
Programmatic Manipulation of Type Specifiers
in Common Lisp

Jim Newton

10th European Lisp Symposium

3-4 April 2017

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 1 / 43

Overview

1 Common Lisp Types
Native type specifiers
Type calculus with type specifiers

2 Reduced Ordered Binary Decision Diagrams (ROBDDs)
Representing CL types as ROBDDs
Reductions to accommodate CL subtypes
Type calculus using ROBDDs
Type checking and code generation with BDDs

3 Conclusion
Summary
Questions

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 2 / 43

Common Lisp Types

Table of Contents

1 Common Lisp Types
Native type specifiers
Type calculus with type specifiers

2 Reduced Ordered Binary Decision Diagrams (ROBDDs)
Representing CL types as ROBDDs
Reductions to accommodate CL subtypes
Type calculus using ROBDDs
Type checking and code generation with BDDs

3 Conclusion
Summary
Questions

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 3 / 43

Common Lisp Types

Types are sets. Subtypes are subsets. Intersecting types
are intersecting sets. Disjoint types are disjoint sets.

unsigned-byte
bit

fixnum

rational

float

number

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 4 / 43

Common Lisp Types Native type specifiers

Type specifiers are powerful and intuitive

Type specifiers can be extremely intuitive thanks to homoiconicity.

Simple

integer

Compound type specifiers

(satisfies oddp)

(and (or number string) (not (satisfies MY-FUN)))

Specifiers for the empty type

nil

(and number string)

(and (satisfies evenp) (satisfies oddp))

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 5 / 43

Common Lisp Types Native type specifiers

Type specifiers are powerful and intuitive

Type specifiers can be extremely intuitive thanks to homoiconicity.

Simple

integer

Compound type specifiers

(satisfies oddp)

(and (or number string) (not (satisfies MY-FUN)))

Specifiers for the empty type

nil

(and number string)

(and (satisfies evenp) (satisfies oddp))

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 5 / 43

Common Lisp Types Native type specifiers

Type specifiers are powerful and intuitive

Type specifiers can be extremely intuitive thanks to homoiconicity.

Simple

integer

Compound type specifiers

(satisfies oddp)

(and (or number string) (not (satisfies MY-FUN)))

Specifiers for the empty type

nil

(and number string)

(and (satisfies evenp) (satisfies oddp))

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 5 / 43

Common Lisp Types Native type specifiers

Type specifiers are powerful and intuitive

Type specifiers can be extremely intuitive thanks to homoiconicity.

Simple

integer

Compound type specifiers

(satisfies oddp)

(and (or number string) (not (satisfies MY-FUN)))

Specifiers for the empty type

nil

(and number string)

(and (satisfies evenp) (satisfies oddp))

There are many type specifiers for the same type.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 5 / 43

Common Lisp Types Type calculus with type specifiers

We can ask questions with CL type specifiers.

Type membership? (typep x T1)

Type inclusion? (subtypep T1 T2)

Type equivalence? (and (subtypep T1 T2) (subtypep T2 T1))

Type disjointness? (subtypep ‘(and ,T1 ,T2) nil)

x ∈ T1

Sometimes, subtypep returns don’t know.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 6 / 43

Common Lisp Types Type calculus with type specifiers

We can ask questions with CL type specifiers.

Type membership? (typep x T1)

Type inclusion? (subtypep T1 T2)

Type equivalence? (and (subtypep T1 T2) (subtypep T2 T1))

Type disjointness? (subtypep ‘(and ,T1 ,T2) nil)

T1 ⊂ T2

Sometimes, subtypep returns don’t know.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 6 / 43

Common Lisp Types Type calculus with type specifiers

We can ask questions with CL type specifiers.

Type membership? (typep x T1)

Type inclusion? (subtypep T1 T2)

Type equivalence? (and (subtypep T1 T2) (subtypep T2 T1))

Type disjointness? (subtypep ‘(and ,T1 ,T2) nil)

(T1 ⊂ T2) ∧ (T2 ⊂ T1)

Sometimes, subtypep returns don’t know.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 6 / 43

Common Lisp Types Type calculus with type specifiers

We can ask questions with CL type specifiers.

