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Binary Decision Diagrams (BDDs) and in particular ROBDDs (Reduced Ordered BDDs) are a common data

structure for manipulating Boolean expressions, integrated circuit design, type inferencers, model checkers,

and many other applications. Although the ROBDD is a lightweight data structure to implement, the behavior,

in terms of memory allocation, may not be obvious to the program architect. We explore experimentally,

numerically, and theoretically the typical and worst-case ROBDD sizes in terms of number of nodes and

residual compression ratios, as compared to unreduced BDDs. While our theoretical results are not surprising,

as they are in keeping with previously known results, we believe our method contributes to the current body

of research by our experimental and statistical treatment of ROBDD sizes. In addition, we provide an algorithm

to calculate the worst-case size. Finally, we present an algorithm for constructing a worst-case ROBDD of

a given number of variables. Our approach may be useful to projects deciding whether the ROBDD is the

appropriate data structure to use, and in building worst-case examples to test their code.
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1 INTRODUCTION
Binary Decision Diagrams (BDDs) are a data structure useful for representing Boolean expressions.

The data structure has countless applications to problems involving Boolean algebra. In the Art of

Computer Programming [Knu09, Page iv], Donald Knuth writes, “[BDDs] have become the data

structure of choice for Boolean functions and for families of sets, and the more I play with them

the more I love them. For eighteen months I’ve been like a child with a new toy, being able now to

solve problems that I never imagined would be tractable.”

The decision diagram has been defined in several different flavors in currently available literature.

Colange [Col13, Section 2.3] provides a succinct historical perspective, including the BDD [Bry86],

the Multi-Valued Decision Diagram (MDD) [Sri02], Interval Decision Diagram (IDD) [ST98], the

Multi-Terminal Binary Decision Diagram (MTBDD) [CMZ
+
97], the Edge-Valued Decision Diagram

(EVDD) [LS92], and the Zero-Suppressed Binary Decision Diagram (ZBDD) [Min93].

The particular decision diagram variant which we investigate in this article is the Reduced

Ordered Binary Decision Diagram (ROBDD). When we use the term ROBDD we mean, as the

name implies, that the BDD has its variables Ordered as described in Section 2.1 and has been

fully Reduced by the rules presented in Section 2.2. It is worth noting that there is variation in the
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Fig. 1. BDD for (Z1 ∧ Z2) ∨ (Z1 ∧ ¬Z2 ∧ Z3) ∨ (¬Z1 ∧ ¬Z3)

terminology used by different authors. For example, Knuth [Knu09] and Bryant [Bry18] both use

the unadorned term BDD for what we are calling an ROBDD.

Even though the ROBDD is a lightweight data structure to implement, and can be easily imple-

mented, some of its behavior regarding the amount of necessary memory allocation may not be

obvious in practice. In this paper we convey an intuition of expected sizes and shapes of ROBDDs

from several perspectives.

Section 2 provides illustrations of ROBDD constructing from the point of view of reduction

operations. Section 3.2 examines worst cases sizes of ROBDDs: first, we look exhaustively at cases

involving a small number of variables; then, we examine experimentally the average and worst-

cases sizes for several cases involving more variables. Section 3 examines the shapes of the graphs

of the worst-cases sizes. In Section 3.6 we use an intuitive understanding to derive an explicit

formula to calculate the worst-case size for a given number of variables. Finally in Section 4, we

provide an algorithm for generating a worst-case sized ROBDD for a given number of Boolean

variables.

2 BDD CONSTRUCTION AND REDUCTION
An equation of Boolean variables can be represented by a data structure called a Binary Deci-

sion Diagram (BDD). The literature on BDDs is abundant [Bry86, Bry92, Ake78, FTV16] [Knu09,

Section 7.1.4] [Col13, Section 2.3]. Andersen summarizes many of the algorithms for efficiently

manipulating BDDs [And99]. We do not provide a formal definition of BDD here. Instead the

interested reader is invited to consult [And99] or [Knu09, Section 7.1.4].

BDDs can be implemented easily in a variety of programming languages with only a few lines

of code. The data structure provides a mechanism to manipulate Boolean expressions elegantly.

Operations such as intersection, union and complement can be performed resulting in structures

representing Boolean expressions in canonical form [Bry86]. The existence of this canonical

form makes it possible to implement the equality predicate for Boolean expressions, either by

straightforward structural comparison, or by pointer comparison depending on the specific BDD

implementation. Some programming languages model types as sets [HVP05, CL17, Ans94]. In

such programming languages, the BDD is a potentially useful tool for representing types and for

performing certain type manipulations [Cas16, NVC17, NV18].

Figure 1 shows an example of a BDD which represents a particular function of three Boolean

variables: Z1, Z2, and Z3. The BDD in the figure is actually an ROBDD; we will define more precisely

what that means later. When the Boolean function is expressed in Disjunctive Normal Form (DNF),

it contains three terms, each of which being represented by a respective path in the BDD from the
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Fig. 2. UOBDD for F = ¬ ((A ∧C) ∨ (B ∧C) ∨ (B ∧ D)). The highlighted path of nodes corresponds to the
highlighted row of the truth table in Figure 3.

root node, Z1, to the leaf node, ⊥. The variables in each term are logically negated (i.e. ¬Zi ) if the
path leaves node Zi via its dashed red exit arrow, and are not negated (i.e. Zi ) if the path follows

the solid green exit arrow.

In order to avoid confusion, when this article is printed in black and white, we hereafter refer

to the red dashed arrow as the negative arrow and the green solid arrow as the positive arrow.

Respectively, we refer to the nodes which the arrows point to as the positive and negative child

nodes.

There are several conventions used in literature for graphically representing a Boolean expression

as a BDD. Some conventions indicate the false (logically negated ¬) case as an arrow exiting the

node on the bottom left and the true case as an arrow exiting the node on the left. We found that

such a convention forces BDDs to be drawn with excessively many crossing lines. In order to

allow the right/left arrows within the BDDs to be permuted, thus reducing the number of line

crossings, we avoid attaching semantic information to left and right arrows, and instead use red

dashed arrows for the false (negative) case and solid green arrows for the true (positive) case.

Casually generating a set of sample BDDs for randomly chosen Boolean expressions quickly

reveals that a BDD may have redundant subtrees. It seems desirable to reduce the memory footprint

of such a tree by reusing common subtrees (sharing pointers) or eliminating redundant nodes. Here,

we introduce one such approach: first, we start with a complete binary tree (Section 2.1), and then,

we transform it into a reduced graph by applying certain reduction rules to its nodes (Section 2.2).

The process is intended to be intuitive, conveying an understanding of the topology of the resulting

structure. On the contrary, this construction process is not to be construed as an algorithm for

efficiently manipulating BDDs programmatically.

In addition to significantly reducing the memory footprint of a BDD, the optimization strategy

described here also enables certain significant algorithmic optimizations, which we won’t discuss

in depth in this article. In particular, the equality of two Boolean expressions often boils down to a

mere pointer comparison [NVC17].

2.1 Initial construction step
One way to understand the (RO)BDD representation of a Boolean expression is by first representing

the truth table of the Boolean expression as decision diagram. Consider this Boolean expression

of four variables: ¬ ((A ∧C) ∨ (B ∧C) ∨ (B ∧ D)). Its truth table is given in Figure 3, and its BDD

representation in Figure 2. When a BDD is a tree corresponding exactly to the truth table of its

Boolean function (which is not necessarily true), the BDD is referred to as an UOBDD (unreduced

ordered BDD). Each non-leaf node of the UOBDD represents the appearance of a Boolean variable
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Fig. 3. Truth table for F = ¬ ((A∧C) ∨ (B ∧C) ∨ (B ∧D)). The highlighted row of the truth table corresponds
to the path of highlighted nodes in Figure 2.

in the expression. Each path from the root node A to a leaf node represents one row of the truth

table. For example, the highlighted path in Figure 2 corresponds to the highlighted row in Figure 3.

A BDD is said to be ordered if there is some ordering of the variables {v1,v2, ...,vn}, such that

whenever there is an arrow from vi to vj then i < j. Some authors such as Gröple et al. [GPS98,
GPS01] and Langberg et al. [LPR03], when exploring a BDD variant called qOBDD, consider the

further restriction that arrows only connect vi with vi+1. We do not make such a restriction in

our treatment of ROBDDs. For UOBDDs having not yet undergone any reduction, being ordered

implies that every branch from the root to a leaf contains exactly the same variables in the same

order. In Figure 2 for example, every path from the root to a leaf contains exactly A,B,C,D in that

order. On the contrary, and as in Figure 1, some of these paths contain fewer nodes than others.

Nevertheless, the nodes visited by each path remain ordered. For the extent of this paper we will

use the natural lexicographical orderings: A < B < C < D, and Z1 < Z2 < ...Zn .

2.2 Reduction rules
The three reduction rules described in this section give us the ability to convert an ordered BDD

into an ROBDD.

Given its UOBDD, it is straightforward to evaluate an arbitrarily complex Boolean expression

of n variables, simply descend the tree in n steps according to the values of the n variables. This

is equivalent to tracing across the corresponding row of the truth table (see the highlighting in

Figure 3). However, the size of the tree grows exponentially with the number of variables. The

UOBDD representing a Boolean expression of n variables has

|UOBDDn | = 2
n+1 − 1 (1)

nodes. Fortunately, it is possible to reduce the allocated size of the UOBDD by taking advantage of

certain redundancies. There are three rules which can be used to guide the reduction. Andersen

and Gröple [And99, GPS98] also explain the merging and deletion rules, so we will dispense with

many of the details. However, we consider an extra rule, the terminal rule, which is really a special

case of the merging rule.
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Fig. 4. BDD after applying Terminal rule
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Fig. 5. BDD after applying Terminal, Deletion, and Merging rules. This diagram is an ROBDD logically
equivalent to the UOBDD shown in Figure 2.

Terminal rule: The only possible leaf nodes are ⊤ and ⊥, so these nodes can be represented by two

singleton objects, allowing pointers to them to be shared.

