
New Algorithms For Multivalued Component Trees⋆

Nicolas Passat1, Romain Perrin2, Jimmy Francky Randrianasoa2,3, Camille Kurtz4,
and Benoı̂t Naegel2

1 Université de Reims Champagne Ardenne, CRESTIC, Reims, France
2 Université de Strasbourg, CNRS, ICube, Strasbourg, France

3 EPITA Research Laboratory (LRE), Le Kremlin-Bicêtre, France
4 Université Paris Cité, LIPADE, Paris, France

Abstract. Tree-based structures can model images—and more generally valued
graphs—for processing and analysis purpose. In this framework, the component
tree was natively designed for grey-level images—and more generally totally or-
dered valued graphs. Ten years ago, the notion of a multivalued component tree
was introduced to relax this grey-level / total order constraint. In this algorith-
mic paper, we provide new tools to handle multivalued component trees. Our
contributions are twofold: (1) we propose a new algorithm for the construction
of the multivalued component tree; (2) we propose two strategies for building
hierarchical orders on value sets, required to further build the multivalued com-
ponent trees of images / graphs relying on such value sets. Codes available at:
https://github.com/bnaegel/multivalued_component_tree.

Keywords: algorithmics · images / valued graphs · multivalued component trees
· hierarchical ordering · connected operators · mathematical morphology

1 Introduction

Building trees for modeling images is a historical research topic which was mainly in-
vestigated in field of mathematical morphology. The trees developed in this framework
model in a compact way the space of the possible partitions of an image induced by its
mixed spatial-spectral composition. These so-called morphological trees can be subdi-
vided into two families, which build upon either total or partial partitions. The archetype
of the first family is the binary partition tree [23] while the archetype of the second is
the component tree [24].

Based on these trees, various image processing and analysis methods were devel-
oped, gathered under the name of connected operators [25,26]. The success of mor-
phological trees and connected operators relies on their low cost in terms of construc-
tion and handling. Regarding their construction, they can be built in quasi-linear time
[23,3]. Regarding their involvement in image processing / analysis tasks, the two main
paradigms of attribute-based node selection [2,8] and optimal cut computation [6,9] can
be carried out in linear time.

⋆ This work was supported by the French Agence Nationale de la Recherche (grants ANR-20-
THIA-0006, ANR-20-CE45-0011, ANR-22-CE45-0034 and ANR-23-CE45-0015).

https://github.com/bnaegel/multivalued_component_tree

2 N. Passat, R. Perrin, J. F. Randrianasoa, C. Kurtz, and B. Naegel

Over the last years, efforts were geared towards enriching the framework of mor-
phological hierarchies with new structures that generalize classical ones. In this context,
the notion of multivalued component tree [10] was proposed ten years ago as a subfam-
ily of the component graphs [17,16] which generalize the classical component tree [24].
This new paradigm of multivalued component tree had been designed in order to build
a component tree on images where values are organised with respect to a (partial) hier-
archical order relation, whereas the standard component tree requires a total order.

This is an algorithmic article. It provides new tools mandatory for handling the
multivalued component tree. First, we propose a new approach for building the mul-
tivalued component tree (Sect. 4). By contrast with an initial algorithm proposed in
[10] (which required some pre- and post-processings to rewrite multivalued component
tree construction as component tree construction), we now provide a standalone algo-
rithm that directly builds a multivalued component tree from its multivalued image.
Second, we provide two strategies for endowing a set of values with hierarchical order
relations, adapted to the further construction of multivalued component trees (Sect. 5).
Both strategies rely on the construction of morphological trees—component trees or bi-
nary partition trees—on/from a set of values considered itself as an image—or a valued
graph.

The other parts of this article are organized as follows. In Sect. 2, we recall related
works on the morphological trees. In Sect. 3, we provide the required definitions and
notions related to the (multivalued) component tree. Sect. 6 concludes the article.

2 Related works

A morphological tree models an image defined as a function F : Ω→ V that associates
to each point x of its support Ω a value F (x) within the set of values V. In general, Ω is
endowed with an adjacency relation ⌢. In other words, (Ω,⌢) is a non-directed graph.
By side effect, a morphological tree can model valued graphs, and not only images.

Morphological trees are partition trees. Indeed, they are created by stacking a finite
sequence of partitions ofΩ. Each partition is composed of subsets X ⊆ Ω that constitute
the nodes (root, internal nodes, leaves) of the tree, and a tree models the inclusion rela-
tion between them. Such trees can be classified in two main families: those originated
either from (1) total partitions or (2) partial partitions of Ω.

The archetype of the total partition trees is the binary partition tree [23] (also de-
clined under variants: α-tree [27], watershed tree [12], etc.). Except the leaves, each
node is a connected subset X ⊆ Ω which has two children nodes X1 and X2 that form
a partition of X, leading to a top-down binary decomposition of the root Ω of the tree
into subsets of decreasing size. The construction of such trees is guided by one or many
[20] criteria which determine the merging order of the smallest subsets provided by an
initial partition of Ω, that defines the leaves of the tree.

