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ABSTRACT
We examine some consequences of computation order for two dif-

ferent implementations of the fold function. We explore a set of

performance and accuracy-based experiments on two implemen-

tations of this function. In particular, we contrast results for the

traditional fold-left implementation with another approach we

refer to as tree-fold—looking at operations with non-constant

complexity or accuracy: rational arithmetic, floating-point arith-

metic and Binary Decisions Diagram construction. These are binary

operations for which the performance or accuracy of the result

varies based on the order of computation. We show that these types

of binary operations are good candidates for tree-fold.

CCS CONCEPTS
• Theory of computation → Theory and algorithms for ap-
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1 INTRODUCTION
The higher-order function[1, Sec 1.3], fold [14], is present in many

programming languages. Definition 1.1 shows the essence of the

function specifying the features pertinent to our research.

Definition 1.1. Let 𝑓 : 𝐷 × 𝐷 → 𝐷 be an associative function

and 𝑥 [1,𝑛] = (𝑥1, 𝑥2, ..., 𝑥𝑛) ∈ 𝐷𝑛
for 𝑛 > 0 be a sequence of values

from 𝐷 . Then we define fold as follows.

fold
(
𝑓 , 𝑥 [1,𝑛]

)
=

{
𝑥1 if n = 1 (1a)

𝑓
(
fold

(
𝑓 , 𝑥 [1,𝑛−1]

)
, 𝑥𝑛

)
n > 1 (1b)
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If 𝐷 is a monoid [31], with unity, 𝑒 , we may also define fold on the

empty sequence 𝑓 𝑜𝑙𝑑 (𝑓 , []) = 𝑒 .

The fold function is useful for extending a binary function to

multiple arity. It is generally not required that the binary function

in question be commutative. In case the operation is commutative,

then fold extends trivially to unordered collections.

The notation is cleaner if we denote such a binary function as

an operator, ◦, rather than as a function application. Given that we

can compute 𝑥1 ◦ 𝑥2, we may use the fold function to compute:

𝑥1 ◦ 𝑥2 ◦ ... ◦ 𝑥𝑛 . Because ◦ is assumed to be associative (but not

necessarily commutative) we are free to group the terms how ever

we like, as long as we respect the order.

fold(◦, (𝑥1, ..., 𝑥𝑛)) = (((𝑥1 ◦ 𝑥2) ◦ 𝑥3) ... ◦ 𝑥𝑛) (2)

= (𝑥1 ◦ 𝑥2) ◦ (𝑥2 ◦ 𝑥3) ◦ ... ◦ (𝑥𝑛−1 ◦ 𝑥𝑛) (3)

= (𝑥1 ◦ ...(𝑥𝑛−2 ◦ (𝑥𝑛−1 ◦ 𝑥𝑛))...)
= etc.

Even though all these groupings compute the same result math-

ematically, we will show that some have different performance or

accuracy characteristics. In this article we look at two such group-

ings which we call fold-left (Section 4.1) and tree-fold (Sec-

tion 4.2). The first grouping, fold-left, implements the standard
algorithm used in most programming language implementations,

and implements Definition 1.1 by following the computation di-

rectly as described in Equations (1b) and (2). The second grouping,

tree-fold, implements Definition 1.1 by taking advantage of asso-

ciativity and by grouping pairs such as in Equation (3), evaluating

those pairs to obtain another sequence of values, to which Equa-

tion (3) is applied recursively.

2 MOTIVATION
To better understand the connection between BDDs and the fold
operation, in this section we present a short summary of our larger

research project.

A BDD, is a data structure which represents a Boolean function.

Figure 2.1 illustrates the function,

¬ ((𝐴 ∧𝐶) ∨ (𝐵 ∧𝐶) ∨ (𝐵 ∧ 𝐷)) .

BDDs have many nice features which we exploit.

• Syntactically different Boolean functions having the same

truth table, have isomorphic BDD representations. If coded

as Bryant [3] suggests, the BDDs are represented by point-

ers to the same memoized object.

1
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Figure 2.1: A BDD is a data structure which canonically rep-
resents a Boolean function.

• Symbolic manipulation of Boolean expressions such as in-

tersection, union, and relative complement are graph (tra-

versal and construction) operations.

• Vacuity checks are done in constant time.

• Satisfying a Boolean function is done in linear time, once

the BDD is constructed.

For graphical display of a BDD, we use an arrow drawing con-

vention.
1
In particular, Boolean true arrows are green solid lines,

and Boolean false arrows are red dashed lines with an addition

logical inversion bubble indicated. That being said, in Figure 2.1,

the right-most path from 𝐴 to ⊤ should be read as ¬𝐴 ∧ ¬𝐵, with
𝐴 and 𝐵 being negated as the exit arrows are red-dashed. The set

of all such top-to-⊤ traversals, of which there are 4, forms a DNF

expansion of the Boolean function.

¬ (𝐴𝐶 ∨ 𝐵𝐶 ∨ 𝐵𝐷) = 𝐴¬𝐵¬𝐶
∨ 𝐴𝐵¬𝐶¬𝐷
∨ ¬𝐴𝐵¬𝐶¬𝐷
∨ ¬𝐴¬𝐵

In a BDD, variables are ordered. In this article we impose the

top-to-bottom order of 𝐴 < 𝐵 < 𝐶 < 𝐷 and 𝑥1 < 𝑥2 < · · · < 𝑥𝑛 .

E.g., 𝐴 is above 𝐶 , and 𝑥2 is above 𝑥4.

In [22], we presented a technique for reasoning about the types

of heterogeneous sequences in Common Lisp [2]. We modeled se-

quences of types with deterministic symbolic finite automata [7], i.e.
DFA over infinite alphabets—the infinite alphabet being the set of

values supported by Common Lisp. Any subset of this set of values

is called a type. Each transition in a DFA is labeled with a type

designator, such that the set of transitions leaving any given state is

a (pairwise disjoint) partition of the set of all Common Lisp values.

In order to assure the property of determinism is maintained during

1
Our arrow drawing convention is both safe for black-white printing and also friendly

for readers suffering from color blindness.

finite automata operations (such as construction, combination [in-

tersection, union, complement], and minimization) it is necessary

to perform type computations similar to what is described in seman-

tic type theory [9], except that we are dealing with a dynamically

typed language rather than a statically typed one.