Type membership? (typep x T1)

Type inclusion? (subtypep T1 T2)

Type equivalence? (and (subtypep T1 T2) (subtypep T2 T1))

Type disjointness? (subtypep ‘(and ,T1 ,T2) nil)

T1 ∩ T2 ⊂ ∅

Sometimes, subtypep returns don’t know.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 6 / 43

Common Lisp Types Type calculus with type specifiers

We can ask questions with CL type specifiers.

Type membership? (typep x T1)

Type inclusion? (subtypep T1 T2)

Type equivalence? (and (subtypep T1 T2) (subtypep T2 T1))

Type disjointness? (subtypep ‘(and ,T1 ,T2) nil)

Sometimes, subtypep returns don’t know.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 6 / 43

Common Lisp Types Type calculus with type specifiers

Type expressions can be barely human readable.

(setf T1 ’(not (or (and fixnum unsigned-byte)

(and number float)

(and fixnum float))))

(setf T2 ’(or (and fixnum

(not rational)

(or (and number (not float))

(not number)))

(and (not fixnum)

(or (and number (not float))

(not rational)))))

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 7 / 43

Common Lisp Types Type calculus with type specifiers

Type expressions can be barely human readable.

(setf T1 ’(not (or (and fixnum unsigned-byte)

(and number float)

(and fixnum float))))

(setf T2 ’(or (and fixnum

(not rational)

(or (and number (not float))

(not number)))

(and (not fixnum)

(or (and number (not float))

(not rational)))))

The same type may be checked multiple times.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 7 / 43

Common Lisp Types Type calculus with type specifiers

Type expressions can be barely human readable.

(setf T1 ’(not (or (and fixnum unsigned-byte)

(and number float)

(and fixnum float))))

(setf T2 ’(or (and fixnum

(not rational)

(or (and number (not float))

(not number)))

(and (not fixnum)

(or (and number (not float))

(not rational)))))

The same type may be checked multiple times. We can do better.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 7 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs)

Table of Contents

1 Common Lisp Types
Native type specifiers
Type calculus with type specifiers

2 Reduced Ordered Binary Decision Diagrams (ROBDDs)
Representing CL types as ROBDDs
Reductions to accommodate CL subtypes
Type calculus using ROBDDs
Type checking and code generation with BDDs

3 Conclusion
Summary
Questions

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 8 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Representing CL types as ROBDDs

Type specifier viewed as a Boolean expression of variables

A CL type specifier has a dual in Boolean algebra notation.

Type specifier: (not (or (and A C) (and B C) (and B D)))

Boolean Expression: ¬ ((A ∧ C) ∨ (B ∧ C) ∨ (B ∧ D))

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 9 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Representing CL types as ROBDDs

Type specifier viewed as a Boolean expression of variables

Forget about the CL type system for the moment,
and just concentrate on Boolean algebra with binary variables.

Boolean Expression: ¬ ((A ∧ C) ∨ (B ∧ C) ∨ (B ∧ D))

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 9 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Representing CL types as ROBDDs

Type specifier viewed as a Boolean expression of variables

If we order the variables,
then every Boolean expression has a unique truth table.

Boolean Expression: ¬ ((A ∧ C) ∨ (B ∧ C) ∨ (B ∧ D))

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 9 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Representing CL types as ROBDDs

Type specifier viewed as a Boolean expression of variables

The truth table can be represented as an OBDD, ordered binary decision
diagram. A green arrow a variable being true; a red arrow represents the
variable being false.

Boolean Expression: ¬ ((A ∧ C) ∨ (B ∧ C) ∨ (B ∧ D))

A

B B

C C

D D

NIL NIL NIL T

D D

NIL NIL T T

C C

D D

NIL NIL

D D

T T T TNIL T

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 9 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Representing CL types as ROBDDs

Type specifier viewed as a Boolean expression of variables

Every path from root to leaf corresponds to one row of the truth table.

A

B B

C C

D D

NIL NIL NIL T

D D

NIL NIL T T

C C

D D

NIL NIL

D D

T T T TNIL T

A B C D ¬ ((A ∧ C) ∨ (B ∧ C) ∨ (B ∧ D))

> ⊥ ⊥ > >
⊥ > > ⊥ ⊥

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 9 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Representing CL types as ROBDDs

Type specifier viewed as a Boolean expression of variables

Every path from root to leaf corresponds to one row of the truth table.