The archetype of the partial partition trees is the component tree [24] (also declined
under variants: hyperconnection tree [18], tree of shapes [11], topological tree of shapes
[14], complete tree of shapes [15], etc.). The component tree is built from successive
threshold sets, at each value of V of the image F . The component tree models the
inclusion relation between the connected components of these threshold sets. Each node

New Algorithms For Multivalued Component Trees 3

a

b c

d e f g

h i

(a) (V,⩽) (b) G = (Ω,⌢) (c) F : Ω→ V

Fig. 1. (a) A set of values V = {a,b,c,d,e,f,g,h,i}, endowed with a hierarchical order ⩽ such that
the minimum is a and the maximal elements are d, e, f, h, i. This ordered set is depicted here as its
Hasse diagram, which is—by definition—a tree. (b) A set Ω = [[0, 5]]2 (squares) endowed with an
adjacency ⌢ (segments), leading to the graph G = (Ω,⌢). (c) A multivalued image F : Ω → V
built on the support Ω (b) and taking its values in V (a). The colour of each square is associated
to the value of the corresponding point.

is a subset X ⊆ Ω corresponding to a connected component at a given value v ∈ V. If
X is not a flat zone of the image, it has k ≥ 1 children nodes Xi (1 ≤ i ≤ k) that form a
partition of a strict subset Y ⊂ X, which corresponds to the part of X where the values
of F are strictly greater than v.

Many efforts were dedicated to the efficient construction of morphological trees, and
especially the component tree. An overview of the classical algorithms, based e.g. on
flooding or union-find paradigms, can be found in [3]. A recent trend is also to develop
parallel algorithms, based on distributed paradigms [5,4] or GPU-based approaches [1].

3 Multivalued component tree

Let Ω be a finite set and ⌢ an adjacency (irreflexive, symmetric) relation on Ω that
induces the (equivalence) connectedness relation by reflexive-transitive closure of ⌢.
The couple G = (Ω,⌢) is a non-directed graph. For any subset X ⊆ Ω, we note C[X]
the set of the connected components (i.e. the maximal connected sets) of the subgraph
(X,⌢) ofG induced by X. We assume thatG is connected, i.e. C[Ω] = {Ω}. See Fig. 1(b).

Let V be a finite set and ⩽ a hierarchical order on V, i.e. an order (1) which admits a
minimum (resp. a maximum) and (2) such that for any v ∈ V, the subset of the elements
lower (resp. greater) than v is totally ordered by ⩽. See Fig. 1(a).

A total order is a hierarchical order. Thus, all the definitions given below for the
multivalued component tree [10] generalize those of the classical component tree [24].

Let us consider an image F defined as a function F : Ω → V. See Fig. 1(c). The
threshold set of F at value v ∈ V is defined by

Λv(F) = {x ∈ Ω | v ⩽ F (x)} (1)

See Fig. 2(a). We set
Θ =
⋃
v∈V

C[Λv(F)] (2)

4 N. Passat, R. Perrin, J. F. Randrianasoa, C. Kurtz, and B. Naegel

(a) Λv(F) for v ∈ V (b) T = (Θ,◁)

Fig. 2. (a) The nine threshold sets Λv(F) for the image F of Fig. 1(c). The squares depicted in
color (resp. white) belong (resp. do not belong) to Λv(F). Note that Λf(F) = ∅ since the image
F has no point of value f. Also note that Λg(F) , ∅ whereas F has no point of value g. This
is justified by the fact that Λg(F) is partitioned by Λh(F) and Λi(F). A connected component
(“T-shaped”, in the upper-left part of the image) is common to the threshold sets Λc(F), Λg(F)
and Λh(F). (b) The multivalued component tree T = (Θ,◁) of the image F of Fig. 1(c). Each
disk / hexagon corresponds to a node X ⊆ Ω of Θ (the unique hexagonal node X corresponds to
the three occurrences of the “T-shaped” connected component). The color of the disk / hexagon
corresponds to the value ω(X) of the node.

which gathers the connected components at each threshold set Λv(F) (v ∈ V). The
elements of Θ are called the nodes of the multivalued component tree.

A node may be generated at many threshold values (see the “T-shaped” connected
component in Fig. 2(a)). In particular, for any X ∈ Θ, we set

I(X) = {v ∈ V | X ∈ C[Λv(F)]} (3)

and we define the remanence τ(X) of X as the number of threshold sets to which X
belongs, i.e. as

τ(X) = |I(X)| (4)

We also set ω(X) as the maximal value of threshold sets to which X belongs, i.e. as

ω(X) =
⩽∨
I(X) (5)

For instance, for the “T-shaped” connected component X in Fig. 2, which belongs to
Λc(F), Λg(F) and Λh(F), we have I(X) = {c,g,h}, the remanence of X is τ(X) = 3 and
we have have ω(X) = h, since c ⩽ g ⩽ h.

The inclusion relation ⊆ is a hierarchical order on Θ. We note ◁ the reflexive-
transitive reduction of ⊆ with respect to Θ. The couple T = (Θ,◁), i.e. the Hasse
diagram of (Θ,⊆), is a tree called the multivalued component tree. See Fig. 2(b).