Deletion rule: If any node X is such that its positive and negative arrows both point to the same

node Y , then X is said to be symmetric. Such a node can be deleted and arrows

previously pointing to it may be promoted to point to Y directly.

Merging rule: If any two nodes U and V corresponding to the same Boolean variable are such

that their positive arrows both point to node X and negative arrows both point to

node Y , thenU andV are said to be congruent, and they may be merged. Any arrow

pointing to U may be updated to point to the V , and U may be removed (or the

other way around).

Applying the Terminal rule reduction cuts the number of nodes roughly by half, as shown in

Figure 4.

Further applications of the deletion rule and merging rules, results in the ROBDD shown in

Figure 5. In this case the graph shrinks from 31 nodes in Figure 2 to 8 nodes in Figure 5.
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3 WORST-CASE ROBDD SIZE AND SHAPE
The BDD shown in Figure 2 is a 31 nodes UOBDD, reduced in Figure 5 to an 8 nodes ROBDD,

thanks to the three reduction rules presented in Section 2.2. We may naturally ask whether this

reduction process is typical.

The size and shape of a reduced BDD depends on the chosen variables ordering [Bry86]. Finding

the best ordering is coNP-Complete [Bry86]. In this article we do not address the questions of

choosing or improving the variables ordering. Given a particular variables ordering however, the

size and shape of the ROBDD depends only on the truth table of the Boolean expression. In particular,

it does not depend on the chosen representation for the expression. For example, (A∨B)∧C has the

same truth table as (A ∧C) ∨ (B ∧C), so these two expressions are equivalent and will be reduced

to the exact same ROBDD. In a practical sense, the ROBDD serves as a canonical form for Boolean

expressions.

The best-case size (in terms of node count) for a constant expression is obviously one, i.e., a
Boolean expression which is identically ⊤ or ⊥. But what is the worst-case size of an ROBDD

of n variables? We examine this question both experimentally and theoretically in the following

sections.

3.1 Process summary
We start by showing all possible ROBDDs for the 1- and 2-variable cases. Then, we address the

question of the worst-case size by looking at the exhaustive list of ROBDDs up to the 4-variable case,

extrapolating from random samples thereafter. The way we do random sampling is also explained.

Given the above data, we observe that the difference between the worst-case size and the average

size becomes negligible as the number of Boolean variables increases. At this stage however, this

observation is only a conjecture, and we would like to prove it formally. We define a quantity

called residual compression ratio which measures how effective a representation the ROBDD is as

compared to the size of the truth table. We note from experimental data that this ratio decreases,

but to which value is unclear.

We continue by deriving a formula for the worst-case ROBDD size, based on the number of

nodes in each row, and holding for any number of variables. This derivation is motivated by images

of sample worst-case ROBDDs as the number of variables increases. The derivation is obtained as

follows.

First, we introduce a threshold function which represents the competition between an increasing

exponential and a decreasing double exponential. We are able to express the worst-case ROBDD

size in terms of this threshold. Then we argue that natural number thresholds are non-decreasing,

and that real number thresholds are strictly increasing. We then derive bounds on the threshold

function, and use them to provide an Algorithm for computing threshold values, usually within

one or two iterations.

Ultimately, we use those bounds to show that the residual compression ratio indeed tends to

zero.

3.2 Experimental analysis of worst-case ROBDD Size
We saw above that, given a variable ordering, every truth table of n variables corresponds to exactly

one ROBDD. Otherwise stated, there is a one–to–one correspondence from the set of n-variable
truth tables to the set of n-variable ROBDDs. However, for any given truth table, there are infinitely

many equivalent Boolean expressions. An n-variable truth table has 2
n
rows, and each row may

contain a ⊤ or ⊥ as the expression’s value. Thus there are 2
2
n
different n-variable truth tables.
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No. ROBDD and ROBDD and

Nodes Boolean Boolean

Expression Expression

1

T ⊥

⊤ ⊥

3

Z1

T ⊥

Z1

⊥ T

Z1 ¬Z1

Fig. 6. All ROBDDs of one variable

For small values of n it is reasonable to consider every possible ROBDD exhaustively to determine

the maximum possible size. However, it becomes impractical to do so for large values. For example,

there are 2
2
10

> 1.80 × 10
308

ROBDDs of 10 variables. In our analysis, we treat the 1- through

4-variable cases exhaustively, and use extrapolated results (explained below) otherwise.

Figure 6 shows all the possible ROBDDs of a single variable. We see that only 4 ROBDDs are

possible (2
2
n
= 2

2
1

= 4). Two of the ROBDDs have one node, and two have two nodes. Here we

consider an n-variable expression as an expression having n or fewer variables. This is because

some Boolean expressions of n variables can be reduced to equivalent expressions having fewer

ones. For example, A ∨ (A ∧ ¬B), a 2-variable expression, is in fact equivalent to just A. Figure 7
shows an exhaustive list of the possible ROBDDs of 2 variables. Here, the worst-case node count is

5, occurring twice out of a total of 2
2
n
= 2

2
2

= 16 possible expressions.

3.3 Statistics of ROBDD size distribution
Figure 9 and Figure 10 are histogram plots illustrating the possible sizes of an ROBDD vs. the
number of possible Boolean functions which reduce to an ROBDD of that size. In Figure 9, we have

exhaustively counted the possible sizes of each ROBDD for 1 to 4 variables. In Figure 10 we have

extrapolated from random sampling the 5- through 10-variable cases as described below. The worst

case for 4 variables is 11 nodes. We can estimate from Figure 9 that of the 65536 different Boolean

functions of 4 variables, only about 12000 of them (18%) have node size 11. The average size is

about 10 nodes.

We generated the data in Figure 10 for 5 through 8 Boolean variables, by randomly selecting truth

tables, counting the nodes in the ROBDD, and multiplying by a factor to compensate for the sample

size. In particular, we did the computation work in Common Lisp [Ans94] using the SBCL [New15]

Common Lisp compiler. SBCL (version 1.4.3) uses the MT19937 prng algorithm [MN98] for gen-

erating random numbers. For each plot, we generated a list of random integers between 0 and

2
n − 1, removing duplicates so as not to count the same truth table twice. From each such sampled

integer, we generated an ROBDD and counted its nodes. For example, from the integer 910 = 010012

represents the truth table shown in Figure 8. From this truth table we generated the Boolean

expression

((¬Z1 ∧ ¬Z2 ∧ ¬Z3 ∧ ¬Z4 ∧ ¬Z5) ∨ (Z1 ∧ Z2 ∧ ¬Z3 ∧ ¬Z4 ∧ ¬Z5)) ,
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No. ROBDD and ROBDD and ROBDD and ROBDD and

Nodes Boolean Boolean Boolean Boolean

Expression Expression Expression Expression

1
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⊤ ⊥

3
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T ⊥
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⊥ T

Z1

⊥
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Z1

⊥

Z2

T

(Z1 ∧ Z2) (Z1 ∧ ¬Z2) (¬Z1 ∧ Z2) (¬Z1 ∧ ¬Z2)

4

Z1

Z2

T ⊥

Z1

Z2

T ⊥

Z1

T

Z2

⊥

Z1

T

Z2

⊥

((Z1 ∧ Z2) ((Z1 ∧ ¬Z2) ((¬Z1 ∧ Z2) ((¬Z1 ∧ ¬Z2)

∨¬Z1) ∨¬Z1) ∨Z1) ∨Z1)

5

Z1

Z2 Z2

⊥ T

Z1

Z2 Z2

T ⊥

((Z1 ∧ ¬Z2) ((Z1 ∧ Z2)

∨(¬Z1 ∧ Z2)) ∨(¬Z1 ∧ ¬Z2))

Fig. 7. All ROBDDs of two variables

and from that Boolean expression, we generated the corresponding ROBDD.

Construction of such large ROBDDs is compute intensive. We have shared access to a cluster

of Intel Xeon
TM

E5-2620 2.00GHz 256GB DDR3 machines. Consequently, we tried to achieve a

reasonably large sample size with the limited resources available. There are potential ways of

increasing the sample size, discussed in Section 7.

Figure 12 lists the number of samples and corresponding compute times we observed. See

Section 3.4 for a discussion of how we determined which number of samples to use. Figure 13
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Z5 Z4 Z3 Z2 Z1 F min-term

0 0 0 0 0 1 (¬Z1 ∧ ¬Z2 ∧ ¬Z3 ∧ ¬Z4 ∧ ¬Z5)

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 1 1 1 (Z1 ∧ Z2 ∧ ¬Z3 ∧ ¬Z4 ∧ ¬Z5)

0 0 1 0 0 0

0 0 1 0 1 0

0 0 1 1 0 0

0 0 1 1 1 0

...

1 1 1 0 1 0

1 1 1 1 0 0

1 1 1 1 1 0

Fig. 8. 5-Variable truth table representing 910 = 10012. To interpret a binary integer as a truth table, enter
the bits in order with least significant bit at the top and most significant bit at the bottom. Bits which are 1
correspond to min-terms as shown.
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Fig. 9. Histograms illustrating size distributions of ROBBDs from 1 to 4 Boolean variables. The histograms
are based on exhaustive data.
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Fig. 10. Histograms illustrating size distributions of ROBBDs from 5 to 10. The histograms are based on
extrapolations from sampled data.

consolidates the data from Figures 9 and 10 into a single plot but normalized so that the total number

of Boolean functions in each curve is 100 percent. This normalization allows us to interpret a point

(x,y) on the curve corresponding to n variables as meaning that a randomly selected Boolean

expression of n variables has probability y of having an ROBDD which contains exactly x nodes.

Each point, (n,σn), in the plot in Figure 15 was calculated from a corresponding curve Cn of

Figure 13 by the formula:
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Fig. 11. Histograms illustrating size distributions of ROBBDs from 11 to 18. The histograms are based on
extrapolations from sampled data.

, Vol. 1, No. 1, Article . Publication date: November 2018.



12 Jim Newton and Didier Verna

No. No. No.

