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ABSTRACT
We present an improvement on the Maximal Disjoint Type De-
composition algorithm, published previously. The new algorithm
is shorter than the previously best known algorithm in terms of
lines of code, and performs better in many, but not all, benchmarks.
Additionally the algorithm computes metadata which makes the
Brzozowski derivative easier to compute–both easier in terms of
accuracy and computation time. Another advantage of this new
algorithm is its resilience limited subtypep implementations.

CCS CONCEPTS
• Theory of computation→ Data structures design and anal-
ysis; Type theory.
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1 INTRODUCTION
This paper discusses recent developments in a procedure introduced
in a previous European Lisp Symposium paper from 2016, where
Newton et al. [18] introduced regular type expressions (RTEs), and
suggested a technique to computemembership of the corresponding
regular languages. The paper mentioned several limitations which
needed further study.

Newton et al. [18] developed the theory further applied only
to Common Lisp [3], and generalized to other programming lan-
guages [17]: Clojure [10, 11], Scala [20, 21], and Python [24].

In Section 2.1, we briefly summarized the theory in order to set
the stage for the contributions of this article.

1.1 Contributions
We introduce a new procedure for computing the MDTD (maximal
disjoint type decomposition), Definition 2.1. Our new procedure
has several advantages over previously known techniques.

(1) It is elegant, Section 3.2.
(2) It is provably correct, Section 3.4.
(3) It eases computation of Brzozowski derivative, Section 4.
(4) It is fast, Section 5.
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1.2 Overview
Given an RTE (Section 2.1), we construct a deterministic finite
automaton (DFA) whose language of acceptance (set of all accepted
sequences) is the same as the accepting language of the RTE. A DFA
consists of states and transitions. The transitions are labeled with
Common Lisp type specifiers; see Figures 1 and 2. The construction
process simply needs to be able to (1) construct a state with its
transitions, and must (2) be repeated until all states have been
created. There are two questions to be answered:
• Given a state, what are its transitions?
• What are all the states?

To determine the states and transitions, the Brzozowski derivative
of an RTE, 𝑟 with respect to type 𝜐, (Section 2.3) is employed. We
compute a value denoted, 𝜕𝜐 𝑟 , once for each transition, where 𝑟
represents an RTE, and𝜐 represents a type. The recursive procedure
to compute 𝜕𝜐 𝑟 (Section 4) relies heavily on knowledge of disjoint
and subtype relations between types (represented in Common Lisp
as so-called type specifiers). Each time we compute 𝜕𝜐 𝑟 for given
values of 𝑟 and 𝜐, we produce yet another RTE, and add it to the
working list of RTEs for which we must again compute 𝜕𝜐 𝑟 (for
other values of 𝜐). Every time we encounter an RTE which we have
not seen before, we create a new state, and associate the RTE with
that state. We label the transitions with the type used in computing
𝜕𝜐 𝑟 . E.g., if states 1 and 2 correspond to RTEs 𝑟1 and 𝑟2 respectively,
and 𝑟2 = 𝜕𝜐 𝑟1 for some value of 𝜐, then we construct a transition
from state 1 to state 2 labeledwith the type𝜐. The process eventually
terminates.

The above flow description is not new. What is new and is the
novel contribution we present in this article is how to tackle two
computational challenges:
• For a given RTE, 𝑟 , what is the set of types, 𝜐, for which
we must compute 𝜕𝜐 𝑟? The MDTD Algorithm in Section 3,
efficiently computes this set of types.
• Computing 𝜕𝜐 𝑟 relies on knowledge of disjoint and subtype
relations between types. Often, programs rely on subtypep
to decide such relations, but calls to subtypep can be com-
pute intensive and may return inconclusive results, which
we refer to an inaccurate.1 Our proposed MDTD procedure
circumvents reliance on inaccurate results of subtypep for
these problematic cases.

2 RTE TO DFA FLOW
2.1 Regular Type Expressions
Traditional regular expressions are a DSL (domain specific lan-
guage) for specifying sets of strings according to which sequences
of characters appear in the string. The DSL provides mechanisms
1The Common Lisp specification refers to the second return value of subtypep as an
accurate [indicator].
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for specifying optionality, alternation, and repetition. Hazel [8, 25]
has provided a regular expression library for Common Lisp, but
such libraries are standard in most modern programming languages.
We assume the reader understands traditional regular expressions.
For a theoretical treatment, see Hopcroft [12].

The regular type expression (RTE) is an expression akin to the
tradition regular expression, but which the DSL is written in terms
of types (rather than characters), and algebraic combinations of
these types to specify optionality, repetition, and alternation. Ex-
amples of RTEs are:

𝑟1 =
(
symbol ·

(
number+ ∪ string+

) )+ (1)
𝑟2 = (integer · number) ∪ (number · integer) (2)

Expression (1) means the set of all non-empty sequences of one
or more occurrences of a symbol followed by either a number or a
string. Sequences such as (x 3 a "hello") and (y 3.1 b "hello"
c "world") are accepted, while sequences such as (x a "hello")
and (x 3 a "hello" c) are rejected. Expression (2) represents
the set of sequences of length two, which consist of two numbers,
at least one of which is an integer.