For any node X ∈ Θ, we define the proper part ρ(X) ⊆ Ω of X as

ρ(X) = X \
⋃
Y◁X

Y = {x ∈ Ω | F (x) = ω(X)} (6)

New Algorithms For Multivalued Component Trees 5

The multivalued component tree T is an image model of the image F . Indeed, we
can reconstruct F from T as follows

∀x ∈ Ω,F (x) =
⩽∨

X∈Θ

1(X,ω(X))(x) (7)

where 1(A,u) : Ω → V is the cylinder function defined by 1(A,u)(x) = u if x ∈ A ⊆ Ω and∧⩽ V (the minimum of (V,⩽)) otherwise.
These definitions given for the multivalued component tree are similar to those of

the standard component tree. The only differences are the following:

– ⩽ is a hierarchical order whereas it is a total order for the component tree;
– it may happen that ρ(X) = ∅ whereas we have ρ(X) , ∅ for the component tree.

4 Building the multivalued component tree

4.1 Some reminders of the previous algorithm

In [10], a first strategy had been proposed for building the multivalued component tree.
The main idea was to rewrite the image F : Ω → V as an image F̂ : Ω̂ → V̂ where
Ω̂ ⊇ Ω and V̂ = [[0, p]] ⊂ N with p ≤ |V|. The set V̂ was endowed with the total
order ≤ on N such that there is a homomorphism from (V,⩽) to (V̂,≤) induced by
the equivalence relation on V that gathers the values of equal distance with respect to
the minimum

∧⩽ V in the Hasse diagram of (V,⩽). The set Ω̂ was endowed with an
adjacency ⌢Ω̂ such that there is an increasing homeomorphism from the graph (Ω,⌢)
to the graph (Ω̂,⌢Ω̂). The latter can be defined by adding a new vertex ε{x,y} in Ω̂, and
replacing the adjacency link x ⌢ y by the two links x ⌢ ε{x,y} and ε{x,y} ⌢ y, whenever
the two vertices x, y ∈ Ω are such that x ⌢ y while F (x) and F (y) are non-comparable
with respect to ⩽. It was proved that the component tree T̂ of F̂ is isomorphic with
the multivalued component tree T of F . This was then possible to build a multivalued
component tree by using any algorithm dedicated to the construction of the component
tree, at the cost of (1) the preprocessing that builds F̂ from F , and (2) a post-processing
that retrieves T = (Θ,◁) from T̂ = (Θ̂, ◁̂) by removing from the proper part ρ(X) of
each node X ∈ Θ̂ the elements of X \ Ω and by substituting the values of V to those of
V̂ in the definition of ω(X).

4.2 A new algorithm

We now present a new alternative algorithm that no longer requires such pre-conditio-
ning of the image F . The construction scheme is detailed in Alg. 1 and Func. Flood.
The proposed strategy is derived from the component tree construction presented by
Salembier et al. in [24]. It also finds inspiration in the mask-based algorithm developed
by Ouzounis et al. in [13].

The proposed algorithm relies on the following data structures:

6 N. Passat, R. Perrin, J. F. Randrianasoa, C. Kurtz, and B. Naegel

Algorithm 1: Building the multivalued component tree
Input: (Ω,⌢), (V,⩽),F : Ω→ V
Output: T = (Θ,◁)

1 Build nodes
2 Build points
3 Build status
4 Build nb nodes
5 Build index
6 Build progress
7 vmin :=

∧⩽ V
8 Choose xmin ∈ Ω such that F (xmin) = vmin

9 points[vmin].add(xmin)

10 progress[vmin] := true
11 Flood(vmin)

– nodes: a 2D array which stores the nodes of the multivalued component tree. The
first dimension is indexed by the values of V. The second dimension is indexed by
the identifiers of the nodes. In other words, nodes encodes Θ; nodes[v] encodes
the nodes of Θ at value v; and nodes[v][i] encodes the ith node of Θ at value v;

– points: a 2D array which stores the processed points of the image. The first di-
mension is indexed by the values of V. In other words, points[v] encodes all the
points x ∈ Ω currently processed “at value v”;

– status: a 1D array which stores the status of each point of the image. For any
point x ∈ Ω, we have status[x] = −1 if x is unprocessed; status[x] = 0 if x
belongs to points; and status[x] = i > 0 if x belongs to the proper part ρ(X) of
the node X stored in nodes[F (x)][i];

– nb nodes and index: two 1D arrays which store the number of nodes already fully
built and the index of the node currently built at each value of V, respectively;

– progress: a 1D array which indicates if there exists a node at value v, currently un-
der construction or to be built, which is an ancestor of the node at value u currently
being defined.

By comparison with the component tree construction detailed in [24], the one pro-
posed here for multivalued component tree construction differs with regard to Flood as
follows:

– In [24], we have x ∈ nodes[F (x)]. Here (Lines 7–11), we may have x ∈ nodes[u]
with u , F (x). This happens when x is stored in nodes as the neighbour of another
point with a non-comparable value. In such case, the chosen value u is the infimum
of these two non-comparable values, and we have in particular u < F (x);

– For two adjacent points x ⌢ y, it may occur that F (x) and F (y) be non-comparable.
In particular, the “else” case at Line 19 means that either u > w or u and w are non-
comparable. In the first case, ŵ is set to w. In the second case, ŵ is the infimum
of u and w, distinct from them. In this last case, the point y of value w is added to
nodes[ŵ] and not to nodes[w]. This will further result in the scenario discussed
above (Lines 7–11).

