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Abstract—This paper describes the solver P-MCOMSPS—-STR
submitted to the parallel track of the 2020’s SAT Competi-
tion. It is a concurrent portfolio solver instantiated with the
Painless (PArallel INstantiabLE Sat Solver) framework and
using MapleCOMSPS as core sequential solver.

I. INTRODUCTION

P-MCOMSPS-STR is a parallel SAT solvers built by instan-
tiating components of the Painless parallel framework [1].
It is a portfolio-based [2] solver implementing a diversification
strategy [3], fine control of learnt clause exchanges [4], using
MapleCOMSPS [5] as a core sequential solver, and where
learnt clause strengthening [6] has been integrated.

Section II gives an overview on Painless framework.
Section III details the implementation of P-MCOMSPS—-STR
using Painless and MapleCOMSPS.

II. DESCRIPTION OF PAINLESS

Painless is a framework that aims at simplifying the im-
plementation and evaluation of parallel SAT solvers for many-
core environments. Thanks to its genericity and modularity, the
components of Painless can be instantiated independently
to produce new complete solvers.

The main idea of the framework is to separate the technical
components (e.g., those dedicated to the management of
concurrent programming aspects) from those implementing
heuristics and optimizations embedded in a parallel SAT
solver. Hence, the developer of a (new) parallel solver concen-
trates his efforts on the functional aspects, namely paralleliza-
tion and sharing strategies, thus delegating implementation
issues (e.g., data concurrent access protection mechanisms)
to the framework.

Three main components arise when treating parallel SAT
solvers: sequential engines, parallelization, and sharing. These
form the global architecture of Painless.

A. Sequential Engines

The core element that we consider in our framework is a
sequential SAT solver. This can be any CDCL state-of-the
art solver. Technically, these engines are operated through a
generic interface providing basics of sequential solvers: solve,
interrupt, add clauses, etc.

Thus, to instantiate Painless with a particular solver, one
needs to implement the interface according this engine.

B. Parallelization

To built a parallel solver using the aforementioned engines,
one needs to define and implement a parallelization strategy.
Portfolio and Divide-and-Conquer are the basic known ones.
Also, they can be arbitrary composed to form new strategies.

In Painless, a strategy is represented by a tree-structure
of arbitrary depth. The internal nodes of the tree rep-
resent parallelization strategies, and leaves are core en-
gines. Technically, the internal nodes are implemented using
WorkingStrategy component and the leaves are instances
of SequentialWorker component.

Hence, to develop its own parallelization strategy, the user
should create one or more strategies, and build the associated
tree-structure.

C. Sharing

In parallel SAT solving, the exchange of learnt clauses
warrants a particular focus. Indeed, beside the theoretical
aspects, a bad implementation of a good sharing strategy may
dramatically impact the solver’s efficiency.

In Painless, solvers can export (import) clauses to (from)
the others during the resolution process. Technically, this is
done by using lock-free queues [7]. The sharing of these
learnt clauses is dedicated to particular components called
Sharers. Each Sharer is in charge of sets of producers
and consumers and its behaviour reduces to a loop of sleeping
and exchange phases.

Hence, the only part requiring a particular implementation
is the exchange phase, that is user defined.

III. P-MCOMSPS-STR

This section describes the overall behaviour of our com-
peting instantiation named P-MCOMSPS—-STR. Its architec-
ture is highlighted in Fig. 1. It implements the Painless
strengthening described in [8]. In the following, we highlight
the outline.

A. MapleCOMSPS

MapleCOMSPS [5] is based on MiniSat [9], and relies
on the classical VSIDS [10], and the more recently defined
LRB [11] for its decision heuristics. These two are used in
one-shot phases: first LRB, then VSIDS. Moreover, it uses
Gaussian Elimination (GE) at preprocessing time.
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Fig. 1. Architecture of P-MCOMSPS-STR.

We adapt this solver for the parallel context as follows: (1)
we parametrized the solver to select either LRB, or VSIDS for
all solving process (noted respectively, L and V); (2) we added
callbacks to export and import clauses; (3) we added an option
to use or not the GE preprocessing; (4) we parametrized the
solver to use as variable score comparator either < or <=
(noted respectively head: H and tail: T).

B. Strengthener

A reducer engine (R in Fig. 1) implements the algorithm
introduced in [6].

We implemented the strengthening operation as a decorator
of SolverInterface. This decorator is a SolverInterface itself
that uses, by delegation, another Solverlnterface to apply the
strengthening, in the present case a MapleCOMSPS solver.

C. Portfolio and Diversification

P-MCOMSPS—-STR is a solver implementing a basic port-
folio strategy (PF), where one solver is used as a reducer,
and the other underlying core engines are either LH, LT, VH or
VT instances (i.e., combination of VSIDS or LRB, and head
or tail).

For each type of instances, we apply a sparse random
diversification similar to the one introduced in [3]. That is
for each group of k solvers, the initial phase of a solver is
randomly set according the following settings: every variable
gets a probability 1/2k to be set to false, 1/2k to true, and
1 —1/k not to be set.

Moreover, only one of the solvers performs the GE prepro-
cessing.

D. Controlling the Flow of Shared Clauses

In P-MCOMSPS—-STR, the sharing strategy ControlFlow
is inspired from the one used by [3], [4]. We instantiate one
Sharer for which all solvers are producers. It gets clauses
from this producer and exports some of them to all others (the
consumers).

The exchange strategy is defined as follows: each solver
exports clauses having a LBD value under a given threshold
(2 at the beginning). Every 1.5 seconds, 1500 literals (the
sum of the size of the shared clauses) are selected from each

producers by the Sharer and dispatched to consumers. The
LBD threshold of the concerned solver is increased (resp.
decreased) if an insufficient (resp. a too big) number of literals
are dispatched: respectively, less than 75% (1125 literals) and
more than 98% (1470 literals).

E. Online Strengthening

The reducer engine is both a consumer and a producer of
the sharer (Shr). It receives clauses from the different cores,
strengthened them, in case of success it then exports them
back. The sharing mechanism will then share this strengthened
clauses to all the other solvers.

Since, a strengthened clause subsumes the original one, it
is likely that cores will forget the original clause over time.
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