U

“
č

pV Y 2U q

“ p
č

V q X p
č

2U q

“ p
č

V q XH

“ H

76

Next, we look at V 1 “ tUu in the special case where U P V .

ď

V “
ď

pV Y tUuq

“ p
ď

V q Y
ď

tUu

“ p
ď

V q Y U

“ U
č

V “
č

pV Y tUuq

“ p
č

V q X
č

tUu

“ p
č

V q X U

“
č

V

Next, we look at V 1 “ tHu in the special case where H P V .

ď

V “
ď

pV Y tHuq

“ p
ď

V q Y
ď

tHu

“ p
ď

V q YH

“
ď

V
č

V “
č

pV Y tHuq

“ p
č

V q X
č

tHu

“ p
č

V q XH

“ H

The notation might be considered deceptive. We have already seen that these identies hold:

ď

pV Y V 1q “ p
ď

V q Y p
ď

V 1q
č

pV Y V 1q “ p
č

V q X p
č

V 1q

By extrapolation from the notation, one might wonder whether there is any relation between

t
ď

pV Y V 1q,
č

pV Y V 1qu

and
tp

ď

V q X p
ď

V 1q, p
č

V q Y p
č

V 1qu

In particular one might wonder whether any of them are identically equal.
One might guess that some of the following identies hold. In fact, they do not as we will show.

ď

pV X V 1q
?
“ p

ď

V q X p
ď

V 1q (7)
ď

pV X V 1q
?
“ p

ď

V q Y p
ď

V 1q (8)
č

pV X V 1q
?
“ p

č

V q Y p
č

V 1q (9)
č

pV X V 1q
?
“ p

č

V q X p
č

V 1q (10)

77

We have already seen in Example 24 that 7 is not an equality. The same values of V and V 1
can be used which were used in Example 24.

Example 25. As in Example 24, let V “ tt1, 2uu, and V 1 “ tt1, 3uu. We see that the values of
the left hand sides of each of 7, 8, 9, and 10 are all H.

ď

pV X V 1q “
ď

ptt1, 2uu X tt1, 3uuq “
ď

H “ H

ď

pV X V 1q “
ď

ptt1, 2uu X tt1, 3uuq “
ď

H “ H

while the right hand sides of 7, 8, 9, and 10 are eith either t1u or t1, 2, 3u.

p
ď

V q X p
ď

V 1q “ p
ď

tt1, 2uuq X p
ď

tt1, 3uuq

“ t1, 2u X t1, 3u
“ t1u

p
ď

V q Y p
ď

V 1q “ p
ď

tt1, 2uuq Y p
ď

tt1, 3uuq

“ t1, 2u Y t1, 3u
“ t1, 2, 3u

p
č

V q Y p
č

V 1q “ p
č

tt1, 2uuq Y p
č

tt1, 3uuq

“ t1, 2u Y t1, 3u
“ t1, 2, 3u

p
č

V q X p
č

V 1q “ p
č

tt1, 2uuq X p
č

tt1, 3uuq

“ t1, 2u X t1, 3u
“ t1u

So we can see that none of the supposed identies hold.

B Finitely many Boolean combinations
The following is an argument that given a finite set V of sets, that the set of all Boolean combi-
nations of thse sets is itself finite. To prove this, we first prove a more general result (Theorem 8),
and then show the lesser result as an immedate consequence (Corollary 2).

Theorem 8.

Proof. TBD

Corollary 2.

Proof. TBD

C Code implementing RTE algorithm
The following Common Lisp code implements the algorithm explained in Section 8.1.

78

(de fvar ∗ bdd´ s l i c e r s ∗ (l i s t #’bdd´and
#’bdd´and´not
#’(lambda (a b) (bdd´and´not b a))))

(defun ´bdd´decompose´types (t yp e´ s p e c i f i e r s)
(bdd´with´new´hash
(lambda ()

(l a b e l s ((option´bdd (bdd)
(i f (bdd´empty´type bdd)

n i l
(l i s t bdd)))

(s l i c e´ s e t (bdd´a bdd´b)
; ; g iven two types expres sed as bdds , r e turn a l i s t o f at most three
; ; bdds . a&b a&!b b&!a . I f any o f the three corre sponds to the n i l
; ; type , i t i s omitted from the returned l i s t .
(mapcan (lambda (f)

(option´bdd (f u n c a l l f bdd´b bdd´a)))
∗ bdd´ s l i c e r s ∗))

(s l i c e (bdds bdd1)
(l e t ((s l i c e d (mapcan (lambda (bdd2)

(s l i c e´ s e t bdd1 bdd2))
bdds)))