New Algorithms For Multivalued Component Trees 7

Function Flood
Input: u ∈ V: current level
Output: w ∈ V: value of the parent node of the root of the built (partial) multivalued

component tree at value u (or ε if the node has no parent)
1 while !(points[u].empty()) do
2 x := points[u].remove()
3 if index[u] > nb nodes[u] then
4 nb nodes[u] := index[u] // in practice, nb nodes[u]++
5 X := create node() // new node in Θ
6 nodes[u].insert(X)

7 if F (x) , u then
8 w := F (x)
9 points[w].add(x)

10 progress[w] := true
11 while u < w do w := Flood(w)
12 else
13 status[x] := index[u]
14 nodes[u][index[u]].add to proper part(x)
15 foreach y ⌢ x do
16 w := F (y)
17 if status[y] = −1 then
18 if u ⩽ w then ŵ := w
19 else ŵ :=

∧⩽
{u,w}

20 points[ŵ].add(y)
21 status[y] := 0
22 progress[ŵ] := true
23 while u < ŵ do ŵ := Flood(ŵ)

24 if u = vmin then
25 w := ε
26 else
27 w :=

∨⩽
{w′ ∈ V | w′ < u}

28 while progress[w] = f alse do w :=
∨⩽
{w′ ∈ V | w′ < w}

29 create edge(nodes[u][index[u]],nodes[w][index[w]]) // new edge in
◁

30 progress[u] = f alse
31 index[u]++
32 return w

Note that nodes, points, status, nb nodes, index, progress, are handled as global
variables. In practice, Flood is then called for an input value v, with a given configura-
tion of these variables and modifies them.

An example of the behaviour of the algorithm is provided in Figs. 3–4. For the image
F : Ω → V of Fig. 3(a), the processing order of the points of Ω is given in Fig. 3(b),
from the first (1) to the last one (36). Fig. 4 shows the progress of the construction of
the multivalued component tree of F with respect to the processed points.

8 N. Passat, R. Perrin, J. F. Randrianasoa, C. Kurtz, and B. Naegel

5

4

3

2

1

0

0 1 2 3 4 5

a

a

a

a

a

a

h

a

e

f

h

h

g

a

a

a

c

c

d

d

a

a

i

i

e

e

d

a

g

g

b

e

d

a

a

a

(a) F : Ω→ V

5

4

3

2

1

0

0 1 2 3 4 5

36

35

29

26

10

1

34

28

12

11

3

2

33

32

27

25

9

4

23

22

30

13

6

5

21

19

17

16

8

7

24

20

18

31

15

14

(b) Order of processing of Ω

Fig. 3. (a) An image F : Ω → V, following the same conventions as in Fig. 1. (b) The order of
processing of the points of Ω by Alg. 1, from the first processed point (“1”) to the last processed
point (“36”). At Line 15 of Alg. 1, the points y adjacent to x are considered in the clockwise
order, starting from the point on the right of x.

4.3 Complexity analysis

In this analysis, we assume that |⌢| = O(|Ω|), which is the case in digital images. We
note κ(V) the time cost required to compare two elements of V or to compute their
infimum. Depending on the way (V,⩽) is modeled, κ(V) may vary from O(1) (with a
space cost of O(|V|2)) to O(log |V|) or O(|V|) (depending on the equilibrium of the Hasse
diagram, with a space cost ofO(|V|)). We note h(V) ∈ N the height of the Hasse diagram
of (V,⩽).

Regarding the data structures:

– The size of nodes is O(|Ω|). It is initialized with a time cost O(1). When accessing
nodes[v] for reading or writing, the induced time cost is O(log(|Ω|)).

– The size of points is O(|Ω|). It is initialized with a time cost O(|Ω| · κ(|V|)). When
accessing a set points[v] for reading or writing, the induced time cost is O(1).

– The size of status is O(|Ω|). It is initialized with a time cost O(|Ω|). Accessing it
for reading or writing has a time cost O(1).

– The size of nb nodes and index is O(|Ω|). They are initialized with a time cost
O(1). Accessing them for reading or writing has a time cost O(log(|Ω|)).

– The size of progress is O(h(V)). It is initialized with a time cost O(1). Accessing
it for reading or writing has a time cost O(log(h(V))).

Based on these considerations, the time cost for Alg. 1 (except Line 11) is O(|Ω| ·κ(|V|)).
The time cost of Flood depends on:

– the size ofΘ. In particular, for each node ofΘ, Flood is called once, with an induced
time cost O(log(|Ω|) + log(h(V))) related to Lines 1 and 30–31;

New Algorithms For Multivalued Component Trees 9

(a) 1 (b) 2–3 (c) 4 (d) 5–6

(e) 7–8 (f) 9 (g) 10 (h) 11

(i) – (j) 12 (k) – (l) 13–16

(m) 17–18 (n) – (o) 19–21 (p) –

(q) 22–23 (r) 24 (s) 25–32 (t) 33

(u) 34 (v) – (w) 35–36 (x) –

Fig. 4. Construction of the multivalued component tree of the image F : Ω → V of Fig. 3(a).
The number(s) in the subfigure captions (a–x) correspond to the points x ∈ Ω processed by Alg. 1
at the current stage, as depicted in Fig. 3(b). At a current stage: a plain coloured node is fully
built; a contour-colored node is under construction; a non-colored node has not been considered
yet; a black edge is built; a light gray edge is not built.