We use BDDs to represent types, and consequently represent

type intersection, union, and complement operations as the cor-

responding BDD operations. When a type equivalence cannot be

proven at compile time, the DFA may as a result contain redundant,

useless, transitions which have a run-time performance penalty.

In [22, Sec 5.5] we reported that the particular implementation of

tree-fold which was used in BDD construction, sometimes made

an unexpected difference in construction time. The comment in that

work was that tree-fold deserves further systematic study.

An admitted shortcoming of [22] was that we exclusively used

Common Lisp as implementation language. The perspectives of that

thesis indicated that we should attempt to generalize our results

to apply to a wider audience and wider class of programming lan-

guages. Toward this end, for this article we have chosen Scala [6, 24]

as the primary implementation language. Scala is a strictly typed

language compiled to the Java Virtual Machine allowing the run-

time environment to take advantage of garbage collection and the

JVM run-time optimization.

In [22] we constructed BDDs from a Boolean formula,

usually given in a DNF (sum of products) form such as:

𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥3𝑥4. As Bryant et al. [4, 11] explain, such
BDD construction can be exponential in complexity. To gather

heuristics about time and space complexity of BDD construction in

practice, in [23] we analyzed samples of BDDs of different numbers

of variables to predict ranges of expected sizes.

In order to represent such a Boolean function programmatically,

we suppose that Γ is a finite set of variables and their complements

such as Γ = {𝑥1, 𝑥1, 𝑥2, 𝑥2, ..., 𝑥𝑛, 𝑥𝑛}.

Definition 2.1. A subset,𝛾 , of Γ is called contradictory if {𝑥𝑖 , 𝑥𝑖 } ⊂
𝛾 for some 1 ≤ 𝑖 ≤ 𝑛. A subset of Γ which is not contradictory is

called consistent.

Let 𝑆 = {𝛾1, 𝛾2, ..., 𝛾𝑚} be a set of consistent subsets of Γ. Consider
a Boolean formula in DNF (disjunctive normal form) such as:

DNF =

𝑚∑︁
𝑖=1

∏
𝛾𝑖 =

𝑚∑︁
𝑖=1

∏
𝑥∈𝛾𝑖

𝑥 . (4)

This sum of products is computed as two concentric fold op-

erations,
2
as shown in Figure 2.2. We assume the existence of a

binary function BddAnd along with its neutral element BddTrue
which performs the Boolean intersection operation between two

objects of type Bdd, and as well, the existence of a binary function

BddOr along with its neutral element BddFalse which performs

the Boolean union operation between two Bdd objects.
This close connection between the fold operations and BDD

operations motivated the investigation leading to this article. We

noticed that changing the association (moving the parentheses) of

Boolean functions sometimes had a noticeable effect of construction

2
https://users.scala-lang.org/t/expressing-a-sum-of-products-as-a-fold/5314 Thanks

to Matthew Rooney, @javax-swing, for suggesting the concise implementation shown

here.

2
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1 def sumOfProducts[A](seq:Seq[Seq[A]])(plus:(A,A)=>A,
2 zero:A,
3 times:(A,A)=>A,
4 one:A):A = {
5 seq.foldLeft(zero) {
6 (sum, gamma) => plus(sum, gamma.foldLeft(one)(times))
7 }
8 }
9

10 // example usage, returns integer sum of products 6006006
11 sumOfProducts( Seq(Seq( 1, 2, 3), Seq(10, 20, 30), Seq(100, 200,

300)))(
12 plus = _ + _, zero = 0,
13 times = _ * _, one = 1)
14

15 // example usage, returns BDD which is an OR of ANDs
16 // of the given BDDs
17 sumOfProducts( Seq(seq1ofBdds, seq2ofBdds, sea3ofBdds))(
18 plus = BddOr, zero = BddFalse,
19 times = BddAnd, one = BddTrue)

Figure 2.2: Scala sum-of-products and usage examples.

times. Unfortunately, we could not infer any practical characteri-

zation of this phenomenon. We noted in [22] that more research

was needed. The BDD construction computations in Section 5.4 are

steps in systematically investigating these effects.

3 HISTORICAL CONTEXT
Because of its higher-order nature, the fold function was originally

conceived for functional-style languages. One might guess that

the earliest appearance of fold would have been in Lisp. While

Lisp 1.5 [19, 20] did have the functions MAP and MAPCAR [26], we

found no reference to the fold function.

As far as we can determine, David Turner (author of SASL andMi-

randa), seems to be
3
the inventor of fold [29]. In 1986, Turner [28]

shows how to implement foldr in Miranda. The earliest mention

of fold that we have found, was from 1979 where Turner [30]

mentions that “folding a list to the right” is a “commonly occurring

pattern” and encapsulates the pattern by defining foldr in SASL.

The function is called REDUCE in Common Lisp [2]; in Scala [6,

24], foldLeft, foldRight and others; in Haskell [15, p. 115], foldl
and foldr and others; and in OCaml [25, p. 63] fold_left.

In recent times, many tools of functional programming languages

have made their way into many other languages which are tradi-

tionally thought of as imperative or object-oriented [10, 27]. Al-

though it is not a definitive source of information, we note that

the Wikipedia article on Fold4 lists ≈ 44 programming languages

which support this feature, sometimes with different names such

as reduce, accumulate, aggregate, compress, or inject.
The tree-fold algorithm that we present in this paper is rem-

iniscent of the map-reduce algorithm presented by Dean and Jef-

frey [8]. Whereas, map-reduce, is generally intended to for paral-

lelizing a fold computation for performance reasons, fold-left,

3
https://www.quora.com/Where-did-the-common-functional-programming-

functions-get-their-names Mark Harrison inlines an email form David Turner

claiming to be the inventor of the foldr/foldl functions sometime between 1976 and

1983. We verified this claim in a face-to-face conversation with David Turner.

4
https://en.wikipedia.org/wiki/Fold_(higher-order_function), last edited on 5 Novem-

ber 2019, at 05:48.

is an easy way to reduce work independent of whether the work is

done in parallel or sequentially—easy in terms of lines of code.