; ; We remove the more compl icated type .
; ; e . g . , we could count the atomic types and remove the bdd with more .
; ; e . g . , p r e f e r to keep INTEGER and d i s ca rd (and RATIONAL (not RATIO))
; ; t h i s works because remove´dupl icates removes the element c l o s e r to the
; ; beg inning o f the l i s t when choos ing which o f two elements to remove .
(remove´dupl icates (s o r t s l i c e d #’>

: key #’(lambda (bdd)
(l ength (bdd´collect´atomic´types bdd))))

: t e s t #’bdd´type´equal)))
(remove´supers (bdds)

(remove´ i f (lambda (bdd1)
(e x i s t s bdd2 bdds

(and (not (eq bdd1 bdd2))
(bdd´subtypep bdd2 bdd1)))) bdds)))

(l e t ((bdds (mapcan (lambda (t yp e´ s p e c i f i e r)
(option´bdd (bdd type´ s p e c i f i e r)))

t yp e´ s p e c i f i e r s)))
(when bdds

(remove´supers
(reduce #’ s l i c e (cdr bdds)

: i n i t i a l´v a l u e (l i s t (car bdds))))))))))

(defun bdd´decompose´types (t yp e´ s p e c i f i e r s)
(when typ e´ s p e c i f i e r s

(with´dis jo int´hash
(lambda ()

(with´subtype´hash
(lambda ()

(mapcar #’bdd´to´dnf
(´bdd´decompose´types t yp e´ s p e c i f i e r s))))))))

D Code implementing BDD graph type decomposition
The following is the Common Lisp code implementing decompose-types-bdd-graph as discussed
in Section 8.2.

79

(defun decompose´types´bdd´graph (t yp e´ s p e c i f i e r s)
(l e t ∗ ((node´id 0)

(bdds (sort´unique (mapcar #’bdd typ e´ s p e c i f i e r s)))
(graph (loop : f o r bdd : in bdds

: c o l l e c t (l i s t : bdd bdd
: supers n i l
: subs n i l
: touches n i l
: id (i n c f node´id)))))

; ; setup a l l the : supers , : subs , and : touches l i s t s
(loop : f o r t a i l : on graph

: do (loop : f o r node2 : in (cdr t a i l)
: with node1 = (car t a i l)
; ; populate the : supers , : subs , and : touches f i e l d s
: do

. . .))

(l e t ((changed n i l)
d i s jo int´bdds)

(l a b e l s ((d i s j o i n t ! (node)
(s e t f changed t)
(s e t f graph (remove node graph))
(push (g e t f node : bdd) d i s jo int´bdds))

(break´sub ! (sub super)
(s e t f (g e t f super : bdd) (bdd´and´not (g e t f super : bdd)

(g e t f sub : bdd))
changed t)

(remfq sub (g e t f super : subs))
(remfq super (g e t f sub : supers)))

(break´touch ! (node´x node´y)
(s e t f changed t)
(remfq node´x (g e t f node´y : touches))
(remfq node´y (g e t f node´x : touches))
(l e t ∗ ((bdd´x (g e t f node´x : bdd))

(bdd´y (g e t f node´y : bdd))
(supers´xy (union (g e t f node´x : supers)

(g e t f node´y : supers)))
(touches´xy (i n t e r s e c t i o n (g e t f node´x : touches)

(g e t f node´y : touches)))
(node´xy (l i s t : bdd (bdd´and bdd´x bdd´y)

: supers supers´xy
: subs n i l
: touches (s e t´d i f f e r e n c e touches´xy supers´xy)
: id (i n c f node´id))))

(push node´xy graph))))
(s e t f changed t)
(whi l e changed

(s e t f changed n i l)
(d o l i s t (node graph)

(when (d i s j o i n t´ c ond i t i on node)
(d i s j o i n t ! node)))

(d o l i s t (node graph) ; ; s t r i c t subset
(d o l i s t (super (g e t f node : supers))

(when (s t r i c t´ subse t´cond i t i on node)
(break´sub ! node super)))

(d o l i s t (ne ighbor (g e t f node : touches)) ; ; touching connect ions
(when (touching´condit ion node neighbor)

80

(break´touch ! node neighbor))))))

(mapcar #’bdd´to´dnf d i s jo int´bdds))))

E Code to generate worst case ROBDD of N Boolean vari-
ables

The following Common Lisp code was used to construct the ROBDDs shown in Section ?? and is
discussed in Section ??.
(defun bdd´make´worst´case (vars &key (basename (format n i l " /tmp/bdd´worst´~D"

(l ength vars))))
(l e t ∗ ((l e av e s (l i s t ∗bdd´true∗ ∗bdd´ fa lse ∗))

(s i z e 2) ; ; l ength o f l e av e s
(row´num (1´ (l ength vars)))
(rows (l i s t l e av e s)))

; ; bu i ld up the bottom
(whi l e (< (∗ s i z e (1´ s i z e)) (expt 2 row´num))

(l e t (bdds)
(map´pairs (lambda (o1 o2)

