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Type-Checking Heterogeneous Sequences in a
Simple Embeddable Type System

Jim Newton[0000−0002−1595−8655]

EPITA Research Lab, 94270 Le Kremlin Becêtre, FRANCE jnewton@lrde.epita.fr

Abstract. Heterogeneously typed sequences are supported in a wide
range of programming languages, both dynamically and statically typed.
These sequences often exhibit type patterns such as repetition, alterna-
tion, and optionality. The programmer needs a mechanism to declare and
query adherence to this regularity. The theory of finite automata over
finite alphabets was conceived for characterizing patterns in so-called
regular languages, but does not exactly meet this challenge, because the
set of potential elements of the sequences is infinite. In this article, we
present a generalization of regular expressions called rational type expres-
sions as a means of declaring regular patterns in heterogeneous sequences.
We present procedures for constructing and manipulating symbolic finite
automata, a generalization of classical finite automata, using a portable,
simple, embeddable, type system. For type systems with subtyping, the
subtype relation and type vacuity cannot always be computed program-
matically. We provide a working, sound solution for constructing finite
automata for type-based regular expressions even in cases where the sub-
type decidability relations is not computable retrospectively, but can be
ensured by construction. We demonstrate the generality and portability
of the system by providing implementations in Common Lisp, Clojure,
Scala, and Python.

1 Introduction

Our goal is to declaratively describe a set of sequences (rational language) in
a programming language based on regularities in the types of the sequence
elements, and to efficiently decide membership of these rational languages at
run-time.

This paper studies rational type expressions (RTEs) and the construction
from RTE to symbolic, deterministic, finite automata (σDFA). RTEs are used to
specify patterns in the types of the sequence elements, such as (int · str · evenp)∗,
and σDFAs are used to efficiently decide the language induced by the RTE. The
main challenges in the system are: (1) how to define types in a generic enough way
to be usable in multiple programming languages, and (2) how to construct σDFA
from an RTE despite limitations in the type system. For the first challenge, the
system defines types using a Simple Embeddable Type System from Newton and
Pommellet [27]. For the second challenge, we use Brzozowski style derivative-
based construction, and we solve the challenge of overlapping types (decidable
and otherwise) using Maximal Disjoint Type Decomposition (MDTD).



Before looking into the theory and implementation, we introduce the ra-
tional type expression (RTE) and the deterministic, complete, symbolic, finite
automaton (σDFA) simply with an extended example, Section 2.

1.1 Motivation

Statically typed languages, such as Java or C++, support sequences of fixed
types such as Array[String], e.g., ("ab","cd","xyz"), or List[Double], e.g.,
(1.0,1.1,1.2). In a language whose type system forms a type lattice [14], it
is possible to declare an Array[String | Double] designating a sequence such
as ("ab",1.1,1.2,"cd","xyz"), with each element either String or Double.
More general still, languages such as Python [33] and Common Lisp [2], support
sequences where any element may be an object of any inhabited type whatsoever.

Element types of heterogeneous sequences usually follow an implicit, tacit,
pattern in the mind of the programmer and hopefully documented in the code
comments. The programmer writes code assuming elements to be a certain type,
or writes ad-hoc code to check the contents of the sequences at run-time.

Dynamically typed languages such as Common Lisp, Clojure [10, 11], and
Python commonly manipulate heterogeneous sequences. The Common Lisp type
system, the Python mypy [17, 32] library, and Clojure spec [19] allow the annota-
tion of type hints, which can sometimes invoke run-time type checks or help IDEs
provide useful development and debug feedback. However, these type systems
are not rich enough to express regular patterns in sequences of mixed types.

Scala [28, 29], a statically typed language with limited reflection [6], allows
the program to manipulate sequences such as those coming from JSON [31],
declared as Seq[Any]. Code pattern matches to implement typecase logic based
on dynamic type meta-data from the JVM. [7].

What is lacking from many dynamic languages (or statically typed languages
with sufficient reflection), and which we address in this article, is a mechanism for
the programmer to declare the expected type patterns, allowing the sequences
to be efficiently type-checked at run-time, and thereafter to allow application
code the safety of making simplifying assumptions about the data in question.

1.2 Our Contribution

We present a technique for recognizing certain heterogeneous sequences based
on the types of their constituent elements. The technique involves declaratively
describing such sequences using so-called RTEs. The RTEs are used to construct
symbolic finite automata [5], which are then used to validate and reason about
finite sequences whose elements are taken from an infinite set of values supported
in the programming language.

Our contributions in this article are as follows. We

1. Adapt theoretical description of D’Antoni and Veanes [5] and Keil and Thie-
mann [15] to heterogeneously typed sequences in programming languages.
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2. Provide an algorithm for the maximal disjoint type decomposition, MDTD,
which, by construction, avoids the problem of undecidability of subtyping.

3. Demonstrate constructions of σDFA recognizing Regular Type Expressions
despite an incomplete subtype predicate.

4. Provide sample implementations in four programming languages: Scala, Clo-
jure, Python, and Common Lisp.

1.3 Previous Work

In [20], Newton used deterministic finite automata (DFA) and RTEs to recognize
heterogeneous Common Lisp sequences based on type patterns. The current
work, generalizes the RTEs to a wider range of programming languages.