4 COMPUTING A FOLD OPERATION
In Section 5 we will investigate operations on BDDs as alluded to

in Section 2. Rather than doing so straightaway, instead we have

first devised experiments based on arithmetic of rational and float-

ing point numbers. We have chosen this diversion to illustrate the

principles of fold to the reader without being required to under-

stand the subtle inner-workings of a BDD library. Rational number

arithmetic is easy to illustrate and intuitive to understand. In partic-

ular, we explore the task of summing a sequence of fractions, each

expressed as the ratio of two integers.

1

23

+ 1

29

+ 1

31

+ 1

37

+ 1

41

+ 1

43

+ 1

47

+ 1

53

+ 1

57

+ 1

67

=
3, 304, 092, 302, 051, 372

12, 831, 131, 327, 329, 923
(5)

Computing the sum in (5) involves representing the numera-

tors and denominators as bignum integer type. [16, Sec 4.5] Inte-

gers in Common Lisp are specified to have unlimited precision,

and the built-in ratio type provides precise fractions whose nu-

merators and denominators never roll-over. However in Scala, in-

tegers do not have this feature; thus we use an external library,

spire.math.Rational which provides a type called Rational.
Regardless programming language and implementation of ratio,

each rational addition must compute some variant of

𝑛1

𝑑1
+ 𝑛2
𝑑2

=
𝑛1 · 𝑑2 + 𝑛2 · 𝑑1

𝑑1 · 𝑑2
, (6)

including explicit or implicit cancellation of common factors in

the numerator and denominator. There are several strategies to

optimize such a computation. E.g., if 𝑔 = gcd (𝑑1, 𝑑2), the greatest
common divisor, then the sum can be computed as in (7). Since

𝑑3 =
𝑑1
𝑔 and 𝑑4 =

𝑑2
𝑔 are integers, the quotient can be rewritten as

𝑔 · 𝑛1 · 𝑑2𝑔 + 𝑔 · 𝑛2 · 𝑑1𝑔(
𝑔 · 𝑑1𝑔

)
·
(
𝑔 · 𝑑2𝑔

) =
𝑔 · 𝑛1 · 𝑑4 + 𝑔 · 𝑛2 · 𝑑3

(𝑔 · 𝑑3) · (𝑔 · 𝑑4)

=
𝑛1 · 𝑑4 + 𝑛2 · 𝑑3
𝑔 · 𝑑3 · 𝑑4

(7)

According to Theorem 4.1, (6) can be computed by an application

of (7), but involving smaller numbers, in ≈ 40% of the cases.

Theorem 4.1 (G. Lejeune Dirchlet, 1849). If 𝑑1 and 𝑑2 are
chosen at random, then the probability that gcd (𝑑1, 𝑑2) = 1 is 6/𝜋2 ≈
60.793%.

Knuth [16, page 342] proides a proof of Dirchlet’s theorem in

Section 4.5.2 of Art of Computer Programming. If gcd (𝑑1, 𝑑2) ≠ 1,

Knuth [16, page 330] suggests the following to calculate 𝑛3 and

𝑑3 such that
𝑛3

𝑑3
=

𝑛1

𝑑1
+ 𝑛2

𝑑2
. Equations (8) and (9) are an improve-

ment over (7) in the case numerator and denominator of (7) have a

common factor.

3

https://www.quora.com/Where-did-the-common-functional-programming-functions-get-their-names
https://www.quora.com/Where-did-the-common-functional-programming-functions-get-their-names
https://en.wikipedia.org/wiki/Fold_(higher-order_function)


349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

IFL’22, August 31–September 2, University of Copenhagen, Denmark Jim Newton and Andreas Klebinger

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

𝑔1 = gcd (𝑑1, 𝑑2)
𝑡 = 𝑛1 · (𝑑2/𝑔1) + 𝑛2 · (𝑑1/𝑔1)
𝑔2 = gcd (𝑡, 𝑔1)
𝑛3 = 𝑡/𝑔2 (8)

𝑑3 = (𝑑1/𝑔1) · (𝑑2/𝑔2) (9)

Regardless of the implementation or optimizations a given ratio-

nal number library uses, for sufficiently large denominators, adding

fractions becomes more computationally intensive as the denomina-

tors grow. E.g., it is easier to add 1

2
+ 2

3
than to add

105,000
765,049 + 385,544

4,391,633 .

Mollin [21] argues that gcd (𝑎, 𝑏) can be computed in

𝑂 (log3max (𝑎, 𝑏)). Since logmax (𝑎, 𝑏) is roughly the number of

digits in the larger of 𝑎 and 𝑏, we see that if the larger is an 𝑛-

digit number, then the complexity of computing gcd (𝑎, 𝑏) is 𝑂 (𝑛3).
Since multiplication and division have 𝑂 (𝑛2) complexity, Knuth’s

proposed algorithm has cubic complexity in the number of digits.

4.1 Strategy using fold-left
The fold-left function computes the result of 𝑥1 ◦ 𝑥2 ◦ ... ◦ 𝑥𝑖−1
before combining that result with 𝑥𝑖 , grouping these addition oper-

ations as follows:

(((((((( 1
23

+ 1

29︸  ︷︷  ︸
# 1

)+ 1

31

︸           ︷︷           ︸
# 2

)+ 1

37

︸                    ︷︷                    ︸
# 3 ...

)+ 1

41

)+ 1

43

)+ 1

47

)+ 1

53

)+ 1

57

)+ 1

67

︸                                                                        ︷︷                                                                        ︸
... 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 # 9

(10)

Such a computation computes eight intermediate values before

arriving at the final value. Figure 4.1 denotes these as computa-

tions # 1 through # 8, and final value as a result of computation

# 9. The Digits Computed column records the total number of

digits (numerator digits plus denominator digits) accumulated from

computation # 1 until the row in question. These values are plotted

in Figure 4.4 (top). We compare the cumulative number of digits

also for the analogous experiments which follow in Section 4.2.

The Digits Retained column records the number of digits (again

numerator digits plus denominator digits) which must be held in

memory pending a future computation.

We present these two columns (Digits Computed and Digits
Retained) as it is conceivable that they effect the computation

time. I.e., we suppose the gcd computations which are calculated

to perform the rational number additions are dependent on the

number of digits (roughly dependent on the logarithms of the num-

bers), and also that computations which retain large amounts of

heap-allocated objects might decrease performance of computation.