– the size of ◁. In particular, for each edge of ◁, Flood is called once, with an induced
time cost O(τ(X) · (log(h(V)))+ κ(|V|)) related to Lines 24–29 (where X is the node
associated to the processed edge (X,Y));

10 N. Passat, R. Perrin, J. F. Randrianasoa, C. Kurtz, and B. Naegel

– the number of points of Ω. In particular, for each point x ∈ Ω, the while loop of
Flood (Lines 2–23) is run once or twice, with an induced time cost O(log(|Ω|) +
log(h(V)) + κ(V)).

It follows that the overall time cost of the construction process (Alg. 1 and Func. Flood)
is

T = O
(
|Ω| ·
(

log(|Ω|) + h(V) · log(h(V)) + h(V) · κ(|V|)
))

(8)

If the Hasse diagram of (V,⩽) is well balanced, the time cost becomes

T = O
(
|Ω| ·
(
log(|Ω|) + (log(|V|))2

))
(9)

The algorithms dedicated to build the standard component tree present a quasi-
linear computational cost O(|Ω| · log(|Ω|)). The initial algorithm dedicated to build the
multivalued component tree [10] (see Sect. 4.1) relies on such quasi-linear time cost
algorithms. In addition, it requires a pre- and a post-processing step. During the pre-
processing, the support of the image is extended from Ω to Ω̂, and the time cost of the
subsequent component tree construction is then O(|Ω̂| · log(|Ω̂|)). We have |Ω̂| ≥ |Ω|,
and the size of Ω̂ depends on the size of the subset of edges of ⌢ that link vertices of
Ω with non-comparable values. More precisely, we have |Ω̂| = |Ω| in the best scenario,
i.e. when all the couples of adjacent vertices x ⌢ y are such that F (x) and F (y) are
comparable. By contrast, we have |Ω̂| = |Ω| + O(|⌢|) when all the couples of adjacent
vertices x ⌢ y are such that F (x) and F (y) are non-comparable. This last case may
generally occur whenever the Hasse diagram of (V,⩽) is well-balanced. In the case of a
d-dimensional digital image, the size of ⌢ is d · |Ω|. In this context, the overall time cost
of the computation of the multivalued component-tree is O(d · |Ω| log |Ω|). We observe in
particular that the initial algorithm [10] and the new one proposed here are not sensitive
to the same parameters. The first has a time cost that progressively degrades while the
dimension of the image increases, while the second has a time cost that progressively
degrades while the size of the value space increases. It follows that both algorithms are
complementary, and may be considered depending on the application hypotheses.

5 Hierarchical order construction

Building the multivalued component tree of an image F : Ω → V requires a hierarchi-
cal order on the set of values V. In this section, we discuss the ways to endow V with
such hierarchical orders (or, more generally, preorders) ⩽. Two strategies are proposed:

– building a preorder ⩽ on the only values of V (Sect. 5.1);
– enriching V with additional values leading to a larger setW and defining an order
⩽ onW so that the values of V are the maximal elements of (W,⩽) (Sect. 5.2).

5.1 (Pre)ordering the value set

We first aim to build a hierarchical preorder ⩽V on V. Equivalently, we must set:

– an equivalence relation ∼ on V that gathers values which are mutually and symmet-
rically comparable, leading to a quotient set V/∼, noted K;

New Algorithms For Multivalued Component Trees 11

– a hierarchical order ⩽K on K.

This preorder ⩽V is then defined, for all u, v ∈ V, by

(u ⩽V v)⇐⇒ ([u]∼ ⩽K [v]∼) (10)

Let us come back to the notion of a component tree (see Sect. 3 by assuming that ⩽
is a total order). We consider a graph G∆ = (∆,⌢∆) where ∆ is a finite set and ⌢∆ is an
adjacency on ∆, and a function δ : ∆ → N (with N endowed with the usual ≤ relation).
Following Sect. 3, one can build the component tree T∆ = (Θ∆,◁∆) of (G∆, δ).

The set Θ∆ is a cover of ∆. More precisely, we have
⋃
Θ∆ = ∆ and ∀A ∈ Θ∆, A , ∅.

However, two distinct elements A, B ∈ ∆ may have a non-empty intersection. Indeed,
for all A, B ∈ ∆ we have A∩B , ∅ ⇒ A ⊆ B∨B ⊆ A. This last point may prohibit Θ∆ to
be a partition of ∆. Nonetheless, we can define the set ∆⋆ from ∆ composed of the (non-
empty) proper parts of the nodes ofΘ∆. Given a node A ∈ Θ∆, the subset A⋆ = ρ(A) ⊆ A
is defined as in Eq. (6). The set Θ⋆∆ is then defined as

Θ⋆∆ = {A
⋆ | A ∈ Θ} (11)

In particular, the application that maps Θ∆ onto Θ⋆∆ is a bijection, and Θ⋆∆ is a partition
of ∆. It follows that Θ∆ defines an equivalence relation ∼∆ on ∆.