Clojure Spec [19, 11, 10] and metosin [9] support some forms of type pat-
tern recognition. After conversations between experts on public forums it is not
clear whether Spec is based on finite automata theory at all or rather on NFA
(non-deterministic finite automata) work by Might et al. [18]. An NFA-based
procedure (presumably using backtracking) would have at least polynomial com-
plexity, whereas our approach offers linear complexity.

Christophe Grande authored seqexp [1] for Clojure, a regular pattern match-
ing library. According to an interview with Grande, seqexp does not use a finite
automata approach, suggesting that the size of resulting code would violate the
JVM [7] limitation of function size susceptible to optimization.

The Brzozowski derivative and an algorithm to compute it for digital circuits
was first presented in 1964 by Janusz Brzozowski [4]. Owens et al. [30] presented a
modern version applied to regular pattern recognition for sequences of characters.
Owens noted that a practical obstacle to using this approach is large computation
time of generating large finite automata over excessively large alphabets. We
ameliorate this problem by considering sets rather than individual values.

D’Antoni and Veanes [5] argue that the generalization retains many of the
good properties of their finite-alphabet counterparts. D’Antoni and Veanes dis-
cuss a decomposition of types referred to asMinterms(...), i.e., the set of maximal
satisfiable Boolean combinations. D’Antoni’s set is a less optimized version of our
MDTD algorithm, Section 5.4.

Grigore [8], Kennedy and Pierce [16], from Microsoft Research, discuss sub-
type decidability in Java [7], Scala [28, 29], C#, and .NET Intermediate Lan-
guage. The work curiously lacks citations for C# and .NET Intermediate Lan-
guage, as if the reader is already intimately familiar with C# and .NET IL.

Hosoya, Vouillon, and Pierce [13] defined regular expression in the XDuce
language, allowing static XML types to be defined recursively and hierarchically
to describe the structure of XML documents. XDuce programs consume and
manipulate XML [3] documents allowing the type checker to assure that the
programmatic expressions are type correct according to the XML schema, DTD,
XML-Schema etc.. RTEs as opposed to the XDuce, add such type checking
ability to an existing dynamic type systems.
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2 Symbolic Finite Automata

First we give an example of a σDFA. Section 2.1 provides formal definitions.
Consider the three RTEs [26], r1, r3, and r2, defined in (1), (2), and (3). The
syntax should be intuitive to anyone already familiar with regular expressions.

r1 = (int · str · evenp)∗ (1)

r2 = (int · str · str∗ · evenp)∗ (2)

r3 = (int · str∗ · evenp)∗ . (3)

RTE, r1, represents the set of sequences of arbitrary (finite) length, each of
which consists of zero or more occurrences: integer, string, even integer. RTE, r2
allows the string to occur one or more times. Finally, in RTE, r3, the string is al-
lowed to occur 0 or more times. E.g., the sequence (11,"a",12,13,"a","b",14)
matches r3 and r2, but not r1; (11,"a",12,13,"a",14) matches all of them;
and (11.5,12.6) matches none of three RTEs.

A finite automaton efficiently decides membership of a rational language.
Analogous to classical finite automata theory [12], RTEs correspond to symbolic
finite automata [5] (σDFA) over a possibly infinite alphabet, Σ. Transitions are
labeled symbolically as subsets of the alphabet. In our case, Σ is the set of all val-
ues representable in a given programming language, including other sequences.
RTEs, r1 and r2, are implemented in Figure 1 [left] and [right] respectively, r1
being represented by a deterministic automaton and r2 non-deterministic. The
σDFA for r3 is shown in Figure 2 [left].

0

1int

3

str

evenp 0

1int

str

3

str

evenp

Fig. 1: σDFA for RTEs: [left] r1 = (int · str · evenp)∗ and

[right] non-deterministic automaton for r2 = (int · str · str∗ · evenp)∗

We have chosen to work with deterministic automata, as opposed to non-
deterministic, as they allow operations such as negation and intersection, and
vacuity/habitation checks as well as disjoint and subset relations. Even though
construction of DFAs can be slow and highly depends the syntactic representa-
tion of the regular expression, the time complexity of the membership decision
is linear in length of sequence in question, constant in memory complexity, and
no longer a function of the representation of the RTE itself. This independence
is important because arbitrarily large expression trees may reduce to the same,
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small RTE. Much of the work in σDFA construction focuses on preventing over-
lap between transitions, thus enforcing determinism.

2.1 σDFA Formally

p0

p1

t3

p2
t2

p3
t8

t9
t11t7

t1

t5
t4

t10t6

n0

n1

t3

n2
t2

n3t8

t9
t11

t7

t1

t5
t4

t10t6

t1 = Σ

t2 = int

t3 = int

t4 = str ∩ evenp

t5 = str ∩ evenp

t6 = str ∩ evenp

t7 = (int ∩ evenp )

∪ (str ∩ evenp )

t8 = int ∩ str ∩ evenp

t9 = (int ∩ evenp)

∪ (str ∩ evenp)

t10 = str ∩ evenp

t11 = int ∩ str ∩ evenp

Fig. 2: σDFAs Ap and An: [left] Ap is σDFA for RTE Equation (3),
r3 = (int · str∗ · evenp)∗ ; [right] An is σDFA for RTE !r3.