The idea of RTE is reminiscent of Clojure Spec [14] and Malli [9].
Although Hickey [11] mentions Spec’s existence, but we have found
no other peer reviewed articles on either. Thus far, conversations
between experts on public forums have lead us to contradictory
conclusions that Spec is not based on finite automata theory at all,
and other claims that it is based on NFA (non-deterministic finite
automata) work by Might et al. [2, 13]. An NFA-based procedure
(presumably using backtracking) would have at least polynomial
complexity—our approach offers linear complexity. Grande [1],
released a regular pattern matching library in Clojure called seqexp.
According to an interview with Grande, the seqexp does not use a
finite automata approach because of JVM limitations.

2.2 DSL for Regular Type Expressions
Expressions (1) and (2) (from Section 2.1) are represented as RTEs
respectively as follows

The RTE, 𝑟1 = (symbol · (number+ ∪ string+))+, is represented
in Common Lisp as:
(:cat symbol (:+ (:or (:+ number) (:+ string))))

The RTE, 𝑟2 = (integer · number) ∪ (number · integer), is repre-
sented in Common Lisp as:
(:or (:cat integer number) (:cat number integer))

Keyword symbols such as, :*, :+, :and, :or, :not, represent the
traditional regular expression operators, while leaf level objects
represent Common Lisp type specifiers: number, string, integer.

2.3 Constructing a DFA from an RTE
The Common Lisp library, rte, is available on quicklisp, or di-
rectly from GitLab at https://gitlab.lrde.epita.fr/jnewton/regular-
type-expression. Analogous to the classical case, an RTE can also
be represented by a finite automaton. Whereas in the classical case,
transitions are labeled by so-called letters from a fixed, finite alpha-
bet; in our case, we label transitions with type specifiers. Each type
specifier denotes the possibly infinite set of possible Common Lisp
objects. Newton et al. [18] outlined a procedure for converting an

RTE to a finite automaton using the Brzozowski derivative [5], in
particular Newton follows closely the procedure outlined by Owens
et al. [22]. The Brzozowski derivative, denoted 𝜕𝜐 𝑟 , (read: derivative
of 𝑟 with respect to 𝜐) is a function which accepts an RTE, 𝑟 , and a
type specifier, 𝜐, and returns an RTE.

As explained in [18] and restated in Algorithm 1, a finite automa-
ton can be constructed by computing the derivative of the given
RTE, with respect to each element of a set,A, of types, producing a
new set of RTEs. Each of these RTEs represents an additional state
in the finite automaton, and the transitions to the states are labeled
by the (with-respect-to) type in the derivative computation. The
procedure is repeated on the new RTEs, producing more states and
transitions, including transitions to pre-existing states, i.e. loops to
states we have seen already. Brzozowski [5] argues that this process
terminates.

Algorithm 1: Construct DFA by Brzozowski derivative
Input: 𝑟 : an RTE
Output: 𝜎DFA

1.1 begin
1.2 𝑞0 ← new 𝑆𝑡𝑎𝑡𝑒 (𝑟 ), 𝑇 ← (), 𝑄 ← {𝑞0},𝑊 ← {𝑞0}
1.3 while 𝑊 ≠ ∅ do
1.4 𝑞1 ← any element from𝑊

1.5 𝑟 ← 𝑞1 .rte
1.6 𝑊 ←𝑊 \ {𝑞1}
1.7 for 𝜐 ∈ MDTD(1𝑠𝑡 (𝑟 )) do
1.8 𝑑 ← 𝜕𝜐 𝑟 // canonicalize

1.9 if 𝑑 = ∅ then
// avoid unsatisfiable transition

1.10 continue
1.11 else if ∃ 𝑞2 ∈ 𝑄 such that 𝑞2 .rte = 𝑑 then

// transition to pre-existing state

1.12 𝑇 ← (𝑞1, 𝜐, 𝑞2) :: 𝑇
1.13 else

// transition to a new state

1.14 𝑞2 ← new 𝑆𝑡𝑎𝑡𝑒 (𝑑)
1.15 𝑇 ← (𝑞1, 𝜐, 𝑞2) :: 𝑇
1.16 𝑊 ← 𝑞2 ::𝑊
1.17 𝑄 ← 𝑞2 :: 𝑄

// compute final states, cf Owens [22]

// ⟦·⟧ explained in Section 4.

1.18 𝐹 ← {𝑞 ∈ 𝑄 | () ∈ ⟦𝑞.rte⟧}
1.19 return (𝑄,𝑞0, 𝐹 ,𝑇 )

RTE to DFA construction is a generalization of classical DFA
construction. Our particular DFA is a special case of that D’Antoni
and Veanes [6] describe called symbolic finite automata. Algorithm 1
outlines the DFA construction using the Brzozowski derivative, and
Figure 1 illustrates such a constructed DFA given an RTE. There
are several parts of Algorithm 1 which deserve further explanation,
making the topic interesting to research.

(1) TheA needed for Algorithm 2 is computed as a call to 1𝑠𝑡 (𝑟 )
on line 1.7, discussed below.

(2) Canonicalization of an RTE on line 1.8, discussed below.
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Figure 1: Deterministic finite automaton representing the
expression: (symbol · (number+ ∪ string+))+

(3) Computation of the MDTD, a central contribution of this paper,
and explained in Section 3.