The component tree (Θ∆,◁∆) is the Hasse diagram of the ordered set (Θ∆,⊆). Since
Θ∆ and Θ⋆∆ are in bijection, we can derive the order ⊆⋆ on Θ⋆∆ by(

A⋆ ⊆⋆ B⋆
)
⇐⇒ (A ⊆ B) (12)

The Hasse diagram (Θ⋆∆ ,◁
⋆
∆) of (Θ⋆∆ ,⊆

⋆) is then isomorphic to the Hasse diagram
(Θ∆,◁∆), i.e. the component tree of (G∆, δ).

Following the notations given at the beginning of this section, and setting ∆ = V,
∼∆ = ∼, K = Θ⋆∆ and ⊆⋆ = ⩽K, we can define a hierarchical preorder ⩽V on V from
a component tree. In particular, it is only required that V be endowed with the two
elements necessary for building this component tree, namely:

– an adjacency relation ⌢V, allowing to map a graph structure on V;
– a function δV : V → N, allowing to associate to each element of V a value within

the totally ordered set (N,≤).

Example Let us consider a colour image F : Ω → V where the colour values are
encoded in the 8-bit per band RGB space V = [[0, 255]]3. We model V as the RGB
cube, where each colour v = (r, g, b) ∈ [[0, 255]]3 corresponds to a point in the Cartesian
space. We endow V with the standard 6-adjacency ⌢V defined in digital topology [22],
that models the 1-distance between two colours with respect to the ℓ1 norm. We set
G∆ = (V,⌢V). Let us define δV as the histogram of the image F . In other words, for
any colour v ∈ V, we set δV(v) = |{x ∈ Ω | F (x) = v}|. Based on the above discussion,
the component tree T∆ = (Θ∆,◁∆) built from (G∆, δV) defines the Hasse diagram of
a hierarchical preorder ⩽V on V. This example is illustrated in a simplified version in
Fig. 5. From F and ⩽V, it is then possible to build the multivalued component tree of
F induced by its histogram.

12 N. Passat, R. Perrin, J. F. Randrianasoa, C. Kurtz, and B. Naegel

(a) (b) (c)

Fig. 5. Illustration of the construction of a hierarchical preorder on a value set (see Sect. 5.1).
(a) Top: an image F : Ω → V. The set Ω is equal to [[0, 4]]2 and is endowed with an adjacency
relation ⌢ corresponding to the 4-adjacency. Bottom: the set V composed of 9 values. (b) Top:
the histogram of the image F , used as function δV : V → N. Bottom: the set V is endowed with
an adjacency ⌢V. (c) The component tree of (V, δV) seen as an image from the set of values V
to N where V is endowed with ⌢V. This component tree defines a hierarchical preorder ⩽, where
the red value is the minimum, the dark blue, yellow and grey values are the maximal elements,
and where the three values light blue, green and fushia are mutually greater and lower. Once V
is endowed with ⩽, it becomes possible to compute the multivalued component tree of the image
F : Ω→ V of (a) with respect to ⩽.

5.2 Ordering the enriched value set

We now aim to build a hierarchical (pre)order ⩽W on a superset W of V so that V =
▽⩽WW, i.e. the elements of V are the maximal elements with respect to ⩽W.

The smallest setW that can be proposed isW = V ∪ {⊥} where ⊥ < V is a unique
element added to V that acts as minimum for ⩽W (such paradigm was investigated in
[21]). The induced hierarchical preorder (which is indeed an order) is the relation ⩽W
defined as {(⊥, v) | v ∈ V} with ⊥ =

∧⩽WW and V = ▽⩽WW. It is possible to build
larger supersets W and to endow them with hierarchical preorders ⩽W that also fulfill
the above assumption. Such setsW can be of arbitrary size.

We first observe that defining a preorder instead of an order is not relevant (by
contrast with Sect. 5.1). Let W be a set and ⩽W a hierarchical preorder on W. We
assume that ▽⩽WW = V and

∧⩽WW = ⊥, with ⊥ ∈ W \ V. For any w ∈ W, we set
Vw = {v ∈ V | w ⩽W v} (note that Vw , ∅). Let w1,w2 ∈ W. For any w1,w2 ∈ W, we
have

(w1 ⩽W w2 ∧ w2 ⩽W w1) =⇒
(
Vw2 = Vw1

)
(13)

The image F can also be seen as a function F : Ω→W. For any w ∈W, we have (see
Eq. (1))

Λw(F) = {x ∈ Ω | w ⩽W F (x)} = {x ∈ Ω | F (x) ∈ Vw} (14)

New Algorithms For Multivalued Component Trees 13

(a) (b) (c)

Fig. 6. Illustration of the construction of an order on a value set (see Sect. 5.2). (a) Top: an
image F : Ω → V. The set Ω is equal to [[0, 4]]2 and is endowed with an adjacency relation
⌢ corresponding to the 4-adjacency. Bottom: the set V composed of 9 values, without initial
ordering. (b) Top: the co-occurence matrix of the image F , used as a priority function δ⌢V :
⌢V → N. Bottom: the set V is endowed with an adjacency ⌢V. (c) The binary partition tree of
(V,⌢V) induced by δ⌢V . This binary partition tree defines a hierarchical order ⩽ on an enriched
set of valuesW where the values of V are the maximal elements.