Variables Samples Unique

(n) Sizes

5 500003 15

6 400003 18

7 795986 17

8 108098 17

9 96007 26

10 58868 37

11 47522 45

12 51334 41

13 50932 25

14 50416 31

15 45340 52

16 66124 94

17 56968 162

18 55780 276

19 76374 443

Fig. 12. Number of samples and compute times for generating the plots in Figures 10 and 11. The table also
shows the number of unique ROBDD sizes which were detected for each value of n.

σn =

√ ∑
(x ,y)∈Cn

y · (x − µn)2 , with µn =
∑

(x ,y)∈Cn

x · y .

It is not clear from Figure 13 whether the spread of ROBDD sizes grows with the number of

variables. However, from the standard deviation plot in Figure 15, the spread seems to grow in

absolute terms. Despite this, the average (expected size), median, and worst-case sizes summarized

in Figure 14 give the impression that the distinction between average size and worst-case size

becomes negligible as the number of variables increases. Otherwise stated, it appears that for large

values of n, |ROBDDn | becomes a good approximation for average size, an observation which seems

related to the Shannon Effect discussed by Gröpl et al. [GPS98].
The plot in Figure 13 gives the impression that the distribution of possibles ROBDD sizes for

a given number of variables is clustered around the average such value. The standard deviation

plot in the same figure gives an impression of how tight this clustering is. In this article, we don’t

present a formula for this standard deviation as a function of n, but from the plot, it appears to

grow faster than linearly.

One might be tempted to assume that the data represented in Figure 10, and consequently

in Figure 13, follows a normal distribution, as the curves have a bell-like shape. However, the

distribution is not Gaussian. In particular, each of the curves extend left to the point (1, 2) because
there are always two constant functions of N variables, namely, f = ⊤ and f = ⊥. On the other

hand, we did not see any case in our experimentation where the curves extended to the right

any considerable distance beyond the peak. Later, we show what the actual maximum size of an

ROBDD of N variables is (see Figure 24), and in each case, the rightmost points in Figure 13 agree

impeccably with Figure 24.

If we believed the data followed a Gaussian distribution, we could interpret the standard deviation

more strictly. But for any distribution where we can calculate the mean and standard deviation, we
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Fig. 13. Normalized histograms of size distribution probability functions for ROBBDs of 2 to 10 variable
Boolean expressions, based on exhaustive data for 2, 3 and 4 variables, and on randomly sampled data for 5
and more variables.
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Fig. 14. Expected and worst-case ROBDD size from 1 to 10 variables, exhaustively determined for 1 through
4 variables, experimentally determined for 5 and more variables.
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Fig. 15. Standard deviations for each of the curves shown in Figure 13 and whose averages are shown in
Figure 14.

can interpret the standard deviation according to the Chebyshev inequality. The standard deviation

plot (Figure 15) can be interpreted according to the Chebyshev inequality [Als11], with X being

the size of a randomly selected ROBDD.

Pr(|X − µ | > k · σ ) ≤
1

k2
Chebyshev’s inequality

If the standard deviation of the probability function (Figure 13) for n Boolean variables is σn
and the average ROBDD size is µn , then for a given real number, k ≥ 1 (k > 1 in practice), the

probability of a randomly selected ROBDD of n variables having more than µn + k · σn nodes or

less than µn − k · σn nodes, is less than
1

k2
. As an example of using the plots in Figures 14 with the
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Chebyshev inequality, taking k = 2:

µ8 = 75.0 from Figure 14

σ8 = 1.89 from Figure 15

k = 2

1

k2
=

1

2
2
= 25%

µ8 − k · σ8 = 71.22

µ8 + k · σ8 = 78.78 .

This means that given a randomly selected 8-variable ROBDD, there is a 100% − 25% = 75% chance

that it has between 71 and 79 nodes.

3.4 Sufficiency of sample size
In Section 3.3 we discussed the approximation of ROBDD size histograms by a method of extrapo-

lation based on a random sample. Any such sample size must necessarily be miniscule compared to

the total space. For example, there are 2
2
10

= 1.8 × 10308 Boolean functions of 10 variables. In order

to sample just 1% of that space, even at a rate of 1000 per second, we’d need 1.8 × 10303 seconds.
However, assuming the universe is 13.8 billion years, that is only 4.4 × 10

17
seconds. Knowing

that we cannot sample a significant number of Boolean functions, how can we know whether we

have sampled a sufficient amount to have confidence that the histograms in Figures 10 and 11

are good approximations? To answer this question, we once again take a look at the Chebyshev

inequality. To trust its results, we must have confidence that the approximated average, µn , and
standard deviation, σn , are close to the actual result. I.e., if we increased the sample size, would µn
and σn change significantly.
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Fig. 16. Histograms illustrating size distributions of successively larger samples for 8 variables.
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Fig. 17. Histograms illustrating size distributions of successively larger samples for 11 variables.
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Fig. 18. Histograms illustrating size distributions of successively larger samples for 18 variables.
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Fig. 19. Averages and Standard deviations of the 8, 11, and 18 variable distirbutions for successively greater
number of samples as seen in Figures 16, 17, and 18.
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Fig. 20. Residual compression ratio of ROBDD as compared to UOBDD

3.5 Measuring ROBDD residual compression
In Section 2.2, a 31 node UOBDD of 4 Boolean variables was reduced to an equivalent ROBDD

with 8 nodes, meaning a residual compression ratio of 8/31 ≈ 25.8%. The question was posed as to

how typical this reduction is. Figure 20 shows a plot of the worst-case, average, and median sizes

divided by the size of the UOBDD. The figure shows the residual compression ratio,

ρn =
|ROBDDn |

|UOBDDn |
, (2)

for sizes n = 1 through n = 10 Boolean variables. The residual compression ratio quantifies which

portion of the original size remains after converting a UOBDD into an ROBDD. The closer to zero,

the better the compression.

The points in the plot are calculated by starting with the numbers from Figure 14 and dividing

each by the size of the UOBDD. A UOBDD of n Boolean variables (as well as a full binary tree of n
levels and 2

n
leaves) has |UOBDDn | = 2

n+1 − 1 nodes. It appears from the plot that the residual

compression ratio improves (the percentage decreases) as the number of variables increases. It

is not clear from the plot what the asymptotic residual compression ratio is, but it appears from

experimental data to be less than 15%. It would also appear that whether the residual compression

ratio is measured using the average size or worst-case size, the difference is negligible as the number

of variables increases.

In Section 3.6, we derive a formula for the worst-case ROBDD size as a function of the number

of Boolean variables. In order to do that, we need to understand the topology of such ROBDDs.

What are the connectivity invariants which control the shape? In this section, we examine some

example worst-case ROBDDs. Section 4 discusses an algorithm for constructing such ROBDDs.

Figure 21 shows examples of worst-case ROBDD for 1 through 7 variables. Those ROBDDs have

3, 5, 7, 11, 19, 31, and 47 nodes respectively.

The 2-variable ROBDD represents the Boolean expression ((Z1 ∧ ¬Z2) ∨ (¬Z1 ∧ Z2)), which is the

xor function. We did not recognize any obvious pattern in the Boolean expressions for the cases of

3 variables or more. As will become clear in Section 4 and in Algorithm 2, the worst-case ROBDD is

not unique. There is considerable flexibility in constructing it. One may naturally wonder whether
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Fig. 21. Shapes of worst-case ROBDDs for 1 to 7 variables

there is some underlying pattern within the Boolean expressions corresponding to these worst-case

ROBDDs. We have not investigated this question yet, and leave it open for further investigation.

Even if there is no obvious pattern among the closed form Boolean expressions, we do notice

a general pattern in the overall shapes of the worst-case ROBDDs, as we increase the number of

variables. We will make this pattern explicit in Section 3.6, but intuitively, it seems that the shapes

expand from the top (root node) to somewhere close to mid-way down and thereafter contract

toward the bottom, always ending with two rows having exactly two nodes each.
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This shape makes sense because the maximum possible expansion (top toward bottom) occurs

when each row contains twice as many nodes as the row directly above it. Each node in the ith row

corresponding to variable Zi has two arrows (one positive and one negative) pointing to nodes of

variable Zi+1. If the i
th

row is to have the maximum number of nodes possible, then no node may

be symmetric, otherwise the node could be eliminated by the Deletion rule. Furthermore, no two

nodes may be congruent, otherwise one of the nodes could be eliminated by the Merging rule.

However, this exponential expansion is limited by the fact that the bottommost row must contain

exactly two leaf nodes in worst case, corresponding to ⊤, and ⊥. We know this because if the

bottom row had only one of ⊤ or ⊥, then any node in the second to last row would be symmetric,

having its positive and negative arrows pointing to this same leaf node. Such a node would be

eliminated by the Deletion rule. Thus, the second to last row would be empty. From this we can

conclude that if an ROBDD has exactly one leaf, it also has exactly one node. Such an ROBDD is

obviously not a worst-case ROBDD.

We know from the previous argument that the bottommost row has exactly two leaves. That

being the case, if the second to last row had any symmetric node, such a node would be removed

by the Deletion rule. Furthermore, if any two nodes in the row were congruent, one of the nodes

would be eliminated by the Merging rule. Therefore, as worst case, there may be only as many

nodes in the second to last row as there are ordered parings of the leaf nodes. There are only two

such ordered pairs: (⊤,⊥) and (⊥,⊤). The second to last row has exactly two nodes.

A similar argument limits the third to last row, and the rows above it. In each such case, the

number of nodes in the row is limited by the number of ordered pairs which can be formed by all the

nodes below it, having no symmetric node and no congruent nodes. This implies a combinatorial

expansion from bottom toward the top.

As argued above, there is an exponential growth from the topmost node downward, and there is

a combinatorial growth from the bottommost node upward. At some point, the widest part of the

graph, these two growth rates meet.

3.6 Worst-case ROBDD Size
In Section 3.2, we saw the worst-case sizes of ROBDDs for different numbers of Boolean variables.

We observed an exponential top-down growth rate, a bottom-up combinatorial one, and a point

somewhere in between where these two growths meet. In this section, we derive explicit formulas

for these observations, and from them, derive the worst-case size, |ROBDDn |.