The finite automata in Figure 2 are called a symbolic deterministic complete
finite automata (σDFA). A σDFA differs from a classical finite automaton in two
significant ways. (1) The alphabet, Σ, may be infinite; and (2) each transition
is labeled by a symbol representing a possibly infinite subset of Σ.

A symbolic finite automaton is a structure: A = (Σ,Υ,Q, q0, F, T ) where:

1. Σ is a possibly countably infinite set of objects.
2. Υ is a set of symbols, each designating a subset of Σ.
3. Q is a finite set of states.
4. q0 ∈ Q is the initial state.
5. F ⊆ Q is the set of accepting states.
6. T ⊆ Q× Υ ×Q is a set of transitions.

If ν ∈ Υ , let JνK denote the designated subset of Σ; ν ∈ Υ =⇒ JνK ⊆ Σ.

A transition, (q, ν, r) ∈ T , is also denoted q
ν−→ r . We refer to q as the origin

of the transition, r as the target, and ν ∈ Υ as the label.
A partition of Σ is a set of mutually disjoint, possibly empty subsets of Σ

whose union is Σ.
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If for each q∈Q, the set of labels of transitions having q as origin designates
a partition of Σ, then A is called a complete, deterministic, symbolic, finite
automaton on Σ, or simply a σDFA.

The definition of partition is non-conventional in order to avoid an annoying
incoherence between theoretical partition and computed partition. In particular
given two labels ν1, ν2 ∈ Υ , the set {ν1 ∩ ν2, ν1 ∩ ν2, ν1 ∩ ν 2, ν1 ∩ ν 2} is called
the standard partition ( νi denotes set complement) and fulfills our definition of
partition because the sets are mutually disjoint by construction, and their union
is Σ, despite the possibility that any of the four intersections be empty.

A transition q
ν−→ r is called satisfiable if JνK is inhabited (JνK ̸= ∅); other-

wise it is called non-satisfiable. It is called indeterminate if it cannot be deter-
mined whether JνK = ∅. The challenge of determining programmatically whether
a transition is satisfiable is addressed in Section 5.1.

3 Rational Expressions

We accept the following definitions, borrowed from classical finite automata the-
ory [12]. A length-n (n ≥ 0) sequence is a function {0, 1, . . . , n− 1} → Σ. A lan-
guage is any set of finite-length sequences. The set of all finite-length sequences
is called Σ∗. The symbol () represents the empty sequence. Two sequences, s, t
can be concatenated to form a new sequence, s · t. Similarly, two languages, L1

and L2 can be concatenated to form L1 · L2 = {s · t | s ∈ L1, t ∈ L2}. If x ∈ Σ,
and s is a length-n sequence, then the cons, x :: s = (x) · s, thus extending the
sequence to length n+1. Finally, the Kleene star of a language, L∗, is the set of
all finite concatenations of zero or more sequences from L.

A rational type expression or RTE is defined as any expression as defined
below which represents (recognizes) a language on Σ. Let f and g be RTEs, rec-
ognizing languages JfK and JgK. Let Υ be a set of symbols such that {Σ, ∅} ⊂ Υ :
ν ∈ Υ =⇒ JνK ⊆ Σ. The following rules recursively define all RTEs.

RTE Language RTE Language RTE Language
∅ ∅ f · g JfK · JgK f∗ JfK∗
ε {()} f + g JfK ∪ JgK ⌊ν⌋ {(a) | a ∈ JνK}
Σ {(a) | a ∈ Σ} f & g JfK ∩ JgK !f Σ∗ \ JfK
The set of all sequences recognized by an RTE is called its language.

4 Programming Language Supporting RTEs

Even if finite automata theory is more general, we will restrict our discussion to
objects and sequences representable in a given programming language. Σ will
be the set of values expressible in some programming language, and Σ∗ denotes
the set of all finite, non-cyclic sequences whose values come from Σ. Suppose
further that the programming language supports a set of built-in types and
user-defined types, and a set, Υ0, of symbols such as int and str which al-
low an application program to perform run-time type membership checks. We
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suppose that the programming language provides a mechanism for performing
type membership and subtype checks in terms of the symbols in Υ0. For exam-
ple, in Scala classOf[Number].isAssignableFrom(classOf[Integer]) and in
Python isinstance(42,int) both return a Boolean true.

4.1 A Simple Embeddable Type System

Different programming languages make different assumptions about types. New-
ton and Pommellet [27] presented a Simple Embeddable Type System (SETS)
which we use here. SETS keeps the type system simple enough to implement in
a wide range of programming languages, and specifies that types already des-
ignatable in the programming language are accepted as atomic types in SETS.
This type system suffices for our needs; although some limitations are described
in Section 4.4. A formal definition of SETS can be found in [27], but we sum-
marize it here.