(push (bdd´node (car vars) o1 o2) bdds))
(reduce #’append rows : i n i t i a l´v a l u e ()))

(push bdds rows)
(i n c f s i z e (∗ s i z e (1´ s i z e)))
(pop vars)
(dec f row´num)))

; ; bu i ld the b e l t with exac t l y (expt 2 row´num) elements ,
; ; and 2∗ (expt 2 row´num) arrows .
; ; so two cases , does the prev ious row below have enough elements
; ; to support the arrows ?
(l e t ∗ ((n row´num)

(m (expt 2 n))
(p (l ength (car rows)))
(needed m)
(remaining (´ m (∗ p (1´ p))))
bdds)

(b lock create´ l inks´to´n+1
; ; F i r s t cons t ruc t as many as po s s i b l e , but not too many nodes
; ; po in t ing to row n+1. Assuming that row n=2 conta in s p
; ; number o f nodes , t h i s w i l l c r e a t e a maximum of p(p´1)
; ; nodes . I f p∗(p´1) >= 2^n then t h i s i s s u f f i c i e n t ,
; ; otherwise , remaining denotes how many add i t i ona l need to be
; ; c r ea ted in BLOCK create´remaining .
(map´pairs (lambda (l e f t r i g h t)

(cond
((plusp needed)
(push (bdd´node (car vars) l e f t r i g h t) bdds)
(dec f needed))

(t
(return´from create´ l inks´to´n +1))))

(car rows)))

(b lock create´remaining
; ; Next we c r e a t e any remaining nodes that are needed . This

81

; ; has some e f f e c t only in the case that p∗(p´1) < 2^n , which
; ; means that the prev ious block create´ l inks´to´n+1 f a i l e d to
; ; c r e a t e 2^n nodes , because row n+1 doesn ’ t have enough
; ; e lements . So the s t r a t e gy i s to c r e a t e l i n k s to as many o f
; ; the e x i s t i n g nodes row n+2, n+3 . . . as necessary , sk ipp ing
; ; any pa i r which has a l r eady been crea ted in the prev ious
; ; b lock .
(map´pairs (lambda (r i g h t l e f t &aux (bdd (bdd´node (car vars) l e f t r i g h t)))

(cond
; ; i f there ’ s a l r eady a bdd in bdds po in t ing to
; ; the se two nodes , t h i s sk ip t h i s pa i r . we
; ; don ’ t want dup l i c a t e nodes .
((member bdd bdds : t e s t #’eq))
((plusp remaining)
(push bdd bdds)
(dec f remaining))

(t
(return´from create´remaining))))

(reduce #’append rows : i n i t i a l´v a l u e ())))

(push bdds rows)
(pop vars))

; ; bu i ld the top
(whi l e vars

(l e t (bdds
(ptr (car rows)))

(a s s e r t (or (= 1 (l ength ptr))
(evenp (l ength ptr))) (ptr)
" expect ing e i t h e r 1 or even number as length , not ~D" (l ength ptr))

(whi l e ptr
(push (bdd´node (car vars) (pop ptr) (pop ptr)) bdds))

(push bdds rows))
(pop vars))

; ; the top row has one item , that element i s the worst
; ; case bdd f o r the g iven v a r i a b l e s
(bdd´view (car (car rows)) : basename basename)
(car (car rows))
(va lue s
(bdd´to´expr (car (car rows)))
(bdd´count´nodes (car (car rows))))))

(defun map´pairs (f ob j s)
(l e t ∗ ((s i z e (l ength ob j s))

(s i z e ^2 (∗ s i z e s i z e))
(vec (make´array s i z e : i n i t i a l´ c on t e n t s ob j s))
(prim s i z e))

; ; f i r s t we make sure that a l l the ob j e c t s get ’ used i f p o s s i b l e
; ; by c a l l i n g F with adjacent pa i r s f i r s t f (0 1) , f (2 3) , f (4 5)
; ; . . .
(loop f o r i from 0 below (1´ s i z e) by 2

do (f u n c a l l f (s v r e f vec i) (s v r e f vec (1+ i))))
; ; then we cont inue by c a l l i n g the missed adjacent pa i r s
; ; f (1 2) , f (3 4) , f (5 6) . . .
(loop f o r i from 1 below (1´ s i z e) by 2

do (f u n c a l l f (s v r e f vec i) (s v r e f vec (1+ i))))
; ; then we cont inue by c a l l i n g the adjacent pa i r s in r e v e r s e order
; ; f (1 0) , f (2 1) , f (3 2) , f (4 3) . . .