As can be seen in Figure 21, the number of nodes per row (per variable), looking from the top

down, is limited by 2
i
where i is the index of the variable. The number of nodes per row follows

the sequence 2
0 = 1, 2

1 = 2, 2
2 = 4, ...2k .

The row corresponding to the last variable has two nodes, one with children positive = ⊥,
neдative = ⊤ and one with positive = ⊤, neдative = ⊥. In the worst case, each row above the

bottom has the number of nodes necessary for each node to uniquely connect its positive and

negative arrows to some unique pair of nodes below it. The number of ordered pairs ofm items is

m2
(readm raised to the second power descending). Recall thatma = m!

(m−a)! which, for the special

case of a = 2, becomesm2 = m!

(m−2)! =m · (m − 1).

We denote the size of the kth row of the worst-case ROBDD of n variables as
nRk , and the

total number of nodes of rows k + 1 through n as
nSk . In other words,

nSk is the number of nodes

in the rows strictly below row k . Viewed from the bottom up, the sequence of rows have sizes

nRn−1,
nRn−2,

nRn−3, etc. The number of nodes in row i is a function of the sum of the number of

nodes in the rows below it, namely
nRi =

nSi
2 = nSi · (

nSi − 1).
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nRn+1 = 2

nSn =
nRn+1 = 2

nRn =
nSn

2

= 2 · 1 = 2

nSn−1 =
nRn+1 +

nRn = 4

nRn−1 =
nSn−1

2

= 4 · 3 = 12

nSn−2 =
nRn+1 + ... +

nRn−1 = 16

nRn−2 =
nSn−2

2

= 16 · 15 = 240

nSn−3 =
nRn+1 + ... +

nRn−2 = 256

nRn−3 =
nSn−3

2

= 256 · 255 = 65280

nSn−k =
n+1∑

i=n−(k−1)

nRi

nRn−k =
nSn−k

2

(3)

Fig. 22. The two interrelated sequences nSi and nRi .

Notice that the bottom row of a non-trivial worst-case ROBDD has exactly 2 nodes, the ⊤

and ⊥ nodes, thus
nRn+1 = 2. For each i , nSi can be calculated as the sum of the previous

nR j for
j = n − i, ...,n + 1. This is illustrated by the equations in Figure 22.

An interesting pattern emerges:
nSn = 2

2
0

,
nSn−1 = 2

2
1

,
nS2 = 2

2
2

,
nS3 = 2

2
3

, suggesting Lemma 3.1.

Lemma 3.1. Let

nSn−k =
n+1∑

i=n−(k−1)

nRi ,

where
nRn+1 = 2

and for k > 1,
nRn−k =

nSn−k · (
nSn−k − 1) .

Then for every positive integer k ,
nSn−k = 2

2
k
.

Proof. By Induction: The initial case, k = 0 is that

nSn−k =
nSn−0

= nRn+1 = 2 = 2
1 = 2

2
0

= 2
2
k
.

It remains only to be shown that for k ≥ 0,
nSn−k = 2

2
k
implies

nSn−(k+1) = 2
2
k+1

. Assume

nSn−k = 2
2
k
.

It follows that
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nSn−(k+1) =
n+1∑

i=n−k

nRi

= nRn−k +
n+1∑

i=n−(k+1)

nRi

= nRn−k +
nSn−k

= (nSn−k ) · (
nSn−k − 1) + (

nSn−k )

= (nSn−k ) · (
nSn−k − 1 + 1)

= nSn−k ·
nSn−k

= (nSn−k )
2

= (22
k
)2 = 2

2·2k = 2
2
k+1
.

□

Next, we show more concise forms for
nRn−k and

nRi . As a convention, we will use the variable i
to index rows and summations when counting from the top (root) node down. By contrast we will

use the variable k to index rows and summations when counting from the bottom up.

Lemma 3.2. If k ≥ 0, then
nRn−k = 2

2
k+1
− 22

k
,

and if i ≤ n,
nRi = 2

2
n−i+1
− 22

n−i
.

Proof.

nRn−k =
nSn−k

2

by 3

= (22
k
) · (22

k
− 1) by Lemma 3.1

= (22
k
· 22

k
) − 22

k

= (22
k
)2 − 22

k

= 2
2·2k − 22

k

nRn−k =

{
2
2
k+1
− 22

k
if k ≥ 0

2 if k = −1

nRi =

{
2
2
n−i+1
− 22

n−i
if i ≤ n

2 if i = n + 1

□

As explained already,
nRi is the number of elements which would fit into row i , only taking into

consideration the combinatorial growth from the bottommost row up to row i . However, when
looking from the topmost row down, taking into account the exponential growth only, the number

of nodes in row i is given by
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nri = 2
i−1

(4)

nrn−k = 2
n−k−1 . (5)

Each row within the worst-case ROBDD is limited in size by the two terms,
nRi and

nri . The
precise number of nodes in each row is the minimum of these two terms. The total number of

nodes in a worst-case ROBDD of n variables is the sum of the number of nodes in each of its rows,

given by Equation 7 which holds when n > 1.

|ROBDDn | = 2 +

n∑
i=1

min{nri ,
nRi } (6)

= 2 +

n∑
i=1

min{2i−1, 22
n−i+1
− 22

n−i
} (7)

Theorem 3.3 is stated and proven now. This theorem is useful in the later discussion of Algo-

rithm 2.

Theorem 3.3. Every row of a worst-case ROBDD, except the first row, has an even number of nodes.

Proof. The i’th row of an n-variable ROBDD either has
nri nodes or

nRi nodes. If i > 1, then

nri = 2
i−1

(by Equation 4) is even. If 1 < i ≤ n, then nRi = 2
2
n−i+1
− 22

n−i
(by Lemma 3.2) is even.

The final case is when i = n + 1, the row of terminal nodes,
nRn+1 = 2 which is even. □

In Section 3.6 we derived the sizes of the rows of the worst-case ROBDD. We also derived

Equation 7 which is easy to state but difficult to evaluate, which gives the value of |ROBDDn | in

terms of the sum of the row sizes. In this section we will build up to and prove Theorem 3.9 which

makes a step forward in making this value easier to calculate.

Corollary 3.4. A worst-case ROBDD as an odd number of nodes.

We could prove Corollary 3.4 by straightforward examination of Equation 7, and we would reach

the same conclusion as the following simpler argument.

Proof. The first row of any ROBDD (worst-case or not) has a single node. By Theorem 3.3

every row thereafter of a worst-case ROBDD has an even number of nodes. Therefore the the total

number of nodes is necessarily odd. □

There is a shortcut for calculating the sum in Equation 7. To make the shortcut more evi-

dent, first consider the example where n = 10, and calculate the size of row i = 1. To calculate

min{21−1, 22
10−1+1

− 22
10−1

} = min{20, 22
10

− 22
9

} = 1, there is no need to calculate the 1024 digits of

2
2
10

−22
9

, because 2
0 = 1 is obviously smaller. The trick is to realize that the summation (Equation 7)

is the sum of leading terms of the form 2
i
, plus the sum of trailing terms of the form 2

2
n−i+1
− 22

n−i
.

Howmany leading and trailing termsmay not be obvious however. Theorem 3.9 shows the existence

of the so-called threshold function, θ , which makes these two sums explicit.

3.7 The threshold function θ
In this section, we prove the existence of the so-called threshold function, θ , and express |ROBDDn |

in terms of θ (Theorem 3.9). Before proving that lemma, we establish a few intermediate results to

simplify later calculations.
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Lemma 3.5. If f : R→ R is differentiable, then

d

dx
2
f (x ) = 2

f (x ) · ln 2 ·
d

dx
f (x)

Proof.

d

dx
2
f (x ) =

d

dx
e ln 2

f (x )
=

d

dx
e f (x )·ln 2

= e f (x )·ln 2 · ln 2 ·
d

dx
f (x)

= e ln 2
f (x )
· ln 2 ·

d

dx
f (x)

= 2
f (x ) · ln 2 ·

d

dx
f (x)

□

Lemma 3.6. If f : R→ R is differentiable, then

d

dx
2
2
f (x )
= 2

f (x )+2f (x ) · ln 4 ·
d

dx
f (x)

Proof. Change of variables, let д(x) = 2
f (x )

, and use Lemma 3.5 twice.

d

dx
2
2
f (x )
=

d

dx
2
д(x ) = 2

д(x ) · ln 2 ·
d

dx
д(x)

=
d

dx
2
f (x ) · ln 2 · 22

f (x )

=
(
2
f (x ) · ln 2 ·

d

dx
f (x)

)
·
(
ln 2 · 22

f (x ) )
= 2

f (x )+2f (x ) · ln 4 ·
d

dx
f (x)

□

Even though Lemma 3.7 is trivial to prove, we provide it because it removes redundant steps in

proving Lemmas 3.8 and 3.10.

Lemma 3.7. If h : R→ R, then 2
h(x )+1+2h(x )+1 > 2

h(x )+2h(x ) .

Proof.

h(x) + 1 > h(x) =⇒ 2
h(x )+1 > 2

h(x )

=⇒ h(x) + 1 + 2h(x )+1 > h(x) + 2h(x )

=⇒ 2
h(x )+1+2h(x )+1 > 2

h(x )+2h(x )

□

Lemma 3.8. The function, f (x) = 2
2
n−x+1

− 22
n−x

is decreasing.

Proof. To show that f is decreasing, we show that
d
dx f (x) < 0.
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d

dx
f (x) =

d

dx

(
2
2
n−x+1

− 22
n−x )

= 2
n−x+1+2n−x+1 · ln 4 · (−1) − 2n−x+2

n−x
· ln 4 · (−1) by Lemma 3.6

=
(
2
n−x+1+2n−x+1 − 2n−x+2

n−x )
· ln 4 · (−1)

=
(
2
n−x+2n−x − 2n−x+1+2

n−x+1 )
· ln 4

Letting h(x) = n − x , and applying Lemma 3.7, we have 2
n−x+2n−x < 2

n−x+1+2n−x+1
. So(

2
n−x+2n−x − 2n−x+1+2

n−x+1 )
· ln 4 < 0 .

□

The following theorem proves the existence of the threshold function θ , without giving insight

into how to calculate it. See Section 3.10 for a discussion on how to calculate it.