4.2 Strategy using tree-fold
The tree-fold algorithm, described here, attempts to retain as few

intermediate values as possible, by consuming the values as soon

as possible, yet respecting the grouping shown in Equation (11).

((( 1
23

+ 1

29︸  ︷︷  ︸
# 1

)
+
( 1

31

+ 1

37︸  ︷︷  ︸
# 2

)
︸                     ︷︷                     ︸

# 3

)
+
(( 1
41

+ 1

43︸  ︷︷  ︸
# 4

)
+
( 1

47

+ 1

53︸  ︷︷  ︸
# 5

)
︸                     ︷︷                     ︸

# 6

)

︸                                                        ︷︷                                                        ︸
# 7

)
+
( 1
57

+ 1

67︸  ︷︷  ︸
# 8

)

︸                                                                          ︷︷                                                                          ︸
𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛# 9

(11)

As shown graphically in Figure 4.2 (top), the tree-fold ap-

proach consumes #1 and #2, immediately in computing #3. How-

ever, the value returned from computation #3 is held until #4 and

#5 and combined in #6 at which point both results #3 and #6 are

combined in computation #7. In Equation (5), tree-fold retains

at most log
2
𝑛 intermediate values; 𝑛 being the total length of the

sequence being combined in Equation (5).

Figure 4.2 (bottom) shows the Scala code for tree-fold. The
code has three parts, A, B, and C. Part A deals with dwindling the

tree, the green nodes, into several components each of size 2
𝑘
for

some 𝑘 . Part B reads the input sequence, the pink nodes, and feeds

these to the dwindle-tree function. Finally, part C handles the

remaining nodes including the nodes computed in part A. There are

maximally log
2
𝑛 such nodes so one might think (as we initially did)

that it does not matter which order these are handled. For example,

one might simply use fold-left to iterate the operator over these

nodes. That would be a mistake for two reasons.

(1) The operator is not always commutative, so care must be

taken to assure the rhs and lhs are never inverted.

(2) As we are supposing the size of the computed objects grows

as fold iteration progresses, we should postpone compu-

tation involving values already computed, until smaller

objects from the input sequence have been handled.

The easiest way to satisfy these two requirements is to reverse

the stack of computed values, and recursively call the tree-fold.
This recursion will terminate with a stack of one single node.

That this recursion terminates is easy to see, because if there is a

stack of two or more, at least two will be combined into a single

node, thus the stack size will decrease by at least one on each

recursive call. In actuality, it will almost always decrease by more

than one leaving at most log
2
of the size of the input sequence — a

fact which is not necessary to realize in order to prove termination.

As in Section 4.1, once again we look at the number of digits

computed and retained by tree-fold. When we observe theDigits
Computed column of Figure 4.3 and the curve in Figure 4.4 (top)

corresponding to tree-fold, we see at computation #9.

4.3 Summarizing the two fold strategies
The two sequences of computations from Sections 4.1 and 4.2 are

recapped in Figure 4.4. From the Digits Computed column of

Figures 4.1 and 4.3 and the curve in Figure 4.4 (top), we see that

fold-left computes the more digits of the two strategies. In terms

of number of digits computed, it is the worse of the two alternatives.

However, from the Digits Retained column of Figures 4.1 and 4.3

and the corresponding curve in Figure 4.4 (bottom) we see that it

fold-left retains less heap storage during the computation.
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560

561

562

563

564

565
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Compu. Ratio Result Digits Digits
# Addition Computed Retained

# 1
1

23
+ 1

29
= 52

667
5 5

# 2
52

667
+ 1

31
= 2279

20,677 +9 = 14 9

# 3
2279

20,677 + 1

37
=

105,000
765,049 +12 = 26 12

# 4
105,000
765,049 + 1

41
=

5,070,049
31,367,009 +15 = 41 15

# 5
5,070,049
31,367,009 + 1

43
=

249,379,116
1,348,781,387 +19 = 60 19

# 6
249,379,116
1,348,781,387 + 1

47
=

13,069,599,839
63,392,725,189 +22 = 82 22

# 7
13,069,599,839
63,392,725,189 + 1

53
=

756,081,516,656
3,359,814,435,017 +25 = 107 25

# 8
756,081,516,656
3,359,814,435,017 + 1

57
=

46,456,460,884,409
191,509,422,795,969 +29 = 136 29

# 9
46,456,460,884,409
191,509,422,795,969 + 1

67
=

3,304,092,302,051,372
12,831,131,327,329,923 +33 = 169 33

Figure 4.1: Intermediate and final values of adding 10 ratios, default fold-left algorithm, computed as shown in (10).

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

+ #1 + #2 + #4 + #5 + #8

+ #3 + #6

+ #7

+ #9

+ #10

1 def treeFold[A](m: List[A])(z: A)(f: (A, A) => A): A = {
2

3 // A: Handle the green oval nodes
4 def dwindleTree(stack: List[(Int, A)]): List[(Int, A)] = {
5 stack match {
6 case (i, b1) :: (j, b2) :: tail if i == j =>
7 dwindleTree((i + 1, f(b2, b1)) :: tail)
8 case stack => stack
9 }}
10

11 // B: Handle the pink rectangle nodes
12 m.foldLeft((1, z) :: Nil) { (stack: List[(Int, A)], ob: A) =>
13 dwindleTree((1, ob) :: stack)
14

15 } match { // C: Handle the blue hexagon nodes
16 case Nil => z
17 case (_,b)::Nil => b
18 case stack => treeFold(stack.map(_._2).reverse)(z)(f)
19 }
20 }

Figure 4.2: Top: Topological view of the tree-fold operation.
Bottom: Scala implementation of the tree-fold algorithm.

The rational numbers in question, Equation (5), have been espe-

cially chosen to be a difficult case. The denominators are all prime

numbers, assuring that the gcd = 1 in every case, and thus the sizes

of the ratios, in terms of number of digits will be monotonically

increasing. As was mentioned in Theorem 4.1, 40% of the time, the

gcd will be different than 1. Cases for which the denominators are

less often relatively prime may not see as drastic a difference in the

performance between tree-fold and fold-left.