A

B B

C C

D D

NIL NIL NIL T

D D

NIL NIL T T

C C

D D

NIL NIL

D D

T T T TNIL T

A B C D ¬ ((A ∧ C) ∨ (B ∧ C) ∨ (B ∧ D))

> ⊥ ⊥ > >
⊥ > > ⊥ ⊥

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 9 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Representing CL types as ROBDDs

Type specifier viewed as a Boolean expression of variables

A

B B

C C

D D

NIL NIL NIL T

D D

NIL NIL T T

C C

D D

NIL NIL

D D

T T T TNIL T

4 variables =⇒ 24+1 − 1 = 31 nodes
The graph size grows exponentially with number of variables.
We can do better.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 9 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Representing CL types as ROBDDs

Standard Rule 1: the terminal rule

There are 3 standard reduction rules. The terminal rule allows us to
replace leaf nodes with singleton objects, NIL and T. Divides size by 2.

NIL T

A

B B

C C

D DD D

C C

D D DD

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 10 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Representing CL types as ROBDDs

Standard Rule 2: the deletion rule

The deletion rule allows us to remove nodes which have the same
red (false) and green (true) pointer.

B

C C

B

CC

D DD D DDD D

NIL T

A

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 11 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Representing CL types as ROBDDs

Reducing to 11 nodes

NIL T

A

B B

C C C C

D D

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 12 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Representing CL types as ROBDDs

More reduction

The deletion rule can be applied multiple times.

NIL T

A

B B

C C C C

D D

NIL T

B

C C C

B

D D

A

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 13 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Representing CL types as ROBDDs

Standard Rule 3: the merging rule

The merging rule allows us to merge structurally congruent nodes, i.e.,
with same children, and same label.

NIL T

B

C C C

B

D D

A

NIL T

C

D

C C

A

B B

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 14 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Representing CL types as ROBDDs

More congruent nodes

The merging rule can be applied multiple times.

NIL T

C

D

C C

A

B B

C

NIL

D

C

T

A

B B

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 15 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Representing CL types as ROBDDs

ROBDD: Reduced ordered binary decision diagram

Started with 31 nodes, we can represent the CL type specifier with only 8
nodes.

C

NIL

D

C

T

A

B B

(not (or (and A C)
(and B C)
(and B D)))

Standard algorithm to serialize to a canonical
disjunctive form.

(or (and A (not B) (not C))
(and A B (not C) (not D))
(and (not A) B (not C) (not D))
(and (not A) (not B)))

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 16 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Representing CL types as ROBDDs

ROBDD: Reduced ordered binary decision diagram

C

NIL

D

C

T

A

B B
(not (or (and A C)

(and B C)
(and B D)))

(or (and A (not B) (not C))
(and A B (not C) (not D))
(and (not A) B (not C) (not D))
(and (not A) (not B)))

This serialization is in no sense minimum in form.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 16 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Reductions to accommodate CL subtypes

Standard ROBDD reduction rules are insufficient for CL
type system.

(and number (not string)) = number are equivalent types, but the
BDDs are different!

number

NIL

string

T

number

NILT

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 17 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Reductions to accommodate CL subtypes

Brief Recap

We would like to use ORBDDs to programmatically represent and
manipulate CL types.

We have used the ORBDD developed for Boolean algebra of binary
variables,

Applying: the (1) terminal rule, (2) deletion rule, and (3) merging
rule.

We unfortunately lack unique ORBDD representations for equivalent
CL types.

We find that it does not quite work for reasoning about CL types.

A solution is needed.

We introduce a 4th reduction rule: the subtype rule. Our
contribution.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 18 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Reductions to accommodate CL subtypes

Brief Recap

We would like to use ORBDDs to programmatically represent and
manipulate CL types.

We have used the ORBDD developed for Boolean algebra of binary
variables,

Applying: the (1) terminal rule, (2) deletion rule, and (3) merging
rule.

We unfortunately lack unique ORBDD representations for equivalent
CL types.

We find that it does not quite work for reasoning about CL types.

A solution is needed.