(4) Computation of 𝜕𝜐 𝑟 on line 1.7, explained in Section 4.

On line 1.7, we call the MDTD function. The argument (as we’ll
in Section 3) is a set of types. We could pass the set of all type
specifier mentioned in the RTE: {symbol, string} for Expression (1),
and {integer, number} for Expression (2). This would give a cor-
rect answer, but most of the derivatives computed would be ∅, so
most computation time would be wasted. Instead, an important
optimization explained in [16] is to only consider relevant types.
For example, Figure 1 shows that number is not relevant to the
transitions at state 0. On line 1.7, 1𝑠𝑡 (𝑟 ) references a procedure for
deciding a priori, which types are relevant. We do not discuss this
optimization more in this paper as it has no effect on the MDTD
algorithm.

Some amount of canonicalization is necessary (1.8). As men-
tioned above, Brzozowski [5] argues that this process eventually
terminates provided a reasonable amount of canonicalization is
performed on the computed expressions.

2.4 Determinism
Figure 2 illustrates the distinction between deterministic and non-
deterministic finite automata. In order that the automaton be deter-
ministic, we must be assure that the set of transitions leaving any
given state contain no overlapping types. For example, state 0 in
Figure 2 (Top) has exiting transitions number and integer , which
are not disjoint types—a situation which we must avoid. On the
other hand, state 0 in Figure 2 (Bottom) has transitions integer and
number ∩ integer , which are indeed disjoint types.

Definition 2.1 (MDTD). Suppose we are given a finite set of type
specifiers, A = {𝐴1, 𝐴2, . . . 𝐴𝑛} The set X = {𝑋1, 𝑋2, . . . , 𝑋𝑚} is
called themaximal disjoint type decomposition ofA, if the following
hold.

(1) Union invariance:
𝑋1 ∪ 𝑋2 ∪ . . . ∪ 𝑋𝑛 = 𝐴1 ∪𝐴2 ∪ . . . ∪𝐴𝑛 .

0

2

3

1

integer

number integer

number

0

2

3

1

integer

number ∩ integer integer

number

Figure 2: Finite automata representing: (integer · number) ∪
(number · integer), (Top: non-deterministic, Bottom: determin-
istic)

(2) Disjointness:
If 𝑋𝑖 , 𝑋 𝑗 ∈ X, with 𝑖 ≠ 𝑗 , then 𝑋𝑖 ∩ 𝑋 𝑗 = ∅.

(3) Refinement:
If 𝜐 ∈ X and 𝜇 ∈ A, then either 𝜐 ⊆ 𝜇 or 𝜐 ∩ 𝜇 = ∅.

In Figure 2 (bottom) we express the MDTD (maximal disjoint
type decomposition) of {⊤, integer, number} as {integer, number ∩
integer ,⊤∩ number }. As is common convention, the graph omits
the transition labeled ⊤∩ number , because it leads to the so-called
sink state, indicating a state of rejection as opposed to acceptance.

This kind of partition, illustrated in Figure 3, ensures that any
object encountered in a candidate sequence is a member either of
exactly one type in X or is a member of no type in the decomposi-
tion. Figure 3 expresses the MDTD as {𝑋1, 𝑋2, . . . , 𝑋9}. Notice there
is one 𝑋𝑖 for each bounded disjoint area in Figure 3.

If ⊤, the universal type, is included in the input, A, then the
output X will also include the region outside 𝐴1, i.e., 𝐴1 ∈ X.

We have proven in [16] that a MDTD exists and is uniquely
determined for any finite set of types.

3 A NEWMDTD PROCEDURE
We present the procedure shown in Algorithm 3 to compute the
MDTD. The procedure returns two values, X and S, where X is
the actual set of types comprising the type decomposition, and S is
metadata which can be reused to make the Brzozowski derivative
(Section 4), more efficient and more accurate. The actual metadata
is a mapping from each type specifier, 𝜐 in X, to two sets: a set of
factors (super-types) of 𝜐 and a set of disjoint types of 𝜐.

3.1 The subtypep function, in Common Lisp
In Common Lisp, programmatic reasoning about types is done
in term of two so-called type specifiers. The type specifiers 𝑡 and
𝑛𝑖𝑙 refer respectively to the universal type (containing all possible
Common Lisp object) and the empty type (containing no objects).
The intersection and union of two types can be specified using the
𝑎𝑛𝑑 and 𝑜𝑟 types; e.g., (or string (and integer (satisfies
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𝐴1
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𝐴2
𝑋2

𝐴3
𝑋3

𝑋4
𝑋5

𝑋6 𝑋7

𝐴4

𝑋8
𝐴5

𝑋9

Disjoint Derived Factors Disjoint
Set Expression Types

𝑋1 𝐴1𝐴2 𝐴3 𝐴4 𝐴1 𝐴2, 𝐴3, 𝐴4, 𝐴5
𝑋2 𝐴2𝐴3 𝐴4 𝐴1, 𝐴2 𝐴3, 𝐴4, 𝐴5
𝑋3 𝐴2𝐴3𝐴4 𝐴1, 𝐴2, 𝐴3 𝐴4, 𝐴5
𝑋4 𝐴3𝐴2 𝐴4 𝐴1, 𝐴3 𝐴2, 𝐴4, 𝐴5
𝑋5 𝐴2𝐴3𝐴4 𝐴1, 𝐴2, 𝐴3, 𝐴4 𝐴5
𝑋6 𝐴2𝐴4𝐴3 𝐴1, 𝐴2, 𝐴4 𝐴3, 𝐴5
𝑋7 𝐴3𝐴4𝐴2 𝐴1, 𝐴3, 𝐴4 𝐴2, 𝐴5
𝑋8 𝐴4𝐴2 𝐴3 𝐴5 𝐴1, 𝐴4 𝐴2, 𝐴3, 𝐴5
𝑋9 𝐴5 𝐴1, 𝐴4, 𝐴5 𝐴2, 𝐴3