82

(loop f o r i from 0 below (1´ s i z e)
do (f u n c a l l f (s v r e f vec (1+ i)) (s v r e f vec i)))

(loop un t i l (= 1 (gcd prim s i z e))
do (i n c f prim))

(do ((n 0 (1+ n))
(b prim (+ b prim)))

((= n s i z e ^2) n i l)
(multiple´value´bind (q r) (t runcate b s i z e)

(l e t ((i 1 (mod q s i z e)))
(cond

((= i1 r)) ; ; don ’ t c a l l the func t i on on the same index at
; ; the same time . f (1 1)

((= (1+ i1) r)) ; ; sk ip adjacent pa i r s because they ’ ve
; ; been handled a l ready above

((= i1 (1+ r))) ; ; sk ip adjacent pa i r s because they ’ ve
; ; been handled a l ready above

(t
(f u n c a l l f (s v r e f vec i 1) (s v r e f vec r)))))))))

F Code for comparing two type specifiers
The following Common Lisp code is explained in Section 7.2.
(defun bdd´cmp (t1 t2)

(cond
((equal t1 t2)
’=)

((nu l l t1)
’<)

((nu l l t2)
’>)

((not (eq l (c l a s s´o f t1) (c l a s s´o f t2)))
(bdd´cmp (class´name (c l a s s´o f t1)) (class´name (c l a s s´o f t2))))

(t
(typecase t1

(l i s t
(l e t (va lue)

(whi l e (and t1
t2
(eq ’= (s e t f va lue (bdd´cmp (car t1) (car t2)))))

(pop t1)
(pop t2))

(cond
((and t1 t2)
va lue)

(t1 ’>)
(t2 ’<)
(t ’=))))

(symbol
(cond

((not (eq l (symbol´package t1) (symbol´package t2)))
(bdd´cmp (symbol´package t1) (symbol´package t2)))

((s t r i ng< t1 t2) ’<)
(t ’ >)))

(package
(bdd´cmp (package´name t1) (package´name t2)))

(s t r i n g
; ; know they ’ re not equal , thus not s t r i n g=

83

(cond
((s t r i ng< t1 t2) ’<)
(t ’ >)))

(number
(cond ((< t1 t2) ’<)

(t ’ >)))
(t
(e r r o r " cannot compare a ~A with a ~A"

(c l a s s´o f t1) (c l a s s´o f t2)))))))

G Code for smarter-subtypep
The following is to smarter-subtypep which was mentioned in Section 7.4.1.
(defun ´́ smarter´subtypep (t1 t2)

(d e c l a r e (opt imize (speed 3) (compilat ion´speed 0)))
(cond

((typep t1 ’ (cons (member eq l member))) ; (eq l obj) or (member obj1 . . .)
(l i s t (every #’(lambda (obj)

(d e c l a r e (n o t i n l i n e typep))
(typep obj t2))

(cdr t1))
t))

; ; T1 <: T2 <==> not (T2) <: not (T1)
((and (typep t1 ’ (cons (eq l not)))

(typep t2 ’ (cons (eq l not))))
(mu l t ip l e´va lue´ l i s t (smarter´subtypep (cadr t2) (cadr t1))))

; ; T1 <: T2 <==> not (T1 <= not (T2))
((and (typep t2 ’ (cons (eq l not)))

(smarter´subtypep t1 (cadr t2)))
’ (n i l t))

; ; T1 <: T2 <==> not (not (T1) <= T2)
((and (typep t1 ’ (cons (eq l not)))

(smarter´subtypep (cadr t1) t2))
’ (n i l t))

; ; (subtypep ’ (and c e l l´ e r r o r type´error) ’ c e l l´ e r r o r)
((and (typep t1 ’ (cons (eq l and)))

(e x i s t s t3 (cdr t1)
(smarter´subtypep t3 t2)))

’ (t t))
; ; t h i s i s the dual o f the prev ious c lause , but i t appears
; ; s b c l g e t s t h i s one r i g h t so we comment i t out
; ; ((and (typep t2 ’ (cons (eq l or)))
; ; (e x i s t s t3 (cdr t2)
; ; (smarter´subtypep t1 t3)))
; ; (va lue s t t))
(t
’ (n i l n i l))))

(defun ´smarter´subtypep (t1 t2 &aux (t12 (l i s t t1 t2)))
(d e c l a r e (opt imize (speed 3) (compilat ion´speed 0)))
(cond

((nu l l ∗ subtype´hash ∗)
(´´smarter´subtypep t1 t2))
((nth´value 1 (gethash t12 ∗ subtype´hash ∗))
(gethash t12 ∗ subtype´hash ∗))

(t
(s e t f (gethash t12 ∗ subtype´hash ∗)

84

(´´smarter´subtypep t1 t2)))))

(defun smarter´subtypep (t1 t2)
"The sb c l subtypep func t i on does not know that (eq l : x) i s a subtype

o f keyword , t h i s f unc t i on SMARTER ŚUBTYPEP understands t h i s . "
(d e c l a r e (opt imize (speed 3) (compilat ion´speed 0)))
(multiple´value´bind (T1<=T2 OK) (subtypep t1 t2)

(cond
(OK
(va lue s T1<=T2 t))

(t
(apply #’ va lue s (´smarter´subtypep t1 t2))))))

H Code for disjoint-types-p
The following is the code for disjoint-types-p as explained in Section 7.4.2.