We introduce a 4th reduction rule: the subtype rule. Our
contribution.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 18 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Reductions to accommodate CL subtypes

Brief Recap

We would like to use ORBDDs to programmatically represent and
manipulate CL types.

We have used the ORBDD developed for Boolean algebra of binary
variables,

Applying: the (1) terminal rule, (2) deletion rule, and (3) merging
rule.

We unfortunately lack unique ORBDD representations for equivalent
CL types.

We find that it does not quite work for reasoning about CL types.

A solution is needed.

We introduce a 4th reduction rule: the subtype rule. Our
contribution.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 18 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Reductions to accommodate CL subtypes

Brief Recap

We would like to use ORBDDs to programmatically represent and
manipulate CL types.

We have used the ORBDD developed for Boolean algebra of binary
variables,

Applying: the (1) terminal rule, (2) deletion rule, and (3) merging
rule.

We unfortunately lack unique ORBDD representations for equivalent
CL types.

We find that it does not quite work for reasoning about CL types.

A solution is needed.

We introduce a 4th reduction rule: the subtype rule. Our
contribution.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 18 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Reductions to accommodate CL subtypes

Brief Recap

We would like to use ORBDDs to programmatically represent and
manipulate CL types.

We have used the ORBDD developed for Boolean algebra of binary
variables,

Applying: the (1) terminal rule, (2) deletion rule, and (3) merging
rule.

We unfortunately lack unique ORBDD representations for equivalent
CL types.

We find that it does not quite work for reasoning about CL types.

A solution is needed.

We introduce a 4th reduction rule: the subtype rule. Our
contribution.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 18 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Reductions to accommodate CL subtypes

Brief Recap

We would like to use ORBDDs to programmatically represent and
manipulate CL types.

We have used the ORBDD developed for Boolean algebra of binary
variables,

Applying: the (1) terminal rule, (2) deletion rule, and (3) merging
rule.

We unfortunately lack unique ORBDD representations for equivalent
CL types.

We find that it does not quite work for reasoning about CL types.

A solution is needed.

We introduce a 4th reduction rule: the subtype rule. Our
contribution.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 18 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Reductions to accommodate CL subtypes

Subtype rule (4), CL type system compatibility

The types number and string are disjoint,
therefore, string ⊂ number .

Child to search Relation Reduction
P.green P ⊂ C C → C .green
P.green P ⊂ C C → C .red
P.red P ⊂ C C → C .green
P.red P ⊂ C C → C .red
P.red P ⊃ C C → C .red
P.red P ⊃ C C → C .green
P.green P ⊃ C C → C .red
P.green P ⊃ C C → C .green

number

NIL

string

T

number

NILT

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 19 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Reductions to accommodate CL subtypes

Subtype rule (4), CL type system compatibility

The types number and string are disjoint;
therefore, string ⊂ number .

Child to search Relation Reduction
P.green P ⊂ C C → C .green
P.green P ⊂ C C → C .red
P.red P ⊂ C C → C .green
P.red P ⊂ C C → C .red
P.red P ⊃ C C → C .red
P.red P ⊃ C C → C .green
number .green number ⊃ string string → string .red
P.green P ⊃ C C → C .green

number

NIL

string

T

number

NILT

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 20 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Type calculus using ROBDDs

Type calculus using ROBDDs

As before, we can ask questions with ROBDDs.

Questions

Are two types the same? Or disjoint? Or is one a subtype of the other?

Functions

bdd-and, bdd-or, bdd-and-not.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 21 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Type calculus using ROBDDs

Type calculus using ROBDDs

As before, we can ask questions with ROBDDs.

Questions

Are two types the same? Or disjoint? Or is one a subtype of the other?

Functions

bdd-and, bdd-or, bdd-and-not.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 21 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Type calculus using ROBDDs

Are the two types the same? No, BDDs are different.

(not (or (and A C)
(and B C)
(and B D)))

A

B B

CC

TNIL

D

(or (and A
(not C)
(or (and B (not D))

(not B)))
(and (not A)

(or (and B (not C) (not D))
(not D))))

A

B

D

C C

NIL T

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 22 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Type calculus using ROBDDs

Are two types disjoint? No, the intersection is non-nil.