Now, let us consider two distinct values w1,w2 ∈W such that w1 ⩽W w2 and w2 ⩽W w1.
From Eqs. (13–14) it follows that C[Λw1 (F)] = C[Λw2 (F)]. In other words, relaxing the
antisymmetry property to define a preorder instead of an order is useless, since it leads
to define many times the same nodes which are modeled once in Θ (see Eq. (2)). We
can then assume without loss of generality that ⩽W is a hierarchical order.

AlthoughW may be of arbitrary size, we now observe that it is sufficient to define
some setsW that may not be larger than twice the size of V. Let us set VW = {Vw | w ∈
W} ⊆ 2V. We define the equivalence relation ≡ onW by

(w1 ≡ w2)⇐⇒
(
Vw1 = Vw2

)
(15)

Let w ∈W. The equivalence class [w]≡ is totally ordered by ⩽W. We set ŵ =
∨⩽W [w]≡.

We note Ŵ = {ŵ | w ∈W}. Let w1,w2 ∈W. We have

(w1 ⩽W w2) =⇒
(
ŵ1 ⩽W ŵ2

)
(16)

In other words, there is a homomorphism from (W,⩽W) to (Ŵ,⩽Ŵ) where ⩽Ŵ is the
restriction of ⩽W to Ŵ.

By construction, the set Ŵ is in bijection with VW. Since V = ▽⩽WW, we also have
V ⊆ Ŵ. Following Eq. (2), we set ΘW =

⋃
w∈W C[Λw(F)] and ΘŴ =

⋃
w∈Ŵ C[Λw(F)].

We have (ΘW,⊆) = (ΘŴ,⊆). It follows that the two associated multivalued component
trees are equal. As a conclusion, instead of using a setW arbitrarily large and potentially
infinite, a same multivalued component tree is obtained by considering the set Ŵ, which

14 N. Passat, R. Perrin, J. F. Randrianasoa, C. Kurtz, and B. Naegel

is finite. Indeed, from the definition of ≡, Ŵ is in bijection with VW ⊆ 2V. We even
have a stronger result, since the bijection between Ŵ and VW induces an isomorphism
between (Ŵ,⩽Ŵ) and (VW,⊆).

Let us now focus on the nature of the Hasse diagram of (VW,⊆). The inclusion ⊆ on
VW is a hierarchical order. The Hasse diagram (VW,◁) is, in particular, a partition tree.
The fact that V = ▽⩽WW implies that {{v} | v ∈ V} = △⊆VW. It follows that (VW,◁) is a
total partition tree. A corollary of this property is that |VW| < 2 · |V|.

To conclude on this analysis, it appears that for building a hierarchical order ⩽W
on a superset W of V so that the elements of V be the maximal elements of ⩽W, i.e.
V = ▽⩽WW, the most simple, yet general solution is to build a total partition tree from
the initial, finest partition of V, namely {{v} | v ∈ V}. This can be done by building a
(binary) partition tree, following the standard construction algorithms proposed in [23].
To this end, it is only required that V be endowed with:

– an adjacency relation ⌢V, allowing to map a graph structure on V;
– a priority function δ⌢V : ⌢V → N, allowing to determine the couples of nodes to be

merged in priority.

Example Let us consider an image F : Ω → V. The support Ω is endowed with an
adjacency relation ⌢. The value space V is endowed with the adjacency relation ⌢V so
that G∆ = (V,⌢V) is an irreflexive complete graph (i.e. ∀u, v ∈ V, u , v ⇔ u ⌢V v).
We define the co-occurrence matrix [7] of the image F . This matrixM = (mu,v)u,v∈V is
of dimension |V| × |V|. For each couple (u, v) ∈ V × V, it is defined by mu,v = |{(x, y) ∈
Ω × Ω | x ⌢ y ∧ F (x) = u ∧ F (y) = v}|. We define the priority function δ⌢V : ⌢V → N
so that for any (u, v) ∈ ⌢V, i.e. for any u ⌢V v, we have δ⌢V ((u, v)) = mu,v. Based on
the above discussion, the partition-tree T∆ = (Θ∆,◁∆) built [23] from (G∆, δ⌢V) defines
the Hasse diagram of a hierarchical order ⩽V on V. This example is illustrated in a
simplified version in Fig. 6. From F and ⩽V, it is then possible to build the multivalued
component tree of F induced by its co-occurrence matrix.