(defun dis jo int´types´p (T1 T2 &aux X Y (t12 (l i s t T1 T2)))
"Two types are cons ide r ed d i s j o i n t , i f t h e i r i n t e r s e c t i o n i s empty ,

i . e . , i s a subtype o f n i l . "
(d e c l a r e (n o t i n l i n e subsetp))
(f l e t ((c a l c u l a t e ()

(multiple´value´bind (d i s j o i n t p OK) (subtypep (cons ’ and t12) n i l)
(cond

(OK
(l i s t d i s j o i n t p t))

((and (symbolp T1)
(symbolp T2)
(f i nd´ c l a s s T1 n i l)
(f i nd´ c l a s s T2 n i l))

(l i s t (not (d i spatch : s p e c i a l i z e r´ i n t e r s e c t i o n s (f i nd´ c l a s s T1)
(f i nd´ c l a s s T2)))

t))
((subsetp ’ ((t t) (n i l t))

(l i s t (s e t f X (mul t ip l e´va lue´ l i s t (smarter´subtypep T1 T2)))
(mu l t ip l e´va lue´ l i s t (smarter´subtypep T2 T1)))

: t e s t #’ equal)
; ; I s e i t h e r T1<:T2 and not T2<:T1
; ; or T2<:T1 and not T1<:T2 ?
; ; i f so , then one i s a proper subtype o f the other .
; ; thus they are not d i s j o i n t .
(l i s t n i l t))

((and (typep T1 ’ (cons (eq l not)))
(typep T2 ’ (cons (eq l not)))
(smarter´subtypep t (l i s t ’ and (cadr T1) (cadr T2)))
(dis jo int´types´p (cadr T1) (cadr T2)))

(l i s t n i l t))

; ; T1 ^ T2 = 0 ==> !T1 ^ T2 != 0 i f T1!=1 and T2 !=0
; ; !T1 ^ T2 = 0 ==> T1 ^ T2 != 0 i f T1!=0 and T2 !=0
((and (typep T1 ’ (cons (eq l not)))

(not (void´type´p (cadr T1)))
(not (void´type´p T2))
(dis jo int´types´p (cadr T1) T2))

(l i s t n i l t))
; ; T1 ^ T2 = 0 ==> T1 ^ !T2 != 0 i f T1!=0 and T2!=1
; ; T1 ^ !T2 = 0 ==> T1 ^ T2 != 0 i f T1!=0 and T2!=0
((and (typep T2 ’ (cons (eq l not)))

(not (void´type´p T1))
(not (void´type´p (cadr T2)))
(dis jo int´types´p T1 (cadr T2)))

(l i s t n i l t))
; ; e . g . , (d is jo int´types´p (not f l o a t) number) ==> (n i l t)

85

; ; (d is jo int´types´p (not number) f l o a t) ==> (t t)
((and (typep T1 ’ (cons (eq l not)))

(s e t f Y (mul t ip l e´va lue´ l i s t (smarter´subtypep (cadr T1) T2)))
(s e t f X (mul t ip l e´va lue´ l i s t (smarter´subtypep T2 (cadr T1))))
(subsetp ’ ((t t) (n i l t)) (l i s t X Y) : t e s t #’ equal))

(l i s t (car X) t))
; ; e . g . , (d is jo int´types´p f l o a t (not number)) ==> (t t)
; ; (d is jo int´types´p number (not f l o a t)) ==> (n i l t)
((and (typep T2 ’ (cons (eq l not)))

(s e t f Y (mul t ip l e´va lue´ l i s t (smarter´subtypep T1 (cadr T2))))
(s e t f X (mul t ip l e´va lue´ l i s t (smarter´subtypep (cadr T2) T1)))
(subsetp ’ ((t t) (n i l t)) (l i s t X Y) : t e s t #’ equal))

(l i s t (car Y) t))
((or (smarter´subtypep T1 T2)

(smarter´subtypep T2 T1))
(l i s t n i l t))

(t
(l i s t n i l n i l))))))

(apply #’ va lue s
(cond ((nu l l ∗ d i s jo int´hash ∗)

(c a l c u l a t e))
((nth´value 1 (gethash t12 ∗ d i s jo int´hash ∗))
(gethash t12 ∗ d i s jo int´hash ∗))

(t
(prog1 (s e t f (gethash t12 ∗ d i s jo int´hash ∗)

(c a l c u l a t e))))))))

I Code for bdd-to-dnf
The following is the code for bdd-to-dnf which is explained in Section 7.5.
(defun bdd´to´dnf (bdd)