A type is defined as any set of values, i.e. any subset of Σ.
We distinguish a type from a type designator. We typically denote a type

designator by the symbol, ν, and the corresponding type by JνK. The set of
all types is 2Σ , while the set of all type designators is denoted by, Υ , and is
recursively defined as follows.

1. Hosted types: Υ0 ⊆ Υ .
2. Terminal types: Σ, ∅ ∈ Υ representing the universal and empty types.
3. Singleton types: ∀a ∈ Σ, {a} ∈ Υ , with J{a}K={a}.
4. Predicates: for any decidable function f : Σ → {true, false}, implemented

in the host language, Sat(f) ∈ Υ with JSat(f)K = {x ∈ Σ | f(x) = true}.
5. Union: if ν1, ν2 ∈ Υ , then ν1 ∪ ν2 ∈ Υ with Jν1 ∪ ν2K = Jν1K ∪ Jν2K.
6. Intersection: if ν1, ν2 ∈ Υ , then ν1 ∩ ν2 ∈ Υ with Jν1 ∩ ν2K = Jν1K ∩ Jν2K.
7. Complement: if ν ∈ Υ , then ν ∈ Υ with J ν K = JνK = {x ∈ Σ | x ̸∈ JνK}.

With a clever choice of f , Sat(f) may designate the same set as other com-
posed types in SETS, albeit with less reasoning power; e.g., it is impossible to

determine whether JSat(f)K ⊆ JSat(g)K or if JSat(f)K ∩ JSat(g)K is inhabited.
A programming language specific API must implement type designators and

∈ (Boolean, decidable), ⊆ (semi-Boolean1) procedures. E.g., in scala-rte [25]
and in python-rte [24] type designators are implemented as class SimpleTypeD
and subclasses thereof; while in clojure-rte [22] they are implemented as s-
expressions. Type designators (type specifiers) are native to Common Lisp. An
inhabited semi-Boolean predicate can be implemented as ν ⊆ ∅, or in a more
clever way depending on the programming language.

4.2 The Problematic Subtype Relation

Why is the subtype relation important? Knowing the subtype relation is critical
for proving other relations between types. We can prove types ν and µ equivalent

1 By semi-Boolean, we mean function which returns true, false, or dont-know.
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by proving (ν ⊆ µ) ∧ (µ ⊆ ν). ν is provably vacuous, if we can prove ν ⊆ ∅. ν
and µ are provably disjoint, if we can prove ν ∩ µ ⊆ ∅.

The fact that the subtype relation is not always decidable exacerbates the
challenge to guaranteed determinism. For example, the set of even integers,
evenp, is a subset of the set of integers. However, evenp is disjoint from the
set of strings. The fact that we cannot decide this programmatically, means we
compute types such as t7 = (int ∩ evenp ) ∪ (str ∩ evenp ) in Figure 2. The
component (int ∩ evenp ) is reasonable, however the component (str ∩ evenp )
is superfluous as all even integers are necessarily not strings.

We would like to represent t7 = (int ∩ evenp ) ∪ str , but we cannot. Worse

still, in the figure, transitions p2
t10−−→ p1 and p2

t5−→ p3 are constructed to

guarantee determinism—the two types are disjoint by construction. The type,
t4 = str ∩ evenp, is empty; consequently the transition is unsatisfiable, and thus
state p3 is useless. We would like to eliminate p3 along with all transitions to

and from it; unfortunately, we cannot—lacking an omniscient oracle.
In Figure 2, the transitions leaving each state are labeled with mutually

disjoint, but suboptimal types. E.g., state p2 has four exiting transitions: t4, t5,

t6, and t10 which are mutually disjoint and a partition: t4 ∪ t5 ∪ t6 ∪ t10 = Σ.

4.3 Pragmatic Solution to the Subtype Problem

Our solution to the subtype problem is to employ a semi-Boolean subtype pred-
icate. SETS (Section 4.1) proposes a type system equipped with a pragmatic
subtype (⊆) semi-Boolean predicate which returns true, false, or dont-know,
nevertheless equipped with a true-Boolean membership predicate (∈).

One might suppose that the inability to universally determine subtype or
disjoint type relations will inevitably lead to non-deterministic transitions, but
it does not. For σDFAs, undecidable does not imply non-deterministic. Why?
Because given two types µ and ν, it is guaranteed by construction that the sets
in the standard partition, µ ∩ ν, µ ∩ ν , µ ∩ ν, and µ ∩ ν are mutually disjoint.
These are disjoint independent of whether µ ⊆ ν, or whether µ and ν are disjoint.
An example of transitions, disjoint by construction, can be seen with state p2

as was explained in Section 4.2.
Indeterminate transitions, leading to useless states, are common, as seen with

the evenp type in Section 4.2. These indeterminate transitions do not cause mis-
behavior at run-time. Even if slightly inefficient, at run-time the evenp predicate
returns true, given an even integer, and false otherwise.