Figure 3: Example of Maximal Disjoint Type Decomposition:
X = {𝑋1, 𝑋2, . . . , 𝑋9} is the MDTD of A = {𝐴1, 𝐴2, . . . , 𝐴5}. De-
rived expressions are intersections of types from A or com-
plements thereof.

evenp))). And types can be complemented (inverted) using the
𝑛𝑜𝑡 type; e.g. (not integer).

In Common Lisp, the subtypep function can be used to deter-
mine the subtype relation. The behavior of subtypep can be un-
derstand by the following three cases:

(1) The Common Lisp expresison, (subtypep integer
number), returns two values t,t; the first t indicates that
the subtype relation is validated (integer ⊆ number) while
the second t indicates that the subtype relation was proven
to be true.

(2) (subtypep number integer) returns two values nil,t;
the nil indicates that the subtype does not hold (integer ⊈
number) while the t indicates that the subtype relation was
proven to be false.

(3) If Common Lisp cannot determine whether the subtype
relation holds, subtypep returns nil,nil. (subtypep
(satisfies oddp) integer) returns two values nil,nil;
the first nil has no meaning because the second nil in-
dicates that the subtype relation was neither proven nor
disproven.

Algorithm 2: Compute MDTD of given A.
Input: A : a set of type designators
Output: (X,S): partition and metadata

2.1 begin
2.2 S ←

{
(⊤, {⊤}, {⊥})

}
// working list of triples

2.3 X ← {⊤} // working list of disjoint types

2.4 for 𝜇 ∈ A do
2.5 for (𝜐, 𝑓 , 𝑑) ∈ S do
2.6 S ← S \ {(𝜐, 𝑓 , 𝑑)}
2.7 if 𝜇 ∩ 𝜐 = ∅ then
2.8 S ← (𝜐, 𝑓 , 𝜇 :: 𝑑) :: S // 𝜐, 𝜇 disjoint

2.9 else if 𝜐 ⊆ 𝜇 then
2.10 S ← (𝜐, 𝜇 :: 𝑓 , 𝑑) :: S // 𝜐 ∩ 𝜇 = ∅
2.11 else

// 𝜇 ∩ 𝜐 and 𝜇 ∩ 𝜐 partition 𝜐

2.12 𝜐1 ← 𝜇 ∩ 𝜐
2.13 𝜐2 ← 𝜇 ∩ 𝜐
2.14 X ← (X \ 𝜐) ∪ {𝜐1, 𝜐2}
2.15 S ← (𝜐1, 𝜇 :: 𝑓 , 𝑑) :: S // 𝜐1 ⊆ 𝜇

2.16 S ← (𝜐2, 𝑓 , 𝜇 :: 𝑑) :: S // 𝜐2, 𝜇 disjoint

2.17 return (X,S)

Algorithm 3: expand-1: Helper function for MDTD. A triple
consists of a derived expression, list of factors, and list of
disjoint types as in Figure 3 (Bottom).
Input: 𝜇 : a type designator
Input: (𝜐, 𝑓 , 𝑑): a triple
Output: a set of one or two triples

3.1 begin
3.2 if 𝜇 ∩ 𝜐 = ∅ then
3.3 return {(𝜐, 𝑓 , 𝜇 :: 𝑑)}
3.4 else if 𝜐 ⊆ 𝜇 then
3.5 return {(𝜐, 𝜇 :: 𝑓 , 𝑑)}
3.6 else
3.7 return

{(
𝜇 ∩ 𝜐, 𝜇 :: 𝑓 , 𝑑

)
,

(
𝜇 ∩ 𝜐, 𝑓 , 𝜇 :: 𝑑

)}
An expression such as (subtypep integer nil) as whether

integer ⊆ ∅, i.e., whether the integer type is empty. To ask about
the disjoint relation, we ask whether the intersection is empty:
(subtypep (and integer string) nil) asks whether (integer∩
string) ⊆ ∅.

The Common Lisp specification allows subtypep to return
nil,nil under several circumstances, most notably in cases in-
volving the satisfies type in which case it is often impossible to
determine, but also when it deems an accurate determination to be
too costly in terms of computation time.