5 EXPERIMENTS AND RESULTS
First, in Section 5.1, we examine the computation time results of the

two fold algorithms when applied to ratio additions as explained

in Sections 4.1 and 4.2. Next, in Section 5.3, we examine the accu-

racy of certain floating-point computations which exploit the fold
algorithm. Finally, in Section 5.4 we examine the results when we

apply the same techniques to BDD construction.

5.1 Ratio Addition
The first experiment we performed entailed summing sequences

of rational numbers of incrementally increasing length. The plots

in Figure 5.1 show the computation time of computing sums of

different length sequences, using two different folding algorithms.

The plots in Figure 5.1 differ in that the top plot is the result of

summing the sequence in sorted order, and the bottom, shuffled

into random order. The x-axis indicates the value of 𝑛 and the y-axis

indicates the time needed to compute the sum∑︁
−𝑛≤ 𝑖 ≤−1

1

𝑖
+

∑︁
1≤ 𝑖 ≤𝑛

1

𝑖
= 0 (12)

whose sum is expected to be zero. I.e., we sum the negative and

positive fractions of the form 1/𝑖 , for −𝑛 ≤ 𝑖 ≤ 𝑛, excluding 1/0.
For each value of𝑛, the sumwas performed in two different ways

as outlined in Sections 4.1 and 4.2. It is clear from Figure 5.1, that

tree-fold performs better especially as the value of 𝑛 grows, par-

ticularly for values of 𝑛 > 100. The benefit gained from tree-fold
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Compu. Ratio Result Digits Digits
# Addition Computed Retained

# 1
1

23
+ 1

29
= 52

667
5 5

# 2
1

31
+ 1

37
= 68

1147
+6 = 11 11

# 3
52

667
+ 68

1147
=

105,000
765,049 +12 = 23 12

# 4
1

41
+ 1

43
= 84

1763
+6 = 29 18

# 5
1

47
+ 1

53
= 100

2491
+7 = 36 25

# 6
84

1763
+ 100

2491
=

385,544
4,391,633 +13 = 49 25

# 7
105,000
765,049 + 385,544

4,391,633 =
756,081,516,656
3,359,814,435,017 +25 = 74 25

# 8
1

57
+ 1

67
= 124

3819
+7 = 81 32

# 9
756,081,516,656
3,359,814,435,017 + 124

3819
=

3,304,092,302,051,372
12,831,131,327,329,923 +33 = 114 33

Figure 4.3: Intermediate and final values of added 10 ratios using default tree-fold algorithm, computed as shown in Equa-
tion (11).
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Figure 4.4: Top: Cumulative digits computed for each fold
strategy. Bottom: Quantity of digits retained at each compu-
tation state.

increases as measured by the gap between the fold-left and the

other curve. This gap widens as 𝑛 increases.
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Figure 5.1: Computation time of fold strategy on rational ad-
dition. Fewer milliseconds is better than more. Top: Addition
in sorted order. Bottom: Addition in randomized/shuffled
order.

These results are promising and lend some credence to our hope

that such techniques might also benefit BDD construction times.
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1 −− Input list is required to be non−empty
2 foldTree1 :: (a −> a −> a) −> [a] −> a
3 foldTree1 f xs = go f xs
4 where
5 −− Combine one level of the tree until we reduced the
6 −− input to a single value .
7 go f xs = case combine f xs of
8 [x] −> x
9 xs ' −> go f xs '

10 −− Combine one level of the tree
11 combine :: (a−>a−>a) −> [a] −> [a]
12 combine _f [] = []
13 combine _f [x] = [x]
14 combine f (x :y:xs) =
15 let
16 xs ' = combine f xs
17 x ' = f x y
18 in x ' : xs '

Figure 5.2: A Haskell implementation of lazy tree-fold.

However, it does not appear that the amount of heap usage has

any effect on computation time. Despite our analysis of the retained

digits, we do not conclude any causal connection. This may be do

to the memory management capabilities of the JVM.

Figure 5.4 shows the timing results of computing the sum in (12)

vs the number of terms, 𝑛. Each data point indicates the minimum

time of thrice evaluating the sum by the indicated fold strategy.

We evaluate three times, because the JVM applies run-time opti-

mizations as the program run, each time obtaining faster results.

5.2 Tree-Folds in Lazy Languages
Tree-folds extend to lazy languages like Haskell [15, p. 115] with-

out issue. The main difference arises from being able to define strict

and lazy variants of tree folds. Figure 5.2 shows an implementation

of a lazy tree-fold in Haskell using lists for simplicity. It can be

turned into a strict tree fold by adding strictness annotations to x´
xs´ evaluating them eagerly.

Using the code from Figure 5.2, the ghc
5
Haskell compiler (ver-

sion 9.2.4), takes around 4.5 milliseconds
6
to compute

5000∑
𝑘=1

1

𝑘
using

rational arithmetic. This compares to 0.17 seconds to perform the

analogous computation using the foldl (i.e., fold-lef) approach.
Choosing between the use of strict and lazy tree-fold is similar

to choosing between using the lazy foldl and the strict foldl’
in Haskell. The lazy variant has the potential to avoid unneeded

computation for operations if the result does not depend on both

inputs. Meanwhile the strict version will compute all intermediate

results but avoids some of the overhead associated with laziness.

This is important as for less intensive operations the overhead of

laziness can dominate.

The Clojure [12] language is not a lazy language per se, but map-

ping functions produce lazy sequences. Figure 5.3 shows a Clojure

implementation of tree-fold inspired by the Haskell version in

Figure 5.2. The function, map, applies the given function lazily, but

5
https://www.haskell.org/ghc/

6
Figure 5.14 describes the hardware used.

1 (defn tree-fold [f z coll]
2 (cond
3 (empty? coll)
4 z
5

6 (empty? (rest coll))
7 (first coll)
8

9 :else
10 (tree-fold f z
11 (map (fn [[a b]] (f a b))
12 (partition 2 2 [z] coll)))))

Figure 5.3: A Clojure implementation of lazy tree-fold.

in order, to each element of the given sequence. Furthermore, the

function partition lazily converts the given sequence, coll, into
a sequence of pairs, e.g. [1 2 3 4 5 6] is converted to [(1 2)
(3 4) (5 6)]. If the sequence does not have even length then the

final pair is padded with the given zero element, z.
Using the code in Figure 5.3, Clojure (version 1.11.1.1200) takes

around 25 to 30 milliseconds to compute

5000∑
𝑘=1

1

𝑘
using rational

around, while the same computation using reduce, the Clojure

version of fold-left, needs around 2.5 seconds.
7

In both the Haskell code and the Clojure code (Figures 5.2 and 5.3)

we notice that the code itself is shorter. The laziness of the language

obviates the need to manage the tree level. The Scala tree-fold
implementation manages pairs indicating the tree-level and the

computed value, in order to prevent accidentally combining values

from different tree levels; (1, ob) on line 13 and (i+1, f(b2, b1))
on line 7 of Figure 4.2. The Haskell and Clojure implementations

have no need for such bookkeeping.