Undecidable subtype relations, and consequently unsatisfiable transitions,
lead to challenges in minimization. Whereas classical finite automata are always
uniquely minimizable, σDFAs are not. Case in point, as discussed in Section 4.2,
the system cannot eliminate state p3 , even though the only transition leading

to it is unsatisfiable.
It may occur (albeit not in this example) that certain transitions reference

equivalent types; e.g.. t4 = str and t6 = str∩ evenp . These equivalent types, may
prevent some σDFAs from being optimally minimized, in that certain equivalent
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states cannot be recognized as such. However, we are guaranteed by construction
that two such transitions never appear leaving the same state, else the automaton
would fail to be deterministic.

Minimization of σDFAs is an open question which requires more research.
We will address this topic no further in the current article. We only mention it
here because the impossibility of minimization can lead to sub-optimal σDFA,
as well as compile-time and run-time inefficiencies.

4.4 Limitations of SETS

The type system we describe in Section 4.1 and used throughout our research
lacks features some programmers might expect. Readers might wonder whether
SETS is an appropriate interface to serve as a robust foundation of RTEs. We
believe it is perfectly sufficient for the following reasons.

SETS does not explicitly mention tuple types, but exposes the tuple type
built-into the language if available, e.g., in Scala, SAtomic(Tuple2[Int,Double]).

SETS does not attempt to robustly express function types such as ν → µ
as such would violate the axioms of SETS. SETS demands that the type mem-
bership predicate return a Boolean, and that the subtype predicate return a
semi-Boolean. Suppose function f : α1 → β1. Asking whether f ∈ α2 → β2, re-
quires a subtype check (α1 → β1) ⊂ (α2 → β2), obtaining a semi-Boolean. Thus
the function type membership predicate would need to be a semi-Boolean. This
limitation is not actually troublesome in practice, for none of the languages we
have used in our research (Common Lisp, Clojure, Scala, Python) have a run-
time operator to test whether a given function is an element of a type ν → µ.

SETS cannot know when additional types are defined at run-time, thus inval-
idating a memoized result. In Java, such loading is possible via run-time loading
of jar files. Because of this issue, the Scala implementation of SETS can be con-
figured in open-world-view or closed-world-view. In closed-world-view,
we assume that no additional types will be defined. Thus if ν and µ are the only
subclasses of τ , then τ \ (ν ∪ µ) can be reduced to ∅.

SETS supports types such as Sat(f) which wrap predicates of arbitrary com-
plexity. Thus we cannot reason about the computation complexity of a type
membership query such as x ∈ Sat(f).

5 Brzozowski Derivative Construction of σDFA

In this section we present a generalization of the Brzozowski derivative which is
the principal tool needed for the Brzozowski σDFA construction.

While Brzozowski/Owens [4, 30] defined ∂a r (the derivative of regular ex-
pression, r, with respect to letter a ∈ Σ), we present ∂ν r for type ν ∈ Υ .

Let r be an RTE and ν ∈ Υ be a type designator, then the RTE ∂ν r, the
derivative of r with respect to ν is defined such that J∂ν rK = {s ∈ Σ∗ | ∃h ∈
JνK, h :: s ∈ JrK}.
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Consider the RTE from Equation (3): r3 = (int ·str∗ ·evenp)∗. Each sequence
in Jr3K is either () or begins with an int . ∂int r3 is the set recognized by

∂int (int · str∗ · evenp)∗ = str∗ · evenp · (int · str∗ · evenp)∗

because if we take the subset of Jr3K containing sequences starting with an int ,
which is Jr3K \ {()}, then strip off the head (an int) from each sequence; each of
the remaining tails consists of zero or more str followed by evenp, then followed
by zero or more occurrences of (int · str∗ · evenp).

We wish to compute a derivative of an RTE by recursively applying reduction
rules in Figure 3. We introduce subtype based rules (10), (11) and (12) which
generalize equivalence based rules which Owens [30] stated.

∂ν ∅ = ∂ν ε = ∅ (4)

∂ν (r
∗) = ∂ν r · r∗ (5)

∂ν (r + s) = ∂ν r + ∂ν s (6)

∂ν (r& s) = ∂ν r & ∂ν s (7)

∂ν!r = !∂ν r (8)

∂ν (r·s) =

{
(∂ν r) · s if () ̸∈JrK
(∂ν r) · s+ ∂ν s if ()∈JrK

(9)

∂ν ⌊µ⌋ = ε if JνK ⊆ JµK (10)

∂ν ⌊µ⌋ = ∅ if JνK ∩ JµK = ∅ (11)

∂ν ⌊µ⌋ otherwise, no rule defined (12)

Fig. 3: Brzozowski Derivative Rules. For Equation (8) see Section 5.3. Variables,
ν and µ represent type designators, JνK, JµK ⊆ Σ; while r and s represent RTEs.

Owens [30] and Keil [15] also give similar recursive rules for computing nulla-
bility, detecting whether () ∈ JrK, as well as 1st(r) which is set of symbols which
appear as first positions in a regular expression, i.e. the set of type designators
to which (10) and (11) will be applied. We omit these rules here for lack of space.