3.2 MDTD in Common Lisp
Algorithm 2 is restated more succinctly reduce and mapcan as in

Figure 4.We pass the local function, expand, to reduce. The expand
function uses mapcan to iterate a curried version of expand-1 (Al-
gorithm 3) acrossA. Each successive call to mapcan further refines
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( de fun mdtd (A)
( l a b e l s ( ( expand −1 (mu t r i p l e ) ( . . . ) )

( expand ( acc mu)
( mapcan ( lambda ( t r i p l e )

( expand −1 mu t r i p l e ) )
acc ) ) )

( l e t ( ( S ( r educe # ' expand A
: i n i t i a l − va lue ' ( ( t ( t ) ( n i l ) ) ) ) ) )

( v a l u e s ( mapcar # ' c a r S ) S ) ) ) )

Figure 4: The MDTD code expressed using mapcan, reduce, and
expand-1 fromAlgorithm 3. The variables S and M correspond
respectively to the variables S and A from Algorithm 3.

the current partition by intersecting appropriate type specifiers
with 𝜇, its complement 𝜇 , or both.

A subtle but crucial feature of our mdtd implementation is that
even if subtypep returns dont-know (either during a subtype check
or disjoint check) we nevertheless construct a well-formed partition
of the space. This certainty is because in the worst case, algorithm
lines 2.15, 2.16, and 3.7 partition the type, 𝜐, into 𝜐1 = 𝜐 ∩ 𝜇 and
𝜐2 = 𝜐 ∩ 𝜇 . If 𝜐 and 𝜇 are disjoint (despite subtypep returning
dont-know), then 𝜐1 ⊆ ∅. If 𝜐 ⊆ 𝜇, then 𝜇 ∩𝜐 ⊆ ∅. The consequence
is that the computed set, S might contain type specifiers which
specify the empty type, even though we have failed to detect the
fact that the types are empty.

3.3 Sample Run
We detail the computation of the types in Figure 3. Figure 5 shows
the computation tree. Each call to mapcan creates one horizontal
level of the tree. The computation starts with the top type, denoted
⊤. Each subsequent level partitions each of the type specifiers in
the previous level by intersecting with 𝜇, 𝜇 or both. If 𝜇 is disjoint
with the type in question or a supertype of the type in question,
the previous level’s type is inherited to the next level.

The second level of the tree intersects ⊤ with 𝐴1 and 𝐴1 . The
third level intersects each of

{
𝐴1, 𝐴1

}
with 𝐴2 and 𝐴2 .

𝐴1 ∩𝐴2 = 𝐴2

𝐴1 ∩ 𝐴2 = 𝐴1 ∩ 𝐴2 .

Since 𝐴2 ⊆ 𝐴1, line 2.10 is reached. No intersection computation is
necessary because the result would either be the empty type or the
same type we started with:

𝐴1 ∩𝐴2 = ∅

𝐴1 ∩ 𝐴2 = 𝐴1

Similar reasoning continues with the fourth and fifth levels.

3.4 Sketch of Proof of Correctness
We do not present a formal proof, but rather we sketch an infor-
mal argument. A formal proof will come in a future publication.
To sketch this proof, we’d like to show that the set of types spec-
ified by the bottom-most row of Figure 5 is indeed the MDTD of

the types {𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5}. We need to show three things from
Definition 2.1, which we address in Sections 3.4.1, 3.4.2, and 3.4.3.

3.4.1 Union invariance. By induction: To understand that the union
of the types specified at level 𝑛 (of Figure 5) is the same as the union
of the types at level 𝑛 + 1, we see that each 𝜐 at level 𝑛 corresponds
either to the same type at level 𝑛 + 1, or for some type 𝜇, two types

𝜐1 = 𝜐 ∩ 𝜇

𝜐2 = 𝜐 ∩ 𝜇

𝜐1 ∪ 𝜐2 = (𝜐 ∩ 𝜇) ∪ (𝜐 ∩ 𝜇 )

= 𝜐 ∩
(
𝜇 ∪ 𝜇

)
= 𝜐 ∩ ⊤ = 𝜐

So refining the partition moving from level-𝑛 to level 𝑛+1 preserves
the union, which at the top level is ⊤, or 𝐴1 in the case that ⊤ is
not included in the MDTD input.

3.4.2 Disjointness. To understand that the types specified at each
level are disjoint, we assume (an inductive proof) that the types at
level 𝑛 are disjoint and prove that the types at level 𝑛+1 are disjoint.
We know this, because each type, 𝜐, at level 𝑛 corresponds either
to the same type at level 𝑛 + 1 or to two types, 𝜐1 and 𝜐2, where

𝜐1 = 𝜐 ∩ 𝜇

𝜐2 = 𝜐 ∩ 𝜇

𝜐1 ∩ 𝜐2 = (𝜐 ∩ 𝜇) ∩ (𝜐 ∩ 𝜇 )
= (𝜐 ∩ 𝜐) ∩ (𝜇 ∩ 𝜇 )
= 𝜐 ∩ ∅ = ∅

So we see that 𝜐1 and 𝜐2 are disjoint. If two types, 𝜐1, 𝜐2 at level 𝑛+1
are derived from the different level-𝑛 parents, 𝜐3, 𝜐4 respectively,
then we know that 𝜐3 and 𝜐4 are disjoint by inductive hypothesis.
Thus there exist 𝜇1 and 𝜇2 such that

𝜐1 = 𝜐3 ∩ 𝜇1

𝜐2 = 𝜐4 ∩ 𝜇2

𝜐1 ∩ 𝜐2 = (𝜐3 ∩ 𝜇1) ∩ (𝜐4 ∩ 𝜇2)
= (𝜐3 ∩ 𝜐4) ∩ (𝜇1 ∩ 𝜇2)
= ∅ ∩ (𝜇1 ∩ 𝜇2) = ∅

Thus all the types specified at level 𝑛 + 1 are disjoint.