(s lo t´va lue bdd ’ dnf))

(defmethod slot´unbound (c l a s s (bdd bdd´node) (slot´name (eq l ’ dnf)))
(s e t f (s lo t´va lue bdd ’ dnf)

(´bdd´to´dnf bdd)))

(defun ´bdd´to´dnf (bdd)
(d e c l a r e (type bdd bdd))
(l a b e l s (

(wrap (op zero forms)
(cond ((cdr forms)

(cons op forms))
(forms
(car forms))

(t
ze ro)))

(prepend (head dnf)
(typecase dnf

((cons (eq l or))
(wrap
’ or n i l
(mapcar (lambda (t a i l)

(prepend head t a i l))
(cdr dnf))))

((cons (eq l and))
(wrap ’ and t (remove´super´types (cons head (cdr dnf)))))

((eq l t)
head)

((eq l n i l)

86

n i l)
(t
(cons ’ and (remove´supers (l i s t head dnf))))))

(d i s j un c t i o n (l e f t r i g h t)
(cond

((nu l l l e f t)
r i g h t)

((nu l l r i g h t)
l e f t)

((and (typep l e f t ’ (cons (eq l or)))
(typep r i gh t ’ (cons (eq l or))))

(cons ’ or (nconc (copy´ l i s t (cdr l e f t)) (cdr r i g h t))))
((typep l e f t ’ (cons (eq l or)))
(wrap ’ or n i l (cons r i g h t (cdr l e f t))))

((typep r i gh t ’ (cons (eq l or)))
(wrap ’ or n i l (cons l e f t (cdr r i g h t))))

(t
(wrap ’ or n i l (l i s t l e f t r i g h t))))))

(l e t ((l e f t´ te rms (prepend (bdd´ label bdd) (bdd´to´dnf (bdd´ le ft bdd))))
(r ight´terms (prepend ‘ (not , (bdd´ label bdd)) (bdd´to´dnf (bdd´right bdd)))))

(d i s j un c t i o n le f t´ te rms
right´terms))))

J Code for bdd-to-expr
The following is the code for bdd-to-expr which is explained in Section 7.5.
(defun bdd´to´expr (bdd)

(s lo t´va lue bdd ’ expr))

(defmethod slot´unbound (c l a s s (bdd bdd´node) (slot´name (eq l ’ expr)))
(s e t f (s lo t´va lue bdd ’ expr)

(cond
((and (eq ∗bdd´ fa lse ∗ (bdd´ le ft bdd))

(eq ∗bdd´true∗ (bdd´right bdd)))
‘ (not , (bdd´ label bdd)))

((and (eq ∗bdd´ fa lse ∗ (bdd´right bdd))
(eq ∗bdd´true∗ (bdd´ le ft bdd)))

(bdd´ label bdd))
((eq ∗bdd´ fa lse ∗ (bdd´ le ft bdd))
‘ (and (not , (bdd´ label bdd)) , (bdd´to´expr (bdd´right bdd))))

((eq ∗bdd´ fa lse ∗ (bdd´right bdd))
‘ (and , (bdd´ label bdd) , (bdd´to´expr (bdd´ le ft bdd))))

((eq ∗bdd´true∗ (bdd´ le ft bdd))
‘ (or , (bdd´ label bdd)

(and (not , (bdd´ label bdd)) , (bdd´to´expr (bdd´right bdd)))))
((eq ∗bdd´true∗ (bdd´right bdd))
‘ (or (and , (bdd´ label bdd) , (bdd´to´expr (bdd´ le ft bdd)))

(not , (bdd´ label bdd))))
(t
‘ (or (and , (bdd´ label bdd) , (bdd´to´expr (bdd´ le ft bdd)))

(and (not , (bdd´ label bdd)) , (bdd´to´expr (bdd´right bdd))))))))

87

K Boolean expression of 6 variable whose ROBDD has worst
case size

ppZ1 ^ ppZ2 ^ ppZ3 ^ ppZ4 ^ Z5q _ p Z4 ^ ppZ5 ^ Z6q _ p Z5 ^ Z6qqqqq _ p Z3 ^ ppZ4 ^ ppZ5 ^
Z6q _ p Z5 ^ Z6qqq _ p Z4 ^ ppZ5 ^ Z6q _ Z5qqqqqq _ p Z2 ^ ppZ3 ^ ppZ4 ^ p Z5 ^ Z6qq _
p Z4^pZ5_p Z5^ Z6qqqqq_ p Z3^ppZ4^pZ5^Z6qq_ p Z4^ppZ5^ Z6q_ Z5qqqqqqqq_
p Z1^ppZ2^ppZ3^ppZ4^ppZ5^ Z6q_ Z5qq_ p Z4^p Z5^Z6qqqq_ p Z3^ppZ4^p Z5^
 Z6qq _ p Z4 ^ pZ5 ^ Z6qqqqqq _ p Z2 ^ ppZ3 ^ ppZ4 ^ Z5q _ p Z4 ^ pZ5 _ p Z5 ^ Z6qqqqq _
p Z3 ^ ppZ4 ^ pZ5 _ p Z5 ^ Z6qqq _ p Z4 ^ pZ5 ^ Z6qqqqqqqqq