5.3 Floating Point Addition
Not only is computation time of concern, but also of concern is

the fact that floating point arithmetic is not truly associative. Thus

we get different cumulative round-off error depending on which

version of fold is used. In this section, we demonstrate this problem

of round-off error by two experiments.

In the first experiment, we sum the floating point numbers in (13).

𝑛∑︁
𝑖=1

(𝑖 + 1

10

) (13)

For each value of 𝑛 we can compute the exact (expected) value

of this sum (using rational arithmetic), and compare it to the value

computed in floating-point arithmetic. We compute the value using

fold-left and also using tree-fold, and in each case we measure

the total error |computed − expected |.

7
Figure 5.14 describes the hardware used.

7
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Figure 5.4: Error when adding progressively more floating
point numbers. Less error is better than more.
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Figure 5.5: Error when adding progressively more randomly
chosen numbers and their negatives. Less error is better than
more.

For example

1000∑︁
𝑖=1

(𝑖 + 1

10

) =
1000∑︁
𝑖=1

𝑖 +
1000∑︁
𝑖=1

1

10

=
1000 × 1001

2

+ 1000

10

= 500600

We see in Figure 5.4 that the error increases linearly (log vs

log scale) using both fold strategies, but tree-fold seems to ex-

acerbate the round-off error less than fold-left. For example,

when 𝑛 = 100, rather than computing 500600, fold-left computes

500599.9999999954 (for a Δ of 4.60 × 10
−9
) whereas tree-fold

computes 500600.00000000006 (for a Δ of 5.82 × 10
−11

).

Figure 5.5 shows the results of a second experiment with floating

point numbers. In this experiment we collect between 1000 and

50,000 double precision floating point numbers, and their negatives,

so that the total theoretical sum should exactly 0. We then shuffle

the sequence and add them up using the two fold implementations.

The plot shows the absolute value of the sum for each population

size. Since the expected sum is zero, the absolute value of the sum is

actually the error. We see again that tree-fold gives better results
(less error), as the error is never beyond Δ = 1 × 10

−13
while the

error for fold-left exceeds Δ = 1 × 10
−12

.

It is easy to understand a reason for these results. With each

floating-point operation, an inaccuracy is liable to be introduced. If

that result is used in a subsequent computation, then the error is

multiplied. The tree-fold algorithm reduces the number of times

inaccurate results are reused in subsequent computations.

5.4 Computing with BDDs
As we mentioned in Section 2, the catalyst for this research into

the fold operation, was BDD generation. Our original experiments

involved generating random BDDs, i.e. a BDD from a randomly

selected Boolean function, equivalently a randomly selected 2
𝑛

sized truth table. Each row of the truth table denoting a true value

of the function, induces a 𝛾-consistent subset as in (Definition 2.1)

and constructing the BDD involves evaluating an expression such

as Equation (4)— the bdd-and operation replacing the product, and

bdd-or replacing the sum. As iteration through the outer sum

progresses, the BDD generally becomes progressively larger.

The construction of BDDs of increasingly many Boolean vari-

ables is known to have exponential complexity [4, 11].

On average, a randomly selected DNF contains
2
𝑛

2
= 2

𝑛−1

minterms, and each such minterm contains 2
𝑛−1 true plus 2

𝑛−1

false Boolean variables.

Although randomly generated BDDs are useful in property-based

testing for BDD libraries, such a BDD tends not to resemble BDDs

coming from typical applications.

In a random sample, a minterm is likely to contain
𝑛
2
true literals

and
𝑛
2
false literals. However, in many meaningful applications

the Boolean variables are correlated in a way that each term con-

tains a small number of literals. Langberg et al. [18] refer to such
Boolean formulas as simple. Knuth [17, Sec 7.1.4] demonstrates a

playful example: 4-coloring map problem. The constraint that two

neighboring regions on the map be colored differently results in a

conjunction of Boolean terms each involving exactly 4 literals.

Figure 5.6 is a colorized map of the countries in Europe. As

Knuth [17, Sec 7.1.4] explains, this map can be colorized by find-

ing any satisfying assignment of a Boolean function which is the

product (Boolean And) of a set of constraints, one constraint for

each common border. Each constraint specifies that a given pair of

neighboring countries must not share the same color. For example,

France and Spain share a border (Figure 5.7). Since we know the

map can be colored with 4 colors (or possibly fewer), we may assign

two variables to each country, and allow each of the 4 combinations

of values to represent the 4 colors.

Denote the color of France as

(
𝐴 , 𝐵

)
, Spain as

(
𝐴 , 𝐵

)
,

and Germany as (𝐴 , 𝐵 ). The constraints are as follows.
8
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Figure 5.6: Coloring a map of some European countries

Figure 5.7: Neighbors of France.Map image fromhttps://www.
unomaha.edu, University of Nebraska Omaha.

→ =
(
color

( )
≠ color

( ) )
= (𝐴 ⊕ 𝐴 ) ∨ (𝐵 ⊕ 𝐵 )
= (𝐴 ∧ ¬𝐴 ) ∨ (¬𝐴 ∧𝐴 )

∨ (𝐵 ∧ ¬𝐵 ) ∨ (¬𝐵 ∧ 𝐵 ) (14)

→ = (𝐴 ∧ ¬𝐴 ) ∨ (¬𝐴 ∧𝐴 )
∨ (𝐵 ∧ ¬𝐵 ) ∨ (¬𝐵 ∧ 𝐵 ) (15)

AFR

BFR BFR

AESAES AESAES

T

BESBES

⊥

Figure 5.8: → BDD representing France/Spain border.
→ BDDof France/Germany border is isomorphic, but

with different labels. (𝐴𝐹𝑅, 𝐵𝐹𝑅),(𝐴𝐸𝑆 , 𝐵𝐸𝑆 ), and (𝐴𝐷𝐸 , 𝐵𝐷𝐸 )
are the colors of France, Spain, and Germany respectively.