3.4.3 Refinement. If 𝜐 ∈ X and 𝜇 ∈ A, we see that 𝜇 is in either
the third column (Factors) or the 4th column (Disjoint types) of
the table in Figure 3. This fact is guaranteed because we know
that the function in Algorithm 3 was called with 𝜇 as an argument.
Algorithm 3 assures that 𝜇 is prepended either to the set of factors
or the set of disjoint types.

4 COMPUTING BRZOZOWSKI DERIVATIVE
We saw in Algorithm 1 that the output of MDTD is used as input for
the Brzozowski derivative on line 1.8. In this section, we show how
the metadata collected in MDTD helps to compute 𝜕𝜐 𝑟

Recall the 𝜕𝜐 𝑟 is the Brzozowski derivative of RTE, 𝑟 , with respect
to type 𝜐. The value or 𝜕𝜐 𝑟 is another RTE.



ELS’23, April 24–25 2023, Amsterdam Jim E. Newton

⊤

𝐴1

𝐴2

𝐴2𝐴3

𝐴2𝐴3𝐴4

𝐴2𝐴3𝐴4

𝐴2𝐴3𝐴4

𝐴2𝐴3𝐴4

𝐴2𝐴3

𝐴2𝐴4𝐴3

𝐴2𝐴4𝐴3

𝐴2𝐴3 𝐴4

𝐴2𝐴3 𝐴4

𝐴1𝐴2

𝐴2𝐴3

𝐴2𝐴3𝐴4

𝐴2𝐴3𝐴4

𝐴2𝐴3𝐴4

𝐴2𝐴3𝐴4

𝐴1𝐴2 𝐴3

𝐴2 𝐴3𝐴4

𝐴5 𝐴2 𝐴3𝐴4𝐴5

𝐴1𝐴2 𝐴3 𝐴4

𝐴1𝐴2 𝐴3 𝐴4

𝐴1

𝐴1

𝐴1

𝐴1

𝐴1

Figure 5: Computation tree computing the MDTD for the types in Figure 3

𝜕𝜐 ∅ = ∅ (3)
𝜕𝜐 𝜀 = ∅ (4)

𝜕𝜐 (¬𝑟 ) = ¬𝜕𝜐 𝑟 (5)

𝜕𝜐
(
𝑟∗
)
= 𝜕𝜐 𝑟 · 𝑟∗ (6)

𝜕𝜐 (𝑟 ∨ 𝑠) = 𝜕𝜐 𝑟 ∨ 𝜕𝜐 𝑠 (7)
𝜕𝜐 (𝑟 ∧ 𝑠) = 𝜕𝜐 𝑟 ∧ 𝜕𝜐 𝑠 (8)

𝜕𝜐 (𝑟𝑠) =
{
(𝜕𝜐 𝑟 )𝑠 if 𝑟 not nullable
(𝜕𝜐 𝑟 )𝑠 ∨ 𝜕𝜐 𝑠 if 𝑟 nullable

(9)

𝜕𝜐 𝜇 = 𝜀 if ⟦𝜐⟧ ⊆ ⟦𝜇⟧ (10)
𝜕𝜐 𝜇 = ∅ if ⟦𝜐⟧ ∩ ⟦𝜇⟧ = ∅ (11)
𝜕𝜐 𝜇 otherwise, no rule defined (12)

Figure 6: Recursive rules for computing Brzozowski deriva-
tive of an RTE. These rules are applied in computing 𝜕𝜐 𝑟 on
line 1.8 of Algorithm 1. 𝜐 (similarly 𝜇) is a type specifier. ⟦𝜐⟧
(similarly ⟦𝜇⟧) represents the set of values comprising the
specified type.

4.1 Computation Details
To compute 𝜕𝜐 𝑟 , Owens et al. [22] suggest a recursive procedure.
Newton et al. [18] generalized this procedure to workwith Common
Lisp types. Newton [16] further generalized the recursive rules
of this procedure as shown in Figure 6. Rule 9 refers to nullable,
meaning that the language of 𝑟 contains the empty sequence. Owens
et al. explain a simple decision procedure to determine whether a
regular expression is nullable.

Some explanation is necessary to understand the notation and
the implications of Figure 6. Recall that the notation 𝜕𝜐 𝑟 means
that 𝑟 is an RTE and 𝜐 is a type. Programmatically, 𝑟 is a data
structure represented according to the rules of a DSL, which we
summarize in Section 2.2.

The 𝜐 in 𝜕𝜐 𝑟 specifies a type. Programmatically, 𝜐 is represented
by a Common Lisp type specifier.

Given a value of 𝑟 and 𝜐, to compute 𝜕𝜐 𝑟 , the rules in Figure 6
are applied recursively. There are several cases which terminate
the recursion.

Rule (3): Every RTE represents a set of Common Lisp sequences.
We use the symbol ∅ to represent the RTE which itself represents
the empty set of sequences. Careful, the empty set of sequences
is different from the set of empty sequences, denoted by 𝜀. The
derivative of ∅ is again ∅ regardless of 𝜐. The Common Lisp type
specifier nil specifives the empty type, equivalently empty set.