Theorem 3.9. For each n > 0, there exists an integer θ , such that

|ROBDDn | = (2
n−θ − 1) + 22

θ
.

Proof. As i increases, so does
nri = 2

i−1
. By Lemma 3.8,

nRi = 2
2
n−i+1
− 22

n−i
is decreasing (as a

function of i). At i = 0, 2
i−1 < 2

2
n−i+1
− 22

n−i
. So there necessarily exists a χn such that when i < χn

we have
nri <

nRi , and when i ≥ χn we have
nri ≥

nRi .

|ROBDDn | = 2 +

n∑
i=1

min{nri ,
nRi } by 6

= 2 +

χn−1∑
i=1

nri +
n∑

i=χn

nRi

Now, we define θn = n − χn + 1, i.e., the number of terms in the second sum. We also adjust the

iteration variable of the second summation to commence at 0. Finally, we apply Lemma 3.2. Simply

as a matter of notation, and to facility ease of reading, we will write θ rather than θn .

|ROBDDn | = 2 +

n−θ∑
i=1

nri +
n∑

i=n−θ+1

nRi

= 2 +

n−θ∑
i=1

nri +
θ−1∑
k=0

nRn−k

= 2 +

n−θ∑
i=1

2
i−1 +

θ−1∑
k=0

(22
k+1
− 22

k
)

Notice that

∑n−θ
i=1 2

i−1
is a truncated geometric serieswhose sum is 2

n−θ−1. Furthermore,

∑θn−1
k=0 (2

2
k+1
−

2
2
k
) is a telescoping series for which all adjacent terms cancel, leaving the difference 2

2
θ
− 22

0

=

2
2
θ
− 2. This leads to the desired equality.

|ROBDDn | = 2 + (2n−θ − 1) + (22
θ
− 2)

= (2n−θ − 1) + 22
θ

□
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This result makes sense intuitively. The (2n−θ − 1) term represents the exponential growth of

the ROBDD seen in the top rows, from row 1 to row n − θ , as can be seen in the illustrations such

as Figure 21. The 2
2
θ
term represents the double-exponential decay in the bottom rows as can be

seen in the same illustration.

Another way to think of θ is as follows. We define the integer sequence θn as the corresponding

values of the real valued function

θn = ⌊ψ (n)⌋ , (8)

whereψ : R+ 7→ R such that

2
2
ψ (n)+1

− 22
ψ (n)
= 2

n−ψ (n)−1 . (9)

Equation 9 is the real number extension of the integer equation
nrθn =

nRθn . Clearly, θ andψ are

functions of n, hence we denote them as such. We will, as before, dispense with the notation when

it is clear, and simply refer to θn as θ , andψ (n) asψ .
Although we do not attempt to express θ in closed form as a function of n, we do know several

things about that function. For example we see in Theorem 3.11 that θ is non-decreasing. We also

see in Theorems 3.13 and 3.14 that θ is bounded above and below by functions which themselves

go to infinity. Thus, θ becomes arbitrarily large (Equation 22).

That θ = ⌊ψ ⌋, means that θ is the integer such that n − θ is the maximum integer for which

nrn−θ ≤
nRn−θ . (10)

If n − θ is the maximum such integer, then

nrn−θ+1 >
nRn−θ+1 . (11)

As an example, consider the case of n = 3.

3r2 = 2 < 3R2 = 12

3r3 = 4 > 3R3 = 2

We see that
3r2 is the largest value of

3ri which is less than
3Ri . So we have n − θ = 3 − θ = 2, or

θ = 1. If we look at the case of n = 2 we see why Inequality 10 is not a strict inequality.

2r1 = 1 < 2R1 = 12

2r2 = 2 ≤ 2R2 = 2

2r3 = 4 > 2R3 = 2

This can be seen in Figure 21, in which the worst-case ROBDD for n = 2 has two nodes for Z2.

There are two nodes for two reasons: because 2
2−1 = 2 and also because 2

2 = 2.

3.8 The threshold function is non-decreasing
This section establishes that θ (defined by Equation 8) is a non-decreasing sequence. In Section 3.9,

we will show by Theorems 3.13 and 3.14 that θ is bounded above and below by increasing functions.

However, this alone is not sufficient to show that θ itself is non-decreasing.

To show θ is non-decreasing (Theorem 3.11), we first show thatψ , as defined by Equation 9, is

strictly increasing (Lemma 3.10). To prove Lemma 3.10, we need two identities, proven earlier in

Lemmas 3.5 and 3.6.

Lemma 3.10. ψ : R+ 7→ R is strictly increasing.
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Proof. To show thatψ is increasing, we show that its derivative,
d
dxψ (x), is strictly positive. We

use x as the variable of integration rather than n to emphasize that the domain ofψ is R+ not N.
Note that it is not actually necessary to calculate the derivative ofψ in a form independent ofψ .
Rather, it suffices to show that the derivative is positive. We find an expression for

d
dxψ (x) in terms

ofψ (x) using implicit differentiation.

2
2
ψ (x )+1

− 22
ψ (x )
= 2

x−ψ (x )−1

d

dx
2
2
ψ (x )+1

−
d

dx
2
2
ψ (x )
=

d

dx
2
x−ψ (x )−1

(12)

For clarity, we calculate these three derivatives separately. Applications of Lemma 3.5 and

Lemma 3.6 lead to:

d

dx
2
2
ψ+1
= 2

ψ+1+2ψ+1 · ln 4 ·
dψ

dx
(13)

d

dx
2
2
ψ
= 2

ψ+2ψ · ln 4 ·
dψ

dx
(14)

d

dx
2
x−ψ−1 = 2

x−ψ−1 · ln 2 · (1 −
dψ

dx
) (15)

Substituting 13, 14, and 15 into 12, and solving for
dψ
dx results in

dψ

dx
=

2
x−ψ−1

ln 2 · (2ψ+1+2
ψ+1
− 2ψ+2

ψ
) + 2x−ψ−1

. (16)

Since the right hand side of Equation 16 is a fraction whose numerator, 2
x−ψ−1

, is positive, and

whose denominator is the sum of two terms, the second of which, 2
x−ψ−1

, is positive, then it suffices

to argue that the first term in the denominator, ln 2 · (2ψ+1+2
ψ+1
− 2

ψ+2ψ ), is positive. If we let

h(x) = ψ (x) + 1, then Lemma 3.7 implies 2
ψ+1+2ψ+1 > 2

ψ+2ψ
. So since ln 2 > 0, we conclude that

ln 2 · (2ψ+1+2
ψ+1
− 2ψ+2

ψ
) > 0.

dψ

dx
=

>0︷ ︸︸ ︷
2
x−ψ−1

ln 2︸︷︷︸
>0

· (2ψ+1+2
ψ+1
− 2ψ+2

ψ
)︸                   ︷︷                   ︸

ψ+1+2ψ+1 > ψ+2ψ

+ 2x−ψ−1︸ ︷︷ ︸
>0

> 0 .

□

Theorem 3.11. θ : N 7→ N by θn = ⌊ψ (n)⌋ is non-decreasing.

Proof. ψ : R+ 7→ R is increasing (Lemma 3.10), implies that ifm ∈ N, then ψ (m + 1) > ψ (m).
Thus ⌊ψ (m + 1)⌋ ≥ ⌊ψ (m)⌋; i.e., θm+1 ≥ θm holds for allm ∈ N. □

3.9 Bounds for the threshold function
We showed in Theorem 3.9 that the function θ is well defined, but we didn’t say how to calculate

it. We now show that θ is bounded by two logarithmic functions. Using those bounds, we will

then develop an efficient algorithm for calculating it iteratively (Section 3.10). To do this, we first

establish an inequality (Lemma 3.12) to be used later.
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Lemma 3.12. For any real number α > 0, we have

2
2
α
< 2

2
α+1
− 22

α
.

Proof.

1 = 2
0 < 2

α

2 = 2
1 < 2

2
α

1 < 2
2
α
− 1

= 2
(2−1)·2α − 1

= 2
2·2α−2α − 1

= 2
2
α+1−2α − 1

2
2
α

2
2
α <

2
2
α+1

2
2
α −

2
2
α

2
2
α

2
2
α
< 2

2
α+1
− 22

α

□

We now establish an upper bound for θ .

Theorem 3.13. For any n ∈ N, we have

θn < log
2
n .

Proof.

nRn−θ+1 <
nrn−θ+1 by 11

2
2
θ+1
− 22

θ
< 2

n−θ

2
2
θ
< 2

2
θ+1
− 22

θ
< 2

n−θ
by Lemma 3.12

2
θ < n − θ < n

θ < log
2
n

□

We now establish a lower bound for θ .

Theorem 3.14. For any n ∈ N, we have

log
2
(n − 2 − log

2
n) − 2 ≤ θ .
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Fig. 23. Upper and lower bounds for θ

Proof.

ψ − 1 ≤ ⌊ψ ⌋ = θ < log
2
n

ψ < 1 + log
2
n (17)

ψ + 1 < θ + 2 (18)

2
n−2−log

2
n = 2

n−(1+log
2
n)−1

by 5 and Lemma 3.2 (19)

< 2
n−ψ−1

by 17

= 2
2
ψ+1
− 22

ψ
by 9

< 2
2
ψ+1

< 2
2
θ+2

by 18

2
θ+2 > n − 2 − log

2
n

θ > log
2
(n − 2 − log

2
n) − 2 (20)

□

As a consequence of Theorems 3.13 and 3.14, Corollary 3.15 defines upper and lower bounds for

θ . The continuous, real valued bounds are illustrated in Figure 23.