We can conjoin all the constraints into one Boolean function:

(ES → FR) ∧ (FR → DE) ∧ (PT → ES) ∧ (FR → BE)...
We can thus color the map by computing the function:∧

(𝛼,𝛽 ) ∈borders

(
𝐴𝛼 ⊕ 𝐴𝛽

)
∨
(
𝐵𝛼 ⊕ 𝐵𝛽

)
. (16)

Constructing the BDD takes exponential time in average case,

but satisfying the corresponding function, given the BDD can be

done in linear time.

To compute the BDD corresponding to Equation (16), we iterate

over the constraints, construct a 4-variable BDD for each constraint,

and combine all such BDDs, compute the bdd-and, using fold.
For example, when we construct the 4-variable BDD for the con-

straint → in Equation (14), we construct the BDD shown

in Figure 5.8. Similarly the BDD for → in Equation (15) is

shown in Figure 5.8.

As the fold iterates, we must combine the constraints. Suppose

that we combine (logical-and) the constraints in Equations (14)

and (15). In this case the bdd-and operation is called to produce the

BDD corresponding to the intersection of the two Boolean functions

to arrive at the BDD shown in Figure 5.9, which you should notice,

is slightly less than twice the size as either of the input BDDs. I.e.,
these two input BDDs of 11 nodes each, combine to form a BDD of

19 nodes. This exponential growth is discussed in Section 5.5. The

fold then continues to iterate in like manner, culminating into a

final BDD, which represents all the border constraints. This final

BDD has around 200K nodes (right-most point in Figure 5.11 (top)).

5.5 Analysis of Map Coloring Results
Figure 5.10 (top) shows the wall-time to colorizing connected sub-

graphs of the map of Europe, for successively larger connected

sub-graphs (number of countries indicated on the x-axis). We see in

the plot that for this particular Boolean function, BDD construction

using tree-fold is faster than fold-left, although the difference

9
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Figure 5.10: Top: Time to colorize successively larger sub-
maps of Europe. Bottom: Ratio of tree-fold to fold-left;
> 1 means tree-fold is faster; < 1 means fold-left is faster.
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Figure 5.11: BDD node count. Top: Nodes allocated at each
step of the iteration. Bottom: Total node accumulated thus
far. Top is effectively the derivative of the bottom. Fewer
nodes allocated is better than more.

is not as pronounced as in our previous examples, and admittedly

not as much a performance improvement as we had hoped for.

Because the curves in Figure 5.10 (top)may be difficult to distinguish

with the eye, we also provide Figure 5.10 (bottom) which shows the

ratio of
tree-fold
fold-left . When this quantity is greater than 1, tree-fold

is faster by the factor indicated. E.g., when the ration is 1.4, then

fold-left took 1.4× the computation time of tree-fold.
The speed improvement for BDD computations is a positive

advance, but the improvement is not as much as we would like. In

Section 5.6 we attempt to account for the timing results.

5.6 Run-time Probing the Running JVM
In Figures 5.11 5.12, and 5.13 we analyze the timing results from

Figure 5.10. Each figure is the result of a particular sequence of

probes as fold iterates over the constraints of a 30-nation map.

The time performance of BDD related computation can be diffi-

cult to predict due to the caching strategy inherent to how BDDs

work. When building a large BDD, which can be naively thought

of as an exponentially sized binary search tree, many of the branch

copies can be circumvented if they already appear in the cache. The

algorithm is nevertheless exponential in worst case, but as is dis-

cussed in [23], the caching has the effect of lowering the exponent.

A reason we hoped tree-fold would increase performance is that

10
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Figure 5.12: Time (milliseconds) spent in GC while coloring
a map of Europe. Fewer milliseconds is better than more.
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Figure 5.13: Time (seconds) to compute the BDD representing
the border constraints of the first 𝑛-many countries. Fewer
seconds is better than more.

it may decrease the total number of allocations needed for the full

computation. Figure 5.11 (top) shows the number of allocations at

each step of the iteration, and Figure 5.11 (bottom) shows the accu-

mulated number of BDD nodes allocated during the fold iteration.

In the experiment illustrated, we see that in general tree-fold
allocates fewer nodes, ≈ 300𝐾 , compared to the > 500𝐾 nodes

allocated by fold-left. Additionally, this means that most of the

tree-fold iteration executes with less memory footprint—another

reason to hope for better performance.

A second reason we suspected that tree-fold would perform

better is that the algorithm spends less time in garbage collection

(GC), because (as we theorized) creating fewer objects, should de-

crease the amount of time the GC needs to find stranded objects.
8

The plot in Figure 5.12 confirms this suspicion. The figure shows

the total accumulated GC time spent at each iteration of fold. We

see that in this particular case tree-fold spends about 100 mil-

liseconds in GC while fold-left spends in excess of 250 ms. A

8
Thanks to Jasper M, https://users.scala-lang.org/u/jasper-m, for helping us incor-

porate the ManagementFactor class of the java.lang.management library into our

Scala code. We used this library to probe GC related information from the JVM while

our program was running.

Model Name: MacBook Pro

Processor Name: Quad-Core Intel Core i7

Processor Speed: 2.7 GHz

Number of Processors: 1

Total Number of Cores: 4

L2 Cache (per Core): 256 KB

L3 Cache: 8 MB

Hyper-Threading Technology: Enabled

Memory: 16 GB

Figure 5.14: Hardware used for experiments.

Figure No. Scala Function
5.1 rationalSums
5.4 floatSums
5.5 floatSumsRandom
5.10 timeColorGraph
5.11 fourColor
5.12 fourColor
5.13 fourColor

Figure 5.15: Scala functions to reproduce plots in this article.
Functions are found in package ifl in Object Ifl2022.

difference of 150 ms is significant when considering a total compu-

tation time of 1 second as shown in Figure 5.13.