6 Conclusion

In this article, we have provided new algorithmic tools for building the multivalued
component tree, but also for designing hierarchical orders on sets of values, which is a
required condition of images to be modeled via multivalued component trees. In pre-
vious works [10], it had already been observed that the multivalued component tree
could be efficiently involved for processing label images, especially on the context of
hierarchical classification. Recent advances in the study of component trees have shed
light on their links with persistent homology [15], and more generally their ability to
model high-level topological information. In this context, component trees are being in-
creasingly considered as relevant topological data descriptors to be embedded in deep-
learning frameworks, e.g. for the design of loss functions [19] or to model the image
structure information in self-supervised learning [28]. The contributions proposed in
this article allow to efficiently handle component trees not only on grey-level images,
but more generally on any multivalued images endowed with a hierarchical order. This
generalization paves the way to the involvement of the (multivalued) component trees

New Algorithms For Multivalued Component Trees 15

in various computer vision tasks (in particular based on deep-learning) especially in the
context of multivalued data, which is for instance the case in semantic segmentation.

References

1. Blin, N., Carlinet, E., Lemaitre, F., Lacassagne, L., Géraud, T.: Max-tree computation on
GPUs. IEEE Transactions on Parallel and Distributed Systems 33, 3520–3531 (2022)

2. Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Computer Vision
and Image Understanding 64, 377–389 (1996)

3. Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms.
IEEE Transactions on Image Processing 23, 3885–3895 (2014)

4. Gazagnes, S., Wilkinson, M.H.F.: Distributed connected component filtering and analysis
in 2D and 3D tera-scale data sets. IEEE Transactions on Image Processing 30, 3664–3675
(2021)

5. Götz, M., Cavallaro, G., Géraud, T., Book, M., Riedel, M.: Parallel computation of compo-
nent trees on distributed memory machines. IEEE Transactions on Parallel and Distributed
Systems 29, 2582–2598 (2018)

6. Guigues, L., Cocquerez, J.P., Le Men, H.: Scale-sets image analysis. International Journal of
Computer Vision 68, 289–317 (2006)

7. Haralick, R.M., Shanmugam, K.S., Dinstein, I.: Textural features for image classification.
IEEE Transactions on Systems, Man, and Cybernetics 3, 610–621 (1973)

8. Jones, R.: Connected filtering and segmentation using component trees. Computer Vision
and Image Understanding 75, 215–228 (1999)

9. Kiran, B.R., Serra, J.: Global-local optimizations by hierarchical cuts and climbing energies.
Pattern Recognition 47, 12–24 (2014)

10. Kurtz, C., Naegel, B., Passat, N.: Connected filtering based on multivalued component-trees.
IEEE Transactions on Image Processing 23, 5152–5164 (2014)

11. Monasse, P., Guichard, F.: Scale-space from a level lines tree. Journal of Visual Communi-
cation and Image Representation 11, 224–236 (2000)

12. Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical seg-
mentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 1163–1173
(1996)

13. Ouzounis, G.K., Wilkinson, M.H.F.: Mask-based second-generation connectivity and at-
tribute filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 990–1004
(2007)

14. Passat, N., Kenmochi, Y.: A topological tree of shapes. In: DGMM, Procs. pp. 221–235
(2022)

15. Passat, N., Mendes Forte, J., Kenmochi, Y.: Morphological hierarchies: A unifying frame-
work with new trees. Journal of Mathematical Imaging and Vision 65, 718–753 (2023)

16. Passat, N., Naegel, B., Kurtz, C.: Component-graph construction. Journal of Mathematical
Imaging and Vision 61, 798–823 (2019)

17. Passat, N., Naegel, N.: Component-trees and multivalued images: Structural properties. Jour-
nal of Mathematical Imaging and Vision 49, 37–50 (2014)

18. Perret, B., Lefèvre, S., Collet, C., Slezak, É.: Hyperconnections and hierarchical representa-
tions for grayscale and multiband image processing. IEEE Transactions on Image Processing
21, 14–27 (2012)

19. Perret, B., Cousty, J.: Component tree loss function: Definition and optimization. In: DGMM,
Procs. pp. 248–260 (2022)

16 N. Passat, R. Perrin, J. F. Randrianasoa, C. Kurtz, and B. Naegel

20. Randrianasoa, J.F., Kurtz, C., Passat, N.: Binary partition tree construction from multiple
features for image segmentation. Pattern Recognition 84, 237–250 (2018)

21. Ronse, C., Agnus, V.: Morphology on label images: Flat-type operators and connections.
Journal of Mathematical Imaging and Vision 22, 283–307 (2005)

22. Rosenfeld, A.: Digital topology. The American Mathematical Monthly 86, 621–630 (1979)
23. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image pro-

cessing, segmentation, and information retrieval. IEEE Transactions on Image Processing 9,
561–576 (2000)

24. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and
sequence processing. IEEE Transactions on Image Processing 7, 555–570 (1998)

25. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction.
IEEE Transactions on Image Processing 4, 1153–1160 (1995)

26. Salembier, P., Wilkinson, M.H.F.: Connected operators. IEEE Signal Processing Magazine
26, 136–157 (2009)

27. Soille, P.: Constrained connectivity for hierarchical image decomposition and simplification.
IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 1132–1145 (2008)

28. Tang, Q., Du, B., Xu, Y.: Self-supervised learning based on max-tree representation for med-
ical image segmentation. In: IJCNN, Procs. pp. 1–6 (2022)

	New Algorithms For Multivalued Component Trees