Rule (4): The symbol 𝜀 represents the set of empty sequences.
We sometimes represent this set as {()}; however in Common Lisp,
𝜀 includes the empty list, empty array, empty string, etc [15, 23].
The derivative of 𝜀 is ∅ regardless of 𝜐.

Rules (10) and (11): These rules represent the case where the
RTE, 𝜇, is known to represent specifically a set of singleton se-
quences,2 e.g. the set of singleton sequences whose first (and only
element) is an integer, or the set of sequences whose element is a
string. In the notation of Figure 6, 𝜇 represents the RTE (in turn
representing a set of sequences), while ⟦𝜇⟧ represents the set com-
prising of the first elements of these sequences: the set of integers,
or the set of strings, as opposed to the set of singleton lists of in-
tegers or set of singleton lists of strings. In Rule (11), we use ∅
to represent both the RTE containing no sequences, and also the
empty type.

4.2 Complications with subtypep
In order to distinguish rules (10) and (11) programmatically, we
must know whether one type is a subtype of another, given the
type specifiers, or knowwhether the two specified types are disjoint.
The Common Lisp function, subtypep, is an obvious implemen-
tation choice to make this run-time decision. However, subtypep
sometimes returns dont-know. If this occurs during DFA construc-
tion, we cannot determine the value of the derivative. Thus, we
must avoid this case.

2We can be assured that the 𝜇 represents a singleton sequence because we have
eliminated all other possiblities in rules 3 through 9; i.e., 𝜇 is not ∅, 𝜀 , ∗ , negation,
disjunction, conjunction, nor concatenation.
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( d e f c l a s s A1 ( ) ( ) )
( d e f c l a s s A2 (A1 ) ( ) )
( d e f c l a s s A3 (A1 ) ( ) )
( d e f c l a s s A23 ( A2 A3 ) ( ) ) ; X3 U X5
( d e f c l a s s A4 (A1 ) ( ) )
( d e f c l a s s A423 ( A4 A23 ) ( ) ) ; X5 U X6 U X7
( d e f c l a s s A5 (A4 ) ( ) )

( sub typep ' ( and A3 ( not A2 ) ( not A4 ) )
' A1 ) ; r e t u r n s T , T

( sub typep 'A3 'A2 ) ; r e t u r n s NIL , T
( sub typep ' ( and ( and A3 ( not A2 ) ( not A4 ) ) A1 )

n i l ) ; r e t u r n s NIL , NIL

Figure 7: Common Lisp code defining classes analogous to
Figure 3, also demonstrating successful and unsuccessful
calls to subtypep.

This weakness of subtypep is a significant problem for the Brzo-
zowski derivative computation, a limitation which we alleviate with
our proposed MDTD procedure. As an illustration of the problem,
suppose that we have an RTE, 𝑟 , representing a singleton sequence
whose element has type 𝑋4 from Figure 3, and suppose we need
to compute 𝜕𝜐 𝑟 where 𝜐 = 𝐴1. We need to determine whether(
𝐴3 ∩ 𝐴2 ∩ 𝐴4

)
⊆ 𝐴1 or whether

(
𝐴3 ∩ 𝐴2 ∩ 𝐴4

)
∩ 𝐴1 = ∅. It

is not syntactically obvious which (if either) is the case; there is
no mention of 𝐴1 within

(
𝐴3 ∩ 𝐴2 ∩ 𝐴4

)
. The human (or a suffi-

ciently intelligent subtypep) can of course answer this question by
reasoning that 𝐴3 is mentioned and 𝐴3 ⊆ 𝐴1. This reasoning only
works if𝐴3 and𝐴1 are specified by very simple type specifiers, such
as a class name. If on the other hand, either or both of 𝐴3, 𝐴1 are
type specifiers involving Boolean combination types such as (and
...), (or ...), (not ...), or (satisfies ...), such reasoning
would be less obvious and more compute intensive.

The Common Lisp code in Figure 7 defines classes which have
the same disjoint and subtype relations as in Figure 3. The code
contains three calls to subtypep to determine whether see how
SBCL and CLISP handle these calls to subtypep. The SBCL [15]
implementation responds T, T for the first, indicating that the sub-
type relation,

(
𝐴3 ∩ 𝐴2 ∩ 𝐴4

)
⊆ 𝐴1. The second example returns

NIL, T, indicating that𝐴3 ⊄ 𝐴2. However the third call which asks
whether

((
𝐴3 ∩ 𝐴2 ∩ 𝐴4

)
∩𝐴1

)
⊆ ∅ returns NIL, NIL indicating

dont-know. We get the same results in CLISP [7].
If we use subtypep to answer these questions, subtypep is al-

lowed (by the Common Lisp specification) to return dont-know.
However, we do not need to rely on subtypep in this case, be-
cause as we also see in the third column row 𝑋7 of Figure 3 (Bot-
tom) that 𝐴1 is guaranteed by construction to be a supertype of(
𝐴3 ∩ 𝐴2 ∩ 𝐴4

)
.

Even if the subtypep implementation in your particular imple-
ment of Common Lisp is intelligent enough to determine this sub-
type relation, doing so would necessarily be computation intensive.
Our MDTD procedure avoids this redundant complexity.