Corollary 3.15. For any n ∈ N, we have

⌈log
2
(n − 2 − log

2
n)⌉ − 2 ≤ θ ≤ ⌊log

2
n⌋

Proof. From Theorems 3.13 and 3.14 we already have

log
2
(n − 2 − log

2
n) − 2 ≤ θ ≤ log

2
n ,

but since θ is an integer, the inequality implies

⌈log
2
(n − 2 − log

2
n)⌉ − 2 ≤ θ ≤ ⌊log

2
n⌋

□

As is implied by Figure 23, and as proven in Theorem 3.16, θ →∞.
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Theorem 3.16.

lim

n→∞
θn = ∞

Proof. First note that for n ≫ 0

log
2
n <

n

2

. (21)

Next, we have a lower bound for θ ,

θn ≥ log
2
(n − 2 − log

2
n) − 2 by 20

lim

n→∞
θn ≥ lim

n→∞
log

2
(n − 2 − log

2
n) − 2

≥ lim

n→∞
log

2
(n − 2 −

n

2

) − 2 by 21

= lim

n→∞
log

2
(
n

2

− 2) − 2

= ∞ (22)

□

Corollary 3.17.

lim

n→∞
ψ (n) = ∞ .

Proof. Since

θn = ⌊ψ (n)⌋ ≤ ψ (n) ≤ ⌈ψ (n)⌉ ≤ 1 + θn ,

then by application of Theorem 3.16 we have

∞ = lim

n→∞
θn ≤ lim

n→∞
ψ (n)

≤ lim

n→∞
1 + θn = ∞ .

So

lim

n→∞
ψ (n) = ∞ . (23)

□

3.10 Computing the threshold function
For a given n, the value of θ can be found iteratively, as shown in Algorithm 1. Initializing θ to

the upper bound ⌊log
2
(n)⌋ as initial guess, from Corollary 3.15, we continue to decrement θ as

long as 2
2
θ+1
− 22

θ
< 2

n−θ−1
. This iteration seems to usually terminate after 2 iterations. When

running Algorithm 1 from n = 2 to n = 200001, it terminates after 3 iterations 152 times, and after

2 iterations 199848 times (99.92%). Table 24 shows the values of θ for 1 ≤ n ≤ 21 as calculated by

Algorithm 1.

Algorithm 1 terminates in about two iterations, which makes sense when considering Theo-

rem 3.18. We see in that theorem that for large n the difference of the upper and lower limits

expressed in Corollary 3.15 is 2. However, we see from experimentation that a small fraction of

the time the algorithm terminates at 3 iterations. This is because Algorithm 1 arranges that θ is

always decremented once too many (except when n = 1). This is why θ + 1 is returned on line 1.10

of Algorithm 1.

Theorem 3.18. For all sufficiently large n,

log
2
n − θn < 2 .
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n ⌊log
2
n⌋ θ 2

n−θ − 1 + 22
θ

n ⌊log
2
n⌋ θ 2

n−θ − 1 + 22
θ

1 0 0 3 20 4 4 131,071

2 1 1 5 30 4 4 67,174,399

3 1 1 7 50 5 5 3.52 × 1031

4 2 1 11 100 6 6 1.98 × 1028

5 2 1 19 200 7 7 1.26 × 1058

6 2 2 31 500 8 8 1.28 × 10148

7 2 2 47 1000 9 9 2.09 × 10298

8 3 2 79 2000 10 10 1.12 × 10599

9 3 2 143 5000 12 12 3.45 × 101501

10 3 2 271 10,000 13 13 2.43 × 103006

11 3 3 511 20,000 14 14 2.42 × 106016

Fig. 24. Worst-case ROBDD size, |ROBDDn |, in terms of number of variables, n. The table also shows θ (the
threshold) and ⌊log

2
n⌋ demonstrating that ⌊log

2
n⌋ serves both as an upper bound and as an initial guess for

θ . The table also shows the exponential term and the double-exponential term, whose sum is the worst-case
size.

Proof. We know that for n ≫ 0, θn lies between the upper and lower bounds indicated in

Theorems 3.13 and 3.14. This means

log
2
n − θn < log

2
n − (log

2
(n − 2 − log

2
n) − 2) .

∆bounds = lim

n→∞

( upper bound︷︸︸︷
log

2
n −

(
log

2
(n − 2 − log

2
n) − 2

)︸                           ︷︷                           ︸
lower bound

)
= 2 + lim

n→∞
log

2

n

n − 2 − log
2
n

= 2 + log
2
lim

n→∞

n

n − 2 − log
2
n
= 2 + log

2
lim

n→∞

L’Hôpital’s rule︷                  ︸︸                  ︷
d
dnn

d
dn (n − 2 − log2 n)

= 2 + log
2
lim

n→∞

1

1 − 1

n

= 2 + log
2
1 = 2

□

3.11 Plots of |ROBDDn | and related quantities
Now that we can calculate θ , it is possible to plot |ROBDDn | as a function of n. The plots in Figure 25

show the relative sizes of 2
n−θ

, 2
2
θ
, and their sum |ROBDDn |. The plot also shows 2

n
, which is

intended to convey intuition about relative sizes of the various quantities. In the plot on the right,

it appears that 2
n−θ

becomes a good approximation for |ROBDDn | for large values of n. However,
the plot on the left shows that this is a poor approximation for values of n below 15.
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Algorithm 1: FindTheta determine θ iteratively

Input: n: positive integer n > 0, indicating the number of Boolean variables

Output: θ : minimum integer, θ such that
nrn−θ ≤

nRn−θ ; i.e., 2n−θ ≤ 2
2
θ
− 22

θ−1

1.1 begin
1.2 if n = 1 then
1.3 return 0

1.4 θ ← ⌊log
2
n⌋ + 1

1.5 repeat
1.6 θ ← θ − 1

1.7 r ← 2
n−θ−1

1.8 R ← 2
2
θ+1
− 22

θ

1.9 until R < r

1.10 return θ + 1
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Fig. 25. The plots show the relative sizes of 2n−θ , 22
θ
, and their sum |ROBDDn |.

3.12 Limit of the residual compression ratio
In Section 3.2, we introduced ρn , the ROBDD residual compression ratio (Equation 2). We also

observed in Figure 20 that ρn seems to decrease as n increases. Moreover, Figure 26 shows ρn
calculated by Equation 2 for values of 1 ≤ n ≤ 21. The plot in Figure 26 shows the residual

compression ratio for 1 ≤ n ≤ 200. In this plot, it appears that the residual compression ratio tends

to 0. This is in fact the case, as proven in Theorem 3.19.

Theorem 3.19.

lim

n→∞
ρn = 0 .

Proof. First, we establish a few helpful inequalities.

|UOBDDn | = 2
n+1 − 1 by 1

> 2
n

for n ≫ 0 (24)
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2
2
θ
= 2

2
⌊ψ (n)⌋

≤ 2
2
ψ (n)

by 8

< 2
2
ψ (n)+1

− 22
ψ (n)

by Lemma 3.12 (25)

= 2
n−ψ (n)−1

by 9 (26)

|ROBDDn | = 2
2
θn
− 2n−θn − 1 by Theorem 3.9

≤ 2
n−ψ (n)−1 − 2n−θn − 1 by 26 (27)

ρn =
|ROBDDn |

|UOBDDn |
by 2

<
|ROBDDn |

2
n by 24

≤
2
n−ψ (n)−1 − 2n−θn − 1

2
n by 27 (28)

Now, we can apply the limit to Inequality 28.

lim

n→∞
ρn ≤ lim

n→∞

2
n−ψ (n)−1 − 2n−θn − 1

2
n

= lim

n→∞

2
n−ψ (n)−1

2
n − lim

n→∞

2
n−θn

2
n − lim

n→∞

1

2
n

= lim

n→∞

1

2
ψ (n)+1

− lim

n→∞

1

2
θn
− lim

n→∞

1

2
n

≤ 0 − 0 − 0 by 23 and 22

lim

n→∞
ρn ≤ 0 .

Since for each n, ρn is the quotient of two positive numbers, we know that ρn > 0. We can thus

conclude that

lim

n→∞
ρn = 0 .

□

4 PROGRAMMATIC CONSTRUCTION OF AWORST-CASE N-VARIABLE ROBDD
In the previous sections, we looked at various examples of ROBDDs of different sizes. During our

experimentation, we found it necessary to devise an algorithm for generating worst-case ROBDDs.

Because worst-case ROBDDs are not unique, any such algorithm has leeway in the manner it

constructs them. In this section, we discuss the algorithm we developed, i.e., an algorithm for

constructing a worst-case ROBDD of n Boolean variables, denoted Z1,Z2, ...Zn . The constructed
ROBDDs resemble those shown in Figure 21.

Recall, from Section 3.6, that the worst-case ROBDD can be thought of as having two parts,

which we will call the top part and the bottom part. This is illustrated in Figure 27. The top part

comprises the exponential expansion from the root node (corresponding to Z1) called row 0, and

continuing until row n − θ − 1. This top part contains n − θ number of rows. The bottom part

comprises the double-exponential (i.e., 22
i
) decay, starting at row n − θ , and continuing through

row n for a total of θ + 1 rows. The bottommost row is row n which contains precisely the two
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n |ROBDDn | ρn
1 3 100.000%

2 5 71.429%

3 7 46.667%

4 11 35.484%

5 19 30.159%

6 31 24.409%

7 47 18.431%

8 79 15.460%

9 143 13.978%

10 271 13.239%

11 511 12.479%

12 767 9.364%

13 1279 7.807%

14 2303 7.028%

15 4351 6.639%

16 8447 6.445%

17 16639 6.347%

18 33023 6.299%

19 65791 6.274%

20 131071 6.250%

21 196607 4.687%
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Fig. 26. Residual compression ratio of worst-case ROBDD, calculated from theoretical data as compared to
UOBDD, and shown in tabular graphical form.

singleton objects ⊤ and ⊥. From this information and the following few notational definitions, we

are able to construct one of the many possible worst-case n-variable ROBDDs with Algorithm 2.

An ROBDD node is denoted as node(⊤) (true terminal node), node(⊥) (false terminal node) or

node(i,α, β) (non-terminal node on rowi with children nodes α and β .) Let rowb
a denote the set of

rows a to b. If S is a set, let its cardinality be denoted |S |, and let P(S) = {(α, β) | α, β ∈ S,α , β}.
Note that |P(S)| = |S |2.