5.1 Support for Overlapping Types

The Brzozowski construction for finite alphabets does not encounter the prob-
lem of overlapping types, because every letter in the alphabet is distinct. On
the contrary, in our case, the labels under considerations designate types which
correspond to subsets of Σ. Two types might be related by a subtype relation,
or a disjoint relation. We have extended the Brzozowski method to accommo-
date intersecting types. Rather than calculating the derivative at each state with
respect to each (possibly intersecting) type mentioned in the RTE, instead we
calculate a disjoint set of types, then compute the derivatives with respect to
this potentially larger set of disjoint types. The exact set of disjoint types, and
the manner to compute it is discussed in Section 5.4.

The derivative rules, (4) through (12), are similar to those Owens [30] men-
tions. We have replaced a rule from the treatment from Owens, which was
∂a b = ε whenever a ̸= b with a generalization. This rule as Owens states, does
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not hold when regular expressions are generalized to RTEs. Our generalization
is the introduction of Equations (10), (11), and (12): When computing ∂ν⌊µ⌋ we
must consider several cases: ν ⊆ µ, in which case rule (10) applies and ∂ν⌊µ⌋
reduces to ε; or ν ∩ µ = ∅, in which case rule (11) applies and ∂ν⌊µ⌋ reduces
to ∅. If ν ̸⊆ µ and ν ∩ µ ̸= ∅, then we define no rule to compute the derivative.
The algorithm must avoid any such an attempted computation.

A caveat of our enhanced algorithm is that we must determine whether ν ⊆ µ
or whether ν ∩ µ = ∅. This poses a challenge: the subtype relation, and thus
the equivalence and disjoint relation, are sometimes undecidable. One might
naively think that if we deconstruct the type designators ν and µ (as discussed
in Section 4.3) to the standard partition, {ν ∩µ, ν ∩ µ , ν ∩µ, ν ∩ µ }, then the
undecidability problem would be averted. Unfortunately, there is no guarantee
that the subtype procedure in the host language nor the subtype procedure in
SETS (Section 4.1) is sufficiently clever to subsequently determine all subtype
relations necessary. E.g., the subtype procedure does not inherently know ex post
facto that the types in question were generated by a partitioning algorithm.

We do not attempt to solve the undecidability problem, rather we solve the
problem of computing the derivative in our MDTD algorithm (Section 5.4), which
assures knowledge of subtype and disjointness by construction. I.e., every time we
need to compute ∂ν⌊µ⌋, we know by construction that either ν ⊆ µ or ν ∩ µ = ∅;
moreover, we know which of the two holds.

Our extension step has two positive effects on the algorithm. 1) it enforces
determinism, i.e., we ensure that all the transitions leaving a state specify dis-
joint types, and 2) it forces our treatment of the problem to comply with the
assumptions required by the Brzozowski/Owens algorithm.

5.2 Constructing States and Transitions

Algorithm 1 specifies the construction of a σDFA from an RTE. The algorithm
can be summarized as follows. The initial state, q0 represents the given RTE,

r. Each subsequent state represents some nth derivative, ∂
[n]
ν r ∀ν ∈ Υ . Brzo-

zowski [4, 30] argues that the set of all such derivatives is finite.

We wish to compute the states and transitions of the σDFA Ap in Figure 2
[left] corresponding to Equation (3), r3 = (int ·str∗ ·evenp)∗. We name the states
p0 . . . p3 to distinguish the states from An [left] which we will call n0 . . . n3.
Step 1: construct the initial state p0 corresponding to r3. Step 2: compute

MDTD({int}), because int is the only type which may appear as first element

of a sequence contained in Jr3K. MDTD returns the partition Π = {int , int }.
Step 3: compute {p1, p2} = {∂ν r3 | ν ∈ { int , int}} as in (13) and (14), by
applying rules (5), (9), (10), and (11):

During the computation of (13) and (14), we encounter the computation of
∂

int
⌊int⌋ and ∂int ⌊int⌋. As explained in Section 5.1, ∂int ⌊int⌋ = ε, because

JintK ⊆ JintK, rule (10); and ∂
int

⌊int⌋ = ∅, because J int K∩ JintK = ∅, rule (11).
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Input: r : an RTE
Output: Components of a σDFA as in Section 2.1.
begin

q0 ← new State(r) ; T ← () ; Q← {q0}
W ← {q0} // working list states

while W ̸= ∅ do
q1 ← any element from W
W ←W \ {q1}
for ν ∈ MDTD(1st(q1.expression)) // 1st() see Owens [30]

do
d← ∂ν (q1.expression) // reduced to canonical form

if d ̸= ∅ // if not the empty language

then
if ∃ q2 ∈ Q such that q2.expression = d then

T ← (q1, ν, q2) :: T // transition

else
q2 ← new State(d)
T ← (q1, ν, q2) :: T
W ← q2 :: W
Q← q2 :: Q

F ← {q ∈ Q | () ∈ Jq.expressionK} // see Owens [30]

return (Q, q0, F, T )

Algorithm 1: Compute DFA by Brzozowski derivative

Having computed the RTEs, p1 and p2, we create two new states (in the
σDFA), labeled p1 and p2 , and add two transitions, one for each derivative:

p0
int−−→ p2 and p0

int−−→ p1 , using the values of ν as the respective labels.