5 PERFORMANCE ANALYSIS
We have taken as benchmarks, the performance analysis presented
in [16, Ch 10]. In that work, Newton analyzed (ad nauseam) per-
formance characteristics of various MDTD algorithms on various
genre of input types, without conclusive results. We repeated some
of those performance comparisons with the procedure presented in
this paper. The experiments are summarized here. We considered
the following algorithms, a subset of those presented in [16].

(1) mdtd-bdd – A primitive base-line algorithm using BDDs [4]
as data structure to designate a type.

(2) mdtd-graph – A graph based algorithm also described
in [19], using Common Lisp type specifiers (s-expressions)
as type designators.

(3) mdtd-bdd-graph – Same algorithm as mdtd-graph but us-
ing BDDs as type designators.

(4) mdtd-padl – The procedure in Algorithm 2.
The reference benchmarks were divided into so-called pools. A

pool is a set of type specifiers, chosen with similar characteristics;
e.g., a set of (member ...) types, or a set of floating point range
types, or all predefined subtypes of number.

We show the results for several pools:
• MEMBER types – Types such as

( member 2 6 9 1 0 )
( member 1 2 4 5 9 )
( member 1 6 7 8 )
( member 0 1 4 6 7 9 1 0 )
( member 3 4 7 9 1 0 )

• CL combinations – Unions and intersections of types
whose name come from the common-lisp package. Examples
include
( or p r i n t −not − r e a d a b l e s t r u c t u r e − c l a s s )
( and s imple − s t r i n g bignum )
( or s t andard − char double − f l o a t )
( or c l a s s s t o r age − c ond i t i o n )

• Real number ranges – numerical ranges of integer, real,
and float. Examples include
( INTEGER 60 ( 7 9 ) )
( REAL 1 / 3 6 4 7 / 9 )
( FLOAT 55 . 1 4 2 5 3 2 6 0 . 7 2 2 7 9 4 )

• Subtypes of NUMBER – Subtypes of number and Boolean
combinations of them. Examples include
shor t − f l o a t
( and shor t − f l o a t ( not unsigned −by te ) )
( or shor t − f l o a t unsigned −by te )
unsigned −by te
( and number ( not b i t ) )
r a t i o n a l

• CL types – Symbols from common-lisp package which des-
ignate types. Examples include
a r i t hme t i c − e r r o r
f u n c t i o n
s imple − c ond i t i o n
a r r ay
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Running a benchmark consists of selecting successively larger
sets of type specifiers from the pool in question, and calling the
mdtd function, measuring the execution time. Figure 8 shows the
benchmark results. See the legend on the bottom-right of the figure
for the color scheme.

We see that for a small number of input types, the mdtd-padl al-
gorithm performs poorly compared to the others, in time ranges of
less than 0.1 millisecond. However, for times greater than 1 millisec-
ond, the algorithm performs well. In the top two plots in Figure 8,
mdtd-padl is the best performing, at least in the asymptotic case.
In the bottom-most plot, CL types, we see that mdtd-padl per-
forms worse by an order of magnitude. However, for most of the
cases, in the middle of the figure, the performance is very good but
outperformed by the BDD-based algorithm.

6 CONCLUSION
6.1 Results
In this work, we have introduced a new algorithm for comput-
ing the Maximal Disjoint Type Distribution of a given set of type
specifiers. Our experiments show that the procedure is usually
faster than previously reported procedures, and also provides data
which makes the Brzozowski derivative easier to compute. While
the improvements we have discussed here have also been applied
to our RTE implements in Clojure, Scala, and Python, we have only
addressed herein the aspects relating to Common Lisp.

Our MDTD procedure alleviates some of the consequences of
the incompleteness and compute intensity of subtypep. The fact
that certain dependence on direct calls to subtypep is elided, has
the effect of eliding certain unnecessary computations, potentially
making the Brzozowski derivative computation faster than it other-
wise might be. In addition to computation speed, we also enable the
algorithm to produce a correct (even if suboptimal) result despite
having a less powerful implementation of subtypep in your Com-
mon Lisp implementation. The MDTD algorithm is guaranteed to
compute a set of types which are disjoint; however, they may not
be provably inhabited.

6.2 Perspectives
We see in Figure 8 that the BDD-based MDTD procedure outper-
forms mdtd-padl, but not significantly so. We would like to refactor
the BDD-based procedure to use the approach of mdtd-padl but
applied to BDDs rather to s-expression based type specifiers.

We have not yet extensively investigated the application of our
algorithm to type-system related computations on JVM languages
such as Clojure and Scala. Sometimes questions of subtype-ness
and habitation/vacuity cannot be answered about JVM-based types,
because we do not know at computation time which shared libraries
may be dynamically loaded later in the running program. Our cur-
rent model in the RTE implementation in Clojure and Scala uses a
so-called world-view. An closed world-view means that we assume
no new classes will be added, and an open world-view means we
never know the entire list of subclasses of a given class. A open
world-view is predicted to result in larger DFAs with more unsatis-
fiable transitions. However, we do not yet have data to confirm or
measure this effect.
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Figure 8: Results of benchmark experiments: Lower is better. Each graph has number of given types as x-axis, and average
computation time in seconds, as y-axis. The pink/magenta curve indicates the results for mdtd-padl, that being the algorithm
described in this paper.
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