(or
(and Z1

(or
(and Z2

(or
(and Z3

(or (and Z4 Z5)
(and (not Z4) (or (and Z5 (not Z6)) (and (not Z5) Z6)))))

(and (not Z3)
(or (and Z4 (or (and Z5 Z6) (and (not Z5) (not Z6))))

(and (not Z4) (or (and Z5 Z6) (not Z5)))))))
(and (not Z2)

(or
(and Z3

(or (and Z4 (and (not Z5) Z6))
(and (not Z4) (or Z5 (and (not Z5) (not Z6))))))

(and (not Z3)
(or (and Z4 (and Z5 Z6))

(and (not Z4) (or (and Z5 (not Z6)) (not Z5)))))))))
(and (not Z1)

(or
(and Z2

(or
(and Z3

(or (and Z4 (or (and Z5 (not Z6)) (not Z5)))
(and (not Z4) (and (not Z5) Z6))))

(and (not Z3)
(or (and Z4 (and (not Z5) (not Z6)))

(and (not Z4) (and Z5 Z6))))))
(and (not Z2)

(or
(and Z3

(or (and Z4 (not Z5))
(and (not Z4) (or Z5 (and (not Z5) Z6)))))

(and (not Z3)
(or (and Z4 (or Z5 (and (not Z5) (not Z6))))

(and (not Z4) (and Z5 (not Z6))))))))))

L Boolean expression of 7 variable whose ROBDD has worst
case size

ppZ1^ppZ2^ppZ3^ppZ4^ppZ5^Z6q_p Z5^ppZ6^ Z7q_p Z6^Z7qqqqq_p Z4^ppZ5^ppZ6^
Z7q_p Z6^ Z7qqq_p Z5^ppZ6^Z7q_ Z6qqqqqq_p Z3^ppZ4^ppZ5^p Z6^Z7qq_p Z5^
pZ6_p Z6^ Z7qqqqq_ p Z4^ppZ5^pZ6^Z7qq_ p Z5^ppZ6^ Z7q_ Z6qqqqqqqq_ p Z2^
ppZ3^ppZ4^ppZ5^ppZ6^ Z7q_ Z6qq_p Z5^p Z6^Z7qqqq_p Z4^ppZ5^p Z6^ Z7qq_
p Z5^pZ6^Z7qqqqqq_p Z3^ppZ4^ppZ5^ Z6q_p Z5^pZ6_p Z6^Z7qqqqq_p Z4^ppZ5^
pZ6 _ p Z6 ^ Z7qqq _ p Z5 ^ pZ6 ^ Z7qqqqqqqqqq _ p Z1 ^ ppZ2 ^ ppZ3 ^ ppZ4 ^ ppZ5 ^ p Z6 ^
Z7qq_p Z5^ppZ6^ Z7q_ Z6qqqq_p Z4^ppZ5^ppZ6^ Z7q_ Z6qq_p Z5^pZ6^Z7qqqqqq_
p Z3^ppZ4^ppZ5^pZ6^ Z7qq_ p Z5^pZ6_p Z6^ Z7qqqqq_ p Z4^ppZ5^pZ6_p Z6^
 Z7qqq _ p Z5 ^ p Z6 ^ Z7qqqqqqqq _ p Z2 ^ ppZ3 ^ ppZ4 ^ ppZ5 ^ pZ6 _ p Z6 ^ Z7qqq _ p Z5 ^
ppZ6 ^ Z7q _ p Z6 ^ Z7qqqqq _ p Z4 ^ ppZ5 ^ pZ6 ^ Z7qq _ p Z5 ^ Z6qqqqq _ p Z3 ^ ppZ4 ^
ppZ5^pZ6^Z7qq_p Z5^p Z6^ Z7qqqq_p Z4^ppZ5^ppZ6^Z7q_ Z6qq_p Z5^Z6qqqqqqqqqq

(or
(and Z1

(or
(and Z2

(or (and Z3
(or (and Z4

(or (and Z5 Z6)
(and (not Z5)

(or (and Z6 (not Z7)) (and (not Z6) Z7)))))
(and (not Z4)

(or (and Z5 (or (and Z6 Z7) (and (not Z6) (not Z7))))
(and (not Z5) (or (and Z6 Z7) (not Z6)))))))

(and (not Z3)
(or (and Z4

(or (and Z5 (and (not Z6) Z7))
(and (not Z5) (or Z6 (and (not Z6) (not Z7))))))