(s e t f T1
(bdd ’ (and (not (and (not A) D))

(not (or (and A C)
(and B C)
(and B D))))))

(s e t f T2
(bdd ’ (or (and A

(not C)
(or (and B (not D))

(not B)))
(and (not A)

(or (and B
(not C)
(not D))

(not D))))))

(bdd−and T1 T2)

A

C

B

NIL

D

T

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 23 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Type calculus using ROBDDs

Is one a subtype of the other? Yes. T1 ⊂ T2.

(bdd−and−not T2 T1)

A

B B

NIL

C C

D D

T

(bdd−and−not T1 T2)

NIL

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 24 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Type checking and code generation with BDDs

Run-time calls to bdd-type-p

(defun bdd−type−p (o b j bdd)
(etypecase bdd

(b d d− f a l s e
n i l)

(bdd−true
t)

(bdd−node
(bdd−type−p o b j

(i f (typep o b j (bdd− l abe l bdd))
(b d d− l e f t bdd)
(bdd− r ight bdd))))))

Guarantees that each base-type is checked maximum of once.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 25 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Type checking and code generation with BDDs

Compile time call to bdd-typep, via compiler-macro

(bdd−typep X ’ (or (and s e q u e n c e (not a r r a y))
number
(and (not s e q u e n c e) a r r a y)))

(f u n ca l l (lambda (o b j)
(b l o c k n i l

(tagbody
1 (i f (typep o b j ’ a r r a y)

(go 2)
(go 3))

2 (return (not (typep o b j ’ s e q u e n c e)))
3 (i f (typep o b j ’ number)

(return t)
(go 4))

4 (return (typep o b j ’ s e q u e n c e)))))
X)

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 26 / 43

Reduced Ordered Binary Decision Diagrams (ROBDDs) Type checking and code generation with BDDs

Compile time call to bdd-typep, via compiler-macro

(bdd−typep X ’ (or (and s e q u e n c e (not a r r a y))
number
(and (not s e q u e n c e) a r r a y)))

(f u n ca l l (lambda (o b j)
(b l o c k n i l

(tagbody
1 (i f (typep o b j ’ a r r a y)

(go 2)
(go 3))

2 (return (not (typep o b j ’ s e q u e n c e)))
3 (i f (typep o b j ’ number)

(return t)
(go 4))

4 (return (typep o b j ’ s e q u e n c e)))))
X)

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 26 / 43

Conclusion

Table of Contents

1 Common Lisp Types
Native type specifiers
Type calculus with type specifiers

2 Reduced Ordered Binary Decision Diagrams (ROBDDs)
Representing CL types as ROBDDs
Reductions to accommodate CL subtypes
Type calculus using ROBDDs
Type checking and code generation with BDDs

3 Conclusion
Summary
Questions

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 27 / 43

Conclusion

Donald Knuth’s new toy.

Binary decision diagrams (BDDs) are wonderful, and
the more I play with them the more I love them. For
fifteen months I’ve been like a child with a new toy,
being able now to solve problems that I never
imagined would be tractable... I suspect that many
readers will have the same experience ... there will
always be more to learn about such a fertile subject.
[Donald Knuth, Art of Computer Science, Volume 4]

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 28 / 43

Conclusion Summary

Summary

Native CL type specifiers are

Powerful and intuitive
But may suffer performance issues
Missing capability (subtypep)

ROBDDs offer an interesting alternative

We have extended Standard ROBDD theory to CL types
Shown type calculus operations, equality, intersection, relative
complement, etc
Demonstrated efficient compile time code generation for type checking.
Competitive performance

Lots more work to do.

For more information see the LRDE website:

https://www.lrde.epita.fr/wiki/User:Jnewton

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 29 / 43

Conclusion Questions

Questions/Answers

Questions?

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 30 / 43

Conclusion Questions

ROBDD: Reduced Ordered Binary Design Diagrams

Having as few nodes as possible has advantages in:

Correctness in presence of subtypes,

Memory allocation,

Execution time of graph-traversal related operations, and

Generated code size (as we’ll see later).

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 31 / 43

Conclusion Questions

Possible ROBDD sizes for 4 variables

Of the 224
= 65, 536 different Boolean functions of 4 variables, various

sizes of reduced BDDs are possible.
Worst case size is 32 nodes. Average size is approximately 20 nodes.