We process the constructed states in any order. Resulting derivative com-
putations are shown in Figure 4. As we encounter RTEs not yet seen, we sim-
ply add them to a to-do list. The only types which can be the first element
of a sequence in Jp2K are str and evenp, so when we process p2 , we com-

pute MDTD({str , evenp}), using Algorithm 2, to obtain the partition Π =

{str ∩ evenp, str ∩ evenp, str ∩ evenp , str ∩ evenp }, and the additional in-
formation in Figure 5, which provides the subtype and disjoint relations needed
to apply reduction rules (10) and (11), when computing {∂ν p2 | ν ∈ Π}.

Finally, we decide which states are accepting. A state associated with RTE
r is accepting if () ∈ JrK. Thus the accepting states are q0 and q3; () ∈ Jr3K,
() ̸∈ Jq1K, () ̸∈ Jq2K, and () ∈ Jq3K. Owens [30], provides a simple algorithm for
deciding whether ε ⊆ JrK; we omit the algorithm in this article.

5.3 Constructing a σDFA from a Negated RTE

We consider (8) in more detail. Keil and Thiemann [15] address the question:
under which conditions ∂ν!r = !∂ν r? They argue that the equivalence holds

12



p0 = r3 = (int · str∗ · evenp)∗

p1 = ∂t3 p0 = ∂
int

p0 = ∅ (13)

p2 = ∂t2 p0 = str∗·evenp ·(int ·str∗·evenp)∗ (14)

p3 = ∂t4 p2 = ∂str∩evenp p2

= str∗·evenp ·(int ·str∗·evenp)∗

+ (int ·str∗·evenp)∗ (15)

∂ν p1 = ∅ ∀ν
∂t6 p2 = p2

∂t5 p2 = p0

∂t10 p2 = p1

∂t7 p3 = p2

∂t9 p3 = p3

∂t8 p3 = p0

∂t11 p3 = p1

Fig. 4: Computation of Transitions of σDFA in Figure 2.

Type designator Supertypes Disjoint types

str ∩ evenp Σ, str , evenp ∅, str , evenp
str ∩ evenp Σ, str , evenp ∅, str , evenp
str ∩ evenp Σ, str , evenp ∅, str , evenp
str ∩ evenp Σ, str , evenp ∅, str , evenp

Fig. 5: MDTD computation for types: {str , evenp}.

whenever
⋃

a∈JνKJ∂{a} rK =
⋂

a∈JνKJ∂{a} rK, and that condition is valid whenever

ν is selected from a partition of a union of types which appear as a 1st(r), which
is what our MDTD algorithm (Section 5.4) enforces.

The identity, ∂ν!r = !∂ν r, can also be seen visually in Ap and An, Figure 2
[left] and [right] respectively. In order for An to accept the language complemen-
tary to Ap, the underlying graph structures of the two σDFAs must be isomorphic
except that state acceptance is toggled. Consequently, state n0 corresponds to

the RTE !p0; i.e., n0 = !p0. For the Brzozowski construction to be valid the RTE
associated with n2 must be ∂t2 n0; i.e. n2 = ∂t2 n0.

How do we know that n2 = !∂ν p0? Because the language of state n2 is the

complement of the language of state p2 ; i.e. Jn2K = Jp2K .

J∂t2 !p0K = J∂t2 n0K = Jn2K = Jp2K = J∂t2 p0K .

5.4 Maximal Disjoint Type Decomposition (MDTD)

Newton [21] presented a streamlined algorithm to compute MDTD (Maximal Dis-
joint Type Decomposition) which creates other artifacts useful in σDFA con-
struction especially in light of undecidability of subtype or disjoint procedures.

Given a set of potentially intersecting type designators,M = {µ1, µ2, . . . , µn},
Algorithm 2 computes a pair, (Π,S), where S is meta-data described below, and
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Input:M : a set of type designators
Output: (U ,S): a pair as described in Section 5.4.
begin
S ←

{
(⊤, {⊤}, {⊥})

}
// working list of triples

for µ ∈M do
for (ν, f, d) ∈ S do
S ← S \ {(ν, f, d)} // remove triple from S
if µ ∩ ν = ∅ then
S ← (ν, f, µ :: d) :: S // ν and µ are disjoint

else if µ ∩ ν = ∅ then
S ← (ν, µ :: f, d) :: S // ν ⊆ µ

else
S ← (µ ∩ ν, µ :: f, d) :: S // µ ∩ ν ⊆ µ
S ← (µ ∩ ν, f, µ :: d) :: S // µ ∩ν and µ are disjoint

U ← set of first elements of each 3-tuple in S
return (U ,S)

Algorithm 2: Compute MDTD of given M.

Π = {ν1, ν2, . . . , νm} is a new set of type designators designating a partition of
Σ, such that for i ≤ m, and j ≤ n, either JνiK ⊆ JµjK or JνiK ∩ JµjK = ∅.

Algorithm 2 has a limitation that there may be νi, νj ∈ Π such that JνiK =
JνjK = ∅, because the subset predicate may return dont-know ; see Section 4.3.