88

(and (not Z4)
(or (and Z5 (and Z6 Z7))

(and (not Z5)
(or (and Z6 (not Z7)) (not Z6)))))))))

(and (not Z2)
(or (and Z3

(or (and Z4
(or (and Z5 (or (and Z6 (not Z7)) (not Z6)))

(and (not Z5) (and (not Z6) Z7))))
(and (not Z4)

(or (and Z5 (and (not Z6) (not Z7)))
(and (not Z5) (and Z6 Z7))))))

(and (not Z3)
(or (and Z4

(or (and Z5 (not Z6))
(and (not Z5) (or Z6 (and (not Z6) Z7)))))

(and (not Z4)
(or (and Z5 (or Z6 (and (not Z6) (not Z7))))

(and (not Z5) (and Z6 (not Z7)))))))))))
(and (not Z1)

(or
(and Z2

(or (and Z3
(or (and Z4

(or (and Z5 (and (not Z6) Z7))
(and (not Z5) (or (and Z6 (not Z7)) (not Z6)))))

(and (not Z4)
(or (and Z5 (or (and Z6 (not Z7)) (not Z6)))

(and (not Z5) (and Z6 Z7))))))
(and (not Z3)

(or (and Z4
(or (and Z5 (and Z6 (not Z7)))

(and (not Z5) (or Z6 (and (not Z6) (not Z7))))))
(and (not Z4)

(or (and Z5 (or Z6 (and (not Z6) (not Z7))))
(and (not Z5) (and (not Z6) Z7))))))))

(and (not Z2)
(or (and Z3

(or (and Z4
(or (and Z5 (or Z6 (and (not Z6) Z7)))

(and (not Z5)
(or (and Z6 Z7) (and (not Z6) (not Z7))))))

(and (not Z4)
(or (and Z5 (and Z6 (not Z7)))

(and (not Z5) (not Z6))))))
(and (not Z3)

(or (and Z4
(or (and Z5 (and Z6 Z7))

(and (not Z5) (and (not Z6) (not Z7)))))
(and (not Z4)

(or (and Z5 (or (and Z6 Z7) (not Z6)))
(and (not Z5) Z6))))))))))

89

	Introduction
	Why study this problem?
	A Common Lisp based solution

	Type specifier manipulation
	S-expression manipulation
	Boolean algebra

	Rigorous Development
	Partitions and Covers
	The Boolean Closure
	Disjoint Decompositions
	Maximal Disjoint Decomposition
	Some definitions from the Common Lisp specification

	Simple set disjoint decomposition
	Algorithm for set disjoint decomposition
	Correctness of the simple algorithm

	Set disjoint decomposition as graph problem
	The Algorithm
	Graph-based Disjoint Decomposition Algorithm
	Graph construction
	Strict sub-set
	Relaxed sub-set
	Touching connections
	Loops
	Discovered Empty Set

	Recursion and Order of Iteration
	Running the algorithm on an example
	Correctness of the graph based algorithm

	Type disjoint decomposition as SAT problem
	Binary Decision Diagrams
	BDD Grammar
	Boolean variable ordering
	Optimized BDD construction
	Equal right and left subtrees
	Caching BDDs
	Reduction in the presence of subtypes
	Reduction to subtree
	More complex type relations

	Other BDD related optimizations
	Calls to smarter-subtypep
	Calls from disjoint-types-p

	Serializing a BDD
	Applying BDDs to type checking
	Run-time type checking
	Compile time

	Type decomposition using BDDs
	Improving the RTE algorithm using BDDs
	Improving the graph based algorithm using BDDs

	Performance of type decomposition
	Performance Test Setup
	Subtypes of number
	Subtypes of condition
	Subtypes of number or condition
	Subtypes of t
	Subtypes in SB-PCL
	Specified Common Lisp types
	Intersections and Unions
	Subtypes of fixnum using member

	Tuning the BDD based graph algorithm
	Analysis of Performance Tests

	Related work
	Known issues
	Future work
	Common Lisp Pattern Matching
	More realistic test cases
	Variable Ordering
	Short-circuiting BDD operations
	Closed forms for average ROBDD size
	0-Sup-BDDs
	Hidden cost
	Lazy union BDDs
	Improving the SAT based disjoint type algorithm using BDDs

	Identities of Unary Union and Intersection
	Finitely many Boolean combinations
	Code implementing RTE algorithm
	Code implementing BDD graph type decomposition
	Code to generate worst case ROBDD of N Boolean variables
	Code for comparing two type specifiers
	Code for smarter-subtypep
	Code for disjoint-types-p
	Code for bdd-to-dnf
	Code for bdd-to-expr
	Boolean expression of 6 variable whose ROBDD has worst case size
	Boolean expression of 7 variable whose ROBDD has worst case size