0 5 10 15 20 25 30 35

0

0.5

1

1.5
·104

BDD node count

N
u

m
b

er
of

B
o

ol
ea

n
fu

n
ct

io
n

s

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 32 / 43

Conclusion Questions

Distributions for 2 to 5 variables

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

BDD Size

P
ro

b
a

b
il
it

y

”Size with 5 variables”

”Size with 4 variables”

”Size with 3 variables”

”Size with 2 variables”

”Size with 1 variables”

Distribution of ROBDD size over all possible Boolean functions of N
variables.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 33 / 43

Conclusion Questions

Expected and worst case ROBDD size

1 2 3 4 5

0

20

40

60

Number of variables

B
D

D
si

ze

”Worst case size”

”Average size”

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 34 / 43

Conclusion Questions

FIRST TRY: Expands to the following. O(2n) code size.
O(n) execution time.

If the type specifier is known at compile time.

(f u n ca l l (lambda (o b j)
(i f (typep o b j ’ a r r a y)

(i f (typep o b j ’ s e q u e n c e)
n i l
t)

(i f (typep o b j ’ number)
t
(i f (typep o b j ’ s e q u e n c e)

t
n i l))))

X)

We can do better.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 35 / 43

Conclusion Questions

BETTER: O(2
n
2) code size. O(n) execution time.1

(f u n c a l l (lambda (ob j)
(l a b e l s ((#: f 1 ()

(typep ob j ’ s equence))
(#: f 2 ()

(or (typep ob j ’ number)
(#: f1)))

(#: f 3 ()
(not (typep ob j ’ s equence)))

(#: f 4 ()
(i f (typep ob j ’ a r r a y)

(#: f3)
(#: f2))))

(#: f 4)))
X)

1O(2
n
2) is a non-rigorous estimate.

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 36 / 43

Conclusion Questions

Experimental problem: thoroughly partition a set of types

unsigned-byte
bit

fixnum

rational

float

number

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 37 / 43

Conclusion Questions

Maximal Disjoint Type Decomposition

unsigned-byte
bit

fixnum

rational

float

number

(b i t f l o a t f ixnum number r a t i o n a l uns igned−byte)
−−>

(b i t
f l o a t
(and f ixnum uns igned−byte (not b i t))
(and f ixnum (not uns igned−byte))
(and number (not f l o a t) (not r a t i o n a l))
(and r a t i o n a l (not f ixnum) (not uns igned−byte))
(and uns igned−byte (not f ixnum)))

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 38 / 43

Conclusion Questions

Combinations of number and condition

100 101 102 103 104

10−3

10−2

10−1

100

101

Size

T
im

e

DECOMPOSE-TYPES

DECOMPOSE-TYPES-GRAPH

BDD-DECOMPOSE-TYPES

DECOMPOSE-TYPES-BDD-GRAPH

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 39 / 43

Conclusion Questions

Subtypes of fixnum: (member ...)

101 102

10−3

10−2

10−1

100

101

Size

T
im

e

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 40 / 43

Conclusion Questions

Type specifier summary

Easy and intuitive (thanks to homoiconicity)

Run-time calls to subtypep and typep

Issues of performance and correctness of subtypep and typep

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 41 / 43

Conclusion Questions

Subtypes

(and (not number)
(not s t r i ng))

number

NIL

string

T

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 42 / 43

Conclusion Questions

Caveat of subtypep

Sometimes subtypep returns don’t know. Sometimes for good reasons.
Sometimes not.

CL−USER> (subtypep ’ (s a t i s f i e s oddp) ’ (s a t i s f i e s evenp))
> NIL , NIL

CL−USER> (subtypep ’ a r i t h m e t i c− e r r o r ’ (not c e l l− e r r o r))
> NIL , NIL

Jim Newton (10th European Lisp Symposium)Programmatic Manipulation of Type Specifiers 3-4 April 2017 43 / 43

	Common Lisp Types
	Native type specifiers
	Type calculus with type specifiers

	Reduced Ordered Binary Decision Diagrams (ROBDDs)
	Representing CL types as ROBDDs
	Reductions to accommodate CL subtypes
	Type calculus using ROBDDs
	Type checking and code generation with BDDs

	Conclusion
	Summary
	Questions