Top Part

Belt

Bottom Part
Leaves

Z1

Z2 Z2

Z3 Z3 Z3 Z3

Z4 Z4 Z4 Z4Z4 Z4 Z4Z4

Z5 Z5 Z5Z5 Z5 Z5Z5Z5 Z5 Z5Z5 Z5

T ⊥

Z6Z6

Fig. 27. 6-variable ROBDD top & bottom parts
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Algorithm 2 generates an ROBDD represented as a vector of sets of nodes [row0, row1, ..., rown].

Lines 2.4 through 2.5 generate the bottom part, and lines 2.7 through 2.10 generate the top part.

Algorithm 3 generates the belt as illustrated in Figure 27.

Algorithm 2: GenWorstCaseROBDD generates a worst-case ROBDD

Input: n, positive integer indicating the number of Boolean variables

Output: a vector of sets of nodes
2.1 θ ← FindTheta(n) // Algorithm 1

2.2 B ← n − θ − 1 // belt row index

2.3 // Generate the bottom part

2.4 rown ← {node(⊤),node(⊥)} for i from n − 1 downto B + 1 do
2.5 rowi ← {node(i,α, β) | (α, β) ∈P(rown

i+1)} // |rowi | =
nRi

2.6 // Generate the top part

2.7 rowB ← GenBelt(n,B, row) // Algorithm 3

2.8 for i from B − 1 downto 0, do
2.9 P ← any partition of rowi+1 into ordered pairs // possible by Theorem 3.3, |P | = |rowi+1 |

2
= 2

i

2.10 rowi ← {node(i,α, β) | (α, β) ∈ P} // |rowi | = 2
i

2.11 return [row0, row1, ..., rown ] // generated 1 + (n − B − 1) + 1 + B = n + 1 rows.

Algorithm 3: GenBelt generates the B row of the worst-case ROBDD

Input: n, positive integer indicating the number of Boolean variables

Input: B, between 0 and n, indicating the belt’s row number

Input: row , a vector which the calling function has partially populated. rowB+1...rown are each

non-empty sets of nodes.

Output: a set of 2B nodes intended to comprise rowB
3.1 p ← |rowB+1 | // calculate

nRB+1
3.2 Plef t ← any partition of rowB+1 into ordered pairs // possible by Theorem 3.3

3.3 Slef t ← {node(B,α, β) | (α, β) ∈ Plef t }

3.4 if 2
B < p · (p − 1) then // if wide belt

3.5 Pr iдht ←P(rown
β+1)

3.6 else // if narrow belt

3.7 Pr iдht ←P(rowβ+1)

// We want |rowB | = 2
B
. So limit |Sr iдht | to 2

B −
nRB+1

2
.

3.8 Sr iдht ← any

(
2
B − |Slef t |

)
sized subset of {node(B,α, β) | (α, β) ∈ Pr iдht \ Plef t }

3.9 return Slef t ∪ Sr iдht // |Sle f t | + |Sr iдht | =
nRB+1

2
+ (2B −

nRB+1
2
) = 2

B

For simplicity, we don’t specify how to perform the computations on lines 2.9, 3.2, and 3.8.

Solutionsmay vary, depending on the choice of programming language and data structures. Lines 2.9

and 3.2 call for a set with an even number of elements to be partitioned into pairs. Such a partitioning

can be done in many different ways, one of those being

{node1,node2...nodem} 7→ {(node1,node2), (node3,node4)...(nodem−1,nodem)}

Line 3.8 calls for the generation of any subset of a given size, and given a specified superset. In

particular it asks for a subset,

Sr iдht ⊆ {node(B,α, β) | (α, β) ∈ Pr iдht \ Plef t } , such that |Sr iдht | = 2
B − |Slef t | .
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One way to generate such a subset might be to first generate the superset, then truncate it to the

desired size. A more clever way would be to start as if generating the superset, but stop once a

sufficient number of elements is reached.

In Algorithm 3, there are two cases to consider. The question posed on line 3.4 is whether it is

possible to generate p2 = p · (p − 1) unique ordered pairs of nodes from rowB+1, possibly with some

left over.

Wide: 2
B > p · (p − 1) The belt is called wide because it touches not only the row directly below

it, but others as well.

The Wide Belt case is illustrated in Figure 28. In this case rowB is row3 (corresponding to

Z4) which has 2
3 = 8 nodes. However, rowB+1, i.e. row4, (corresponding to Z5) only has

two nodes. There is an insufficient number of nodes in row4 to connect the nodes in row3.

For this reason, connections are made, not only to rowB+1, but also to some or all the

nodes below it. Line 3.5 collects the set of all ordered pairs of nodes coming from rowB+1
to rown , and we will later (on line 3.8) want to subtract out those ordered pairs already

collected in Plef t to avoid generating congruent nodes. This set of ordered pairs might be

large, so our suggestion is to generate a lazy set. Explanations of lazy data structures are

numerous (Okasaki [Oka98] and Slade [Sla98, Section 14.6], to name a few).

Narrow: 2B ≤ p · (p − 1) The belt is called narrow because unlike the wide belt, it only touches the

row directly below it.

The Narrow Belt case is illustrated in Figure 28. In the figure we see that row3, correspond-

ing to variable Z4, has 8 nodes, and 2
4 = 16 arrows pointing downward. Since row4 does

not contain more than 16 nodes, it is possible to connect the belt to the bottom part simply

by constructing the connecting arrows exclusively between row3 and row4 (between Z4

and Z5).

The time complexity of Algorithm 2 may vary, depending on the types of data structures used,

and also according to which choices the programmers makes in implementing the set relative

complement operation and truncated subset operations on line 3.8. However, in every case,. the

algorithm must generate |ROBDDn | number of nodes. The complexity, therefore, cannot be made

better than Ω(2n−θ + 22
θ
), (we refer the reader to Wegener [Weg87, Section 1.5] for a discussion

of Ω notation). The plots in Figure 25 convey an intuition of the relative sizes of 2
n−θ

vs 2
2
θ
; i.e.

Wide Belt

Z1

Z2 Z2

Z3 Z3 Z3 Z3

Z4 Z4 Z4 Z4Z4 Z4Z4 Z4

T ⊥

Z5 Z5

Narrow Belt

T ⊥

Z1

Z2 Z2

Z3 Z3 Z3 Z3

Z4Z4 Z4 Z4Z4 Z4 Z4Z4

Z5 Z5Z5Z5 Z5 Z5Z5Z5 Z5 Z5Z5Z5

Z6 Z6

Fig. 28. Belt connections of the ROBDD for 5 and 6 variables. The narrow belt only connects to the row
directly below it. The wide belt connects not only to the row below it, but also to other, lower rows.
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that for large n, 2n−θ − 1 becomes a good approximation for |ROBDDn |. Thus we may approximate

Ω(2n−θ + 22
θ
) ≈ Ω(2n−θ ).

5 RELATEDWORK
Newton et al. [NVC17] discuss calculations related to the Common Lisp type system. These calcula-

tions are facilitated using ROBDDs, and there is an implication that Boolean expressions (describing

Common Lisp types in this case) are efficient with this choice of data structure. However, no

quantization is made in that work to justify the claim. In the current work we treat some of the

questions relating to space efficiency using this choice of data structure.

Butler et al. [SIHB97] discuss average and worst-case sizes of BDDs representing multiple-

valued functions. Miller et al. [MD03] also discusses the maximum size of discrete multiple-valued

functions.

Bergman and Cire [BC16] discuss size bounds on data structures they call BDDs but which are

defined slightly differently than we do. Bergman’s data structures only support arcs connecting

successive levels (which we call rows). That is, whereas we allow nodes in row i to connect to nodes
in any row below it, Bergman only allows connections between rows i and i +1. Thus, in Bergman’s

case, BDDs such as the 4, 5, 6, and 7 variable cases we illustrate in Figure 21 are not considered.

Nevertheless, we do find that our approach is similar to that of Bergman and Cire in that they both

estimate the worst-case width of a row as the minimum of an exponential and a double-exponential,

and then proceed to find the threshold where the exponential and double-exponential are equal.

The equation in Theorem 3.9 is similar to that provided by Knuth [Knu09, Section 7.1.4 Theo-

rem U], and that provided by Heap et al. [HM94]. The derivation we show here relies heavily on

intuitions gleaned from the shapes of worst-case ROBDDs, while the treatment of Knuth relies on

a concept called beads which we do not address. The treatment by Heap is indeed similar to our

own, albeit less grounded in geometric intuition. Heap’s Theorem 1 gives a formula for R(n) which
differs by a constant of 2 from our Theorem 3.9. That difference is due to the fact that Heap does

not include the two leaf nodes in his calculation as we do. Heap argues that the threshold (his k ,
our θ ) is precisely ⌊log

2
n⌋ or ⌊log

2
n⌋ − 1, which seems in keeping with our experimental findings

from Algorithm 1 and Figure 24.

Gröpl et al. [GPS01] improved on the work of Heap by explaining certain oscillations shown

but not explained in Heap’s work. Additional work by Gröpl et al. [GPS98] look again into size of

ROBDDs and discusses the Shannon effect, which explains the correlation between worst-case and

average ROBDD sizes.

Minato [Min93] suggests using a different set of reduction rules than those discussed in Section 2.

The resulting graph is referred to as a Zero-Suppressed BDD, or 0-Sup-BDDs (also referred to as

ZDDs and ZBDDs in the literature). Minato claims that this data structure offers certain advantages

over ROBDDs in modeling sets and expressing set-related operations, especially in sparse Boolean

equations where the number of potential variables is large but the number of variables actually

used in most equations is small. Additionally, Minato claims that 0-Sup-BDDs provide advantages

when the number of input variables is unknown, which is the case we encounter when dealing

with Common Lisp types, because we do not have a way of finding all user defined types.