MDTD has worst-case (time and space) complexity Ω
(
2|M|), if the final else

is taken every time through the inner loop. Any alternate algorithm must also
have worst-case, exponential complexity, because in the worst case, a set of size
2|M| must be computed. We say Ω, because we are ignoring the complexity
of the vacuity/disjoint checks, which only worsen the complexity. However, the
complexity is quadratic if M is already a partition of its union.

As mentioned above, the return value of Algorithm 2 contains as meta-data a
set, S, of triples, (ν, f, d): ν is an element of the partition, Π; f is a set of factors,
each of which is a guaranteed supertype of ν, even if the subtype predicate is not
able to detect it; and d is a set of type designators, each of which is guaranteed
disjoint with ν, even if (especially if) the disjoint predicate is not capable of
detecting the fact.

6 Sample Implementations

One of the goals of our project is to design RTE abstractly enough to be
implementable in multiple programming languages. As a proof of concept, we
provide open source implements for RTE and its support libraries in Common
Lisp [2], Scala [28, 29], Clojure [10, 11], and Python [33]. The original implemen-
tation is a Common Lisp library cl-rte [23], first presented in [20]. The Clojure
(clojure-rte [22]) and Scala (scala-rte [25]) libraries extend the Clojure and
Scala type systems, which are already extensions of the type system of the JVM.
The Python library, python-rte [24], extends the built-in Python type system.
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def evenp(x: Any): Boolean =

x match {

case y: Int => y % 2 == 0

case _ => false

}

val even = SSatisfies(evenp,"even")

val int = Atomic(classOf[Int])

val str = Atomic(classOf[String])

val r0 = (int ++ str ++ even).*

val r1 = int ++ str.* ++ even).*

val dfa = r1.toDfa()

val s1= Seq(1,"hello",3)

val s2= Seq(1,"hello","world",2,

3,4,

5,"hello",6)

val s3 = Seq(1.1, 1.2, 1.3)

r0.contains(s1) // Some(false)

dfa.simulate(s2) // Some(true)

dfa.simulate(s3) // None

Fig. 6: Scala code for constructing r1 and r3 Equations (1) and (3).
r0.contains(s1) asks whether s1 is in the language of the RTE, while
dfa.simulate(s2) asks whether s2 is in the language of the σDFA.

In this article we suppress most of the specifics of these implementations. We
invite the reader to download the code from the links provided. Figure 6 shows
a small example of how RTEs can be used in a Scala program.

In each of these *-rte libraries, users may specify RTEs based on fundamen-
tal types in the language, or user defined classes. The language-level types are
interfaced to RTE via SETS serving as a wrapper recognizable by the RTE imple-
mentation code. The implementations provide Brzozowski σDFA constructions
to convert the RTE (expression tree) into a σDFA, including APIs for manipulat-
ing RTEs, such as inversion, intersection, union, determinization, minimization,
extraction (extracting an RTE from a σDFA [34, sec 2.4.2]), vacuity checks, etc.

7 Conclusion and Perspectives

We have presented a foundation sufficient for implementing RTEs in various
programming languages using an adaptation of the Brzozowski construction al-
gorithm. Two challenges for implementing RTE in a host language are repre-
senting and computing with types in the host language, and converting a set
of overlapping types to a partition of the value space. We have proposed SETS
(Section 4.1) and MDTD (Section 5.4) as solutions to these challenges, along with
sample implementations in Common Lisp, Clojure, Scala, and Python.

An important strength of our type system is that many questions are an-
swered with three-way logic. For types ν and µ, we distinguish ν ⊆ µ (ν is
proven to be a subtype of µ), ν ̸⊆ µ (ν is proven NOT to be a subtype of µ), and
dont-know (we were unable to prove or disprove ν ⊆ µ). This three-way logic
extends into the question of habitation of rational languages. For example, given
an σDFA it might be that every computation path from q0 to a final state passes
through at least one indeterminate transition–not provably satisfiable and not
provably non-satisfiable. In this case we cannot determine whether the language
of the σDFA is inhabited.

15



References

1. Seqexp: regular expressions for sequences (2014),
https://github.com/cgrand/seqexp

2. Ansi: American National Standard: Programming Language – Common Lisp. ANSI
X3.226:1994 (R1999) (1994)

3. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
markup language (xml) 1.0 (fifth edition). W3C Recommendation (2008), available
at http://www.w3.org/TR/REC-xml/

4. Brzozowski, J.A.: Derivatives of Regular Expressions. J. ACM
11(4), 481–494 (Oct 1964). https://doi.org/10.1145/321239.321249,
http://doi.acm.org/10.1145/321239.321249

5. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers. In:
Computer Aided Verification, 29th International Conference (CAV’17). Springer
(July 2017), https://www.microsoft.com/en-us/research/publication/power-
symbolic-automata-transducers-invited-tutorial/

6. EPFL: Scala Reflection Library 2.12.0 (2016), https://www.scala-
lang.org/api/2.12.0/scala-reflect/scala/reflect/runtime/index.html

7. Gosling, J., Joy, B., Steele, G.L., Bracha, G., Buckley, A.: The Java Language
Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edn. (2014)

8. Grigore, R.: Java generics are turing complete. CoRR abs/1605.05274 (2016),
http://arxiv.org/abs/1605.05274
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