5.7 Reproducing our Results
All timing tests mentioned in this article were performed using

Scala version 2.13.8, on the hardware described in Figure 5.14.

The code used in the experiments in Section 5 are freely and

publicly available on the GitLab server of EPITA: gitlab.lrde.epita.fr.

The code is governed by anMIT-style license. To download the code,

clone the git repository.
9
The project regular-type-expression

is a research project whose scope is much larger than what is dis-

cussed in this article. The relevant part can be found at the relative

path cl-robdd/src/cl-robdd-scala, which is a Scala/sbt project.

The plots in this article may be reproduced using the Scala func-

tions indicated in Figure 5.15.

Each of the functions produces a file with a .gnu extension. This
file is intended as input to the gnuplot program. To produce a

graphical plot in PNG format, for example, execute

gnuplot -e "set terminal png" file.gnu > file.png

6 CONCLUSION
In this article we have looked at two implementations of the fold
function which agree on their semantics but differ in how they

group expressions and which order evaluation occurs. We have

looked at several experiments which measure execution time and

round-off error of the various approaches. We found that in some

cases the approach makes a significant difference and in other cases

the difference is less poignant.

9
git clone https://gitlab.lrde.epita.fr/jnewton/regular-type-expression.git-bifl-2022.

Commit SHA id 7d2f308e1c4 marks time this article was submitted.

11

https://users.scala-lang.org/u/jasper-m
gitlab.lrde.epita.fr
cl-robdd/src/cl-robdd-scala
https://gitlab.lrde.epita.fr/jnewton/regular-type-expression.git -b ifl-2022
7d2f308e1c4
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We have investigated computations based on fold—
computations whose binary operation degrades in performance

due to growth in intermediate values. The tree-based fold imple-

mentation outperforms the traditional fold-left implementation

in some cases. We do not, however, claim that tree-based fold

is better in all cases. Rather we suggest that in some cases the

programmer needs finer control over the computation order

depending on the nature of the computation being performed.

We have not talked about another common fold implementa-

tion, fold-right, which effectively (if not explicitly) reverses the

input sequence before folding. There are cases where fold-right
is known to be efficient, such as end-appending lists.

In an email conversation with Fritz Henglein
10
, he suggested that

floating point addition of sequences which are themselves growing

exponentially are not good candidates for tree-fold. Certainly,
the applications we tested with used data bounded and uniform in

order of magnitude. Henglein reiterated our claim that the version

of fold which gives the best results heavily depends on the input

data. However, we keep in mind that intermediate values, produced

by the binary operation in question, themselves become input for

the fold operation in progress. If this feedback loop produces data

which cause degradation in performance/accuracy, the tree-fold
algorithm tends to avoid so-called feedback interference, by not

mingling generated values with input values if it can be avoided.

We believe that researchers should be honest about their results

and avoid the temptation to show only positive results. In keeping

with this belief we emphasize that some of the results in Section 5.4

are not as convincing that we had hoped. This can perhaps be

attributed to the fact that BDDs tend to grow exponentially, while

the examples in Section 4 are effected by polynomial growth.

This fact is disappointing as one of the primary motivating fac-

tors for starting this research was to improve BDD construction

times or at least to characterize which cases can be improved.

7 PERSPECTIVES
7.1 Dynamic folding strategies
In this article we have investigated computations whose perfor-
mance degrades over time due to the progressive growth of in-

termediate results. Tree folds perform very well for inputs where

elements are reasonable uniform, but they can still be a worse

choice where inputs are, for example, increasing exponentially.

This could potentially be avoided by selecting a folding strategy

based on input data. However the tradeoffs of such an approach

are not obvious and warrant further research. Further they bring

with them additional complexity which might make it unappealing

compared to the simplicity of tree folds.

7.2 Further BDD construction optimizations
We have addressed constructing BDDs only as a sum of products (4),

i.e., as DNF. BDDs used in model checking [5] and SAT solving [13]

are most often constructed based on a product of sums, referred to

as CNF (conjunctive normal form) (17).

10
Fritz Henglein is a professor of Programming Languages and Systems at University

of Copenhagen, and Head of Research at Deon Digital AG

1 // Example usage, returns integer product of sums 216000
2 sumOfProducts( Seq(Seq(1, 2, 3),
3 Seq(10, 20, 30),
4 Seq(100, 200, 300)))(
5 plus = _ * _, zero = 1,
6 times = _ + _, one = 0)
7

8 // Example usage, return BDD = AND of ORs of the given BDDs
9 sumOfProducts( Seq(seq1ofBdds, seq2ofBdds, sea3ofBdds))(
10 plus = BddAnd, zero = BddTrue,
11 times = BddOr, one = BddFalse)

Figure 7.1: Scala example of using the sum-of-products func-
tion to compute the product of sums, simply by swapping
the arguments at the call site.

𝐶𝑁𝐹 =

𝑚∏
𝑖=1

∑︁
𝛾𝑖 =

𝑚∏
𝑖=1

∑︁
𝑥∈𝛾𝑖

𝑥 . (17)

The computation necessary to construct a BDD from a CNF form

can be done using the code in Figure 2.2, simply by swapping the

keyed arguments, as in Figure 7.1. Because of duality, we would

expect to get the same performance characteristics using CNF rather

than DNF, but admittedly we have not tested this hypothesis.

In this article we have investigated how our BDD construction

computations interact with runtime, the heap and garbage col-

lection. Previous work [22] discussed the incorporation of weak-

hash-tables into the BDD computation which showed very positive

results in our Common Lisp BDD implementation. Unfortunately,

similar enhancements to our Scala library do not show analogous

performance boosts. On the contrary, we have noticed the using

WeakValueHashMap from org.jboss.util as the weak-hash-table

implementation may have a net negative effect as it seems to sig-

nificantly increases memory usage over all. Our conclusions are

not definitive; more research is needed.

Until now, we have observed similar results (not published here)

using the Common Lisp language. Both Scala and Common Lisp

have strict evaluation orders. It would be interesting to know which

if any of our observations depend on this order, and whether nor-

mal evaluation order obviates any of our suggested need to user

intervention in the associativity of the fold operation.
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