Lingberg et al. [LPR03] consider sizes of ROBDDs representing the very special case of simple

CNF formulas, in particular the representation of CNF formulas consisting of max-terms, each of

which consists of exactly two variables, neither of which is negated. He does the majority of his

development in terms of QOBDDs and relates back to ROBDDs with his claim that |ROBDDn | lies

between the max size of a QOBDD and half that quantity.
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Our work discusses the exponential worst-case ROBDD size of arbitrary Boolean functions of

n variables. One might ask whether certain subsets of this space of functions have better worst-

case behavior in terms of worst-case ROBDD size. Abío et al. [ANO+12] examine Pseudo-Boolean

constraints which are integer functions of the form

∑n
i=1 aixi ≤ a0 where ai is an integer and xi is

a Boolean variable. The solution space of such inequalities may be represented by an ROBDD. Abío

identifies certain families of Pseudo-Boolean constraints for which the ROBDDs have polynomial

size and others which have exponential size.

In our research we consider ROBDD sizes for a fixed variable order. Lozhkin et al. [LS10] extends
the work of Shannon [Sha49] in examining sizes when allowed to seek a better variable ordering.
In Section 3.5 we introduced the residual compression ratio. Knuth [Knu09, Section 7.1.4] dis-

cusses similar ratios of sizes of BDDs vs ZDDs. Bryant [Bry18] introduces the operation of chain

reduction, and discusses size ratios of BDDs and ZDDs to their chain reduced counterparts.

Castagna [Cas16] mentions the use of a lazy union strategy for representing type expressions as

BDDs. Here, we have only implemented the strategy described by Andersen [And99]. The Andersen

approach involves allocating a hash table to memoize all the BDDs encountered in order to both

reduce the incremental allocation burden when new Boolean expressions are encountered, and also

to allow occasional pointer comparisons rather than structure comparisons. Castagna suggests that

the lazy approach can greatly reduce memory allocation. Additionally, from the description given

by Castagna, the lazy union approach implies that some unions involved in certain BDD-related

Boolean operations can be delayed until the results are needed, at which time the result can be

calculated and stored in the BDD data structure.

Brace et al. [BRB90] demonstrate an efficient implementation of a BDD library, complete with

details about how to efficiently manage garbage collection (GC). We have not not yet seen GC as an

issue as our language of choice has a good built-in GC engine which we implicitly take advantage

of.

The CUDD [Som] developers put a lot of effort in optimizing their algorithms. Our BDD algorithm

can certainly be made more efficient, notably by using techniques from CUDD. The CUDD user

manual mentions several interesting and inspiring features. More details are given in Section 7.

The sequence an = 2
2
n−1
− 22

n−2
with a1 = 1 appears in a seemingly unrelated work of Kotsireas

and Karamanos[KK04] and shares remarkable similarity to Lemma 3.2. The results of Kotsireas and

Karamanos are accessible on the On-Line Encyclopedia of Integer Sequences (OEIS).
1
Using the

OEIS we found that the sequence
nRn,

nRn−1,
nRn−2, ... agrees with the Kotsireas sequence from a2

up to at least a9, which is a 78 digit integer. This similarity inspired us to investigate whether it was

in fact the same sequence, and lead us to pursue the formal development we provide in Section 3.6.

6 CONCLUSION
We have provided an analysis of the explicit space requirements of ROBDDs. This analysis includes

exhaustive characterization of the sizes of ROBDDs of up to 4 Boolean variables, and an experimental

random-sampling approach to provide an intuition of size requirements for ROBDDs of more

variables. We have additionally provided a rigorous prediction for the worst-case size of ROBDDs

of n variables. We used this size to predict the residual compression the ROBDD provides. While the

size itself grows unbounded as a function of n, the residual compression ratio shrinks asymptotically

to zero. That is, ROBDDs become arbitrarily more efficient for a sufficiently large number of Boolean

variables.

1
The On-Line Encyclopedia of Integer Sequences or OEIS is available at https://oeis.org.
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In order to perform our experiments, we had to design an algorithm for generating a worst-case

ROBDD for a given number of variables. We have described this algorithm here as well, as having

a typical worst-case ROBDD may prove to be useful for other applications than size predictions.

Our approach for this development is different from what we have found in current literature, in

that while it is mathematically rigorous, its development is highly based on intuitions gained from

experiment.

7 FUTUREWORK
There are several obvious shortcomings to our intuitive evaluation of statistical variations in

ROBDD sizes as discussed in Section 3.2. For example, we stated that judging from the small sample

in Figure 14, it would appear that for large values of n, |ROBDDn | is a good estimate for average

size. We would like to continue this investigation to better justify this gross approximation.

The number of samples we take when constructing the plots in Figure 10 is constrained by the

computation-time at our disposal. As shown in Figure 12 computing approximately 3000 samples

of 10-variable ROBDDs takes around 50 hours. We would like to extend our program to work in

a multi-threaded environment, thus exploiting more cluster nodes for shorter periods of time. It

may also be possible to exploit other Common Lisp features such as dynamic extent objects, or

weak hash tables to better manage the memory footprint of our computations, thus achieving more

ROBDDs computed per unit time

When using ROBDDs, or presumably 0-Sup-BDDs, one must use a hash table of all the BDDs

encountered so far (or at least within a particular dynamic extent). This hash table, mentioned in

Section 2, is used to assure structural identity. However, it can become extremely large, even if its

lifetime is short. Section 3 discusses the characterization of the worst-case size of an ROBDD as a

function of the number of Boolean variables. This characterization ignores the transient size of the

hash table, so one might argue that the size estimations in 3 are misleading in practice. We would

like to continue our experimentation and analysis to provide ways of measuring or estimating the

hash table size, and potentially ways of decreasing the burden incurred. For example, we suspect

that most of the hash table entries are never re-used. We would like to experiment with weak

hash tables: once all internal and external references to a particular hash table entry have been

abandoned, that hash table entry can be removed, thus potentially freeing up the children nodes as

well.

As discussed in Section 5, Minato [Min93] claims that using the BDD variant called 0-Sup-BDD is

well suited for sparse Boolean equations. We see potential applications for this in type calculations,

especially when types are viewed as sets, as in Common Lisp. In such cases, the number of types is

large, but each type constraint equation scantly concerns few types. We would like to experiment

with 0-Sup-BDD based implementations of our algorithms, and contrast the performance results

with those found thus far.

It is known that algorithms using BDDs tend to trade space for speed. A question naturally arises:

can we implement a fully functional BDD which never stores calculated values. The memory foot-

print of such an implementation would potentially be smaller, while incremental operations would

be slower. It is not clear whether the overall performancewould be better or worse. Castagna [Cas16]

suggests a lazy version of the BDD data structure which may reduce the memory footprint, which

would have a positive effect on the BDD based algorithms. This approach suggests dispensing with

the excessive heap allocation necessary to implement Andersen’s approach [And99]. Moreover,

our implementation (based on the Andersen model) contains additional debug features which

increase the memory footprint. We would like to investigate which of these two approaches gives

better performance, or allows us to solve certain problems. It seems desirable to attain heuristics to

describe situations which one or the other optimization approach is preferable.
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Even though both Andersen[And99] and Minato [Min93] claim the necessity to enforce struc-

tural identity, it is not clear whether in our case, the run time cost associated with this memory

burden, outweighs the advantage gained by structural identity. Furthermore, the approach used by

Castagna [Cas16] seems to favor laziness over caching, lending credence to our suspicion.

CUDD [Som] uses a common base data structure, DdNode, to implement several different flavors

of BDD, including Algebraic Decision Diagrams (ADDs) and ZDDs. We have already acknowledged

the need to experiment with other BDD flavors to efficiently represent run-time type based decisions

such as the Common Lisp run-time type reflection [NVC17, NV18] in performing simplification of

type-related logic at compile-time. We wish to examine the question of whether the Common Lisp

run-time type reflection can be improved by searching for better ordering of the type specifiers

at compile-time. The work of Lozhkin [LS10] and Shannon [Sha49] may give insight into how

much improvement is possible, and hence whether it is worth dedicating compilation time to

it. CUDD, as well as the system described by Brace et al. [BRB90], both provide a subsystem for

cache management. Although our Common Lisp implementation already provides basic cache

management which can be specified by dynamic context, and is thus managed by the global GC, we

have observed a need to purge nodes from the cache which are no longer referenced. In this case,

the GC cannot currently purge them because they are referenced by the cache itself. We propose

the use of weak hash tables to address this issue. Weak hash tables are available in several Common

Lisp implementations. Measuring the effectiveness of weak hash tables is ongoing research.
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A GLOSSARY OF NOTATION
Symbol Definition

B The index of the belt row of a worst-case ROBDD. The

belt row is the highest row index, i , such that the number

number of nodes in row i is 2i .
µ The mean value of a set of numbers. In this Section 3.3

we refer to µi as the weighted average of the points in a

histogram curve Cn
n The number of Boolean variables in expression whose

ROBDD is under consideration.

ma
Number of permutations ofm things taken a at a time.

ma = m!

(m−a)! .

ψ ψ : R+ 7→ R such that 2
2
ψ (x )+1

− 22
ψ (x )
= 2

x−ψ (x )−1
.

nri Number of elements in the i’th row of a worst-case

ROBDD as a function of top-down exponential growth.

The actual number of nodes is min{nri ,
nRi }.

nRi Number of elements in the i’th row of a worst-case

ROBDD as a function of top-down double exponential

decay. The actual number of nodes is min{nri ,
nRi }.

rowb
a The set of all elements in the ROBDD between rows a

and b inclusive. rowb
a =

⋃b
j=a row j .

|ROBDDn | Number of nodes in the worst-case ROBDD ofn variables.
P(S) The set of all ordered pairs whose elements are chosen

from set S , excluding ordered pairs such as (x, x).
P(S) = {(α, β) | α, β ∈ S,α , β}.

nSi Number of nodes in the worst-case ROBDD in the rows

strictly below row i . nSi is only used when
nRi <

nri , so
nSi =

∑n
k=i+1

nRi .
θ The threshold function, also denoted θn , defined in Theo-

rem 3.9.

σ The standard deviation of a set of numbers. In this Sec-

tion 3.3 we refer to σi as the standard deviation of the

sample whose histogram curve is Cn .

|UOBDDn | Number of nodes in an unreduced ordered BDD.

⌊x⌋ The floor function. max{i ∈ Z | i ≤ x}.
⌈x⌉ The ceiling function. min{i ∈ Z | i ≥ x}.
|S | The cardinality (number of elements in) set S .
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