
Combining Parallel Emptiness Checks
with Partial Order Reductions

Denis Poitrenaud1,2 and Etienne Renault3

1 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
2 Université Paris Descartes, Paris, France
3 LRDE, EPITA, Kremlin-Bicêtre, France

Abstract. In explicit state model checking of concurrent systems, multi-
core emptiness checks and partial order reductions (POR) are two major
techniques to handle large state spaces. The first one tries to take ad-
vantage of multi-core architectures while the second one may decrease
exponentially the size of the state space to explore.
For checking LTL properties, Bloemen and van de Pol [2] shown that the
best performance is currently obtained using their multi-core SCC-based
emptiness check. However, combining the latest SCC-based algorithm
with POR is not trivial since a condition on cycles, the proviso, must
be enforced on an algorithm which processes collaboratively cycles. In
this paper, we suggest a pessimistic approach to tackle this problem for
liveness properties. For safety ones, we propose an algorithm which takes
benefit from the information computed by the SCC-based algorithm.
We also present new parallel provisos for both safety and liveness prop-
erties that relies on other multi-core emptiness checks. We observe that
all presented algorithms maintain good reductions and scalability.

1 Introduction and Related Work

The automata-theoretic approach to explicit Linear-time Temporal Logic (LTL)
model checking explores finite Labeled Transition Systems (LTS). Unfortunately,
LTS are often too large to be fully explored in reasonable time and applying se-
quential algorithms becomes impractical. To tackle this well-known state explo-
sion problem, various techniques have been suggested. In this paper we focus on
the combination of two of them: Partial Order Reduction (POR) and multi-core
emptiness checks.

POR exploits the interleaving semantics of concurrent systems by only con-
sidering representative executions [27, 22, 15] rather than all possible permuta-
tions of the execution of n independent actions (i.e. n! possible interleavings).
The selection of the representative executions is performed on-the-fly while ex-
ploring the LTS: for each state, the exploration algorithm only considers a
nonempty (reduced) subset of all enabled actions, such that all omitted ac-
tions are “independent” from those in the reduced set. The execution of omitted
actions is then postponed to a future state. The reduced LTS is sufficient to
check reachability problems (e.g. existence of a global deadlock). However, for
LTL model checking,1 only stuttering-invariant formula (e.g. not using the Next

1 See Peled [22] for a survey of POR reductions with LTL.

2

operator) can be verified. In addition to this restriction on formulas that can
be checked, a complementary condition, called a proviso, must be enforced. If
the same actions are consistently ignored along a cycle, the reduction may miss
some undesirable behavior. When checking liveness properties, a sufficient con-
dition is to force every cycle of the reduced LTS to contain at least one fully
expanded state i.e. a state for which all actions are considered. When checking
safety properties, forcing every (non-deadlock) state to have at least one fully
expanded successor (direct or indirect) is sufficient.

An emptiness check for LTL model checking is an algorithm looking for a
counterexample in the state space of the system. A counterexample is simply a
lasso-shaped execution, i.e. a particular cycle reachable from the initial state.

The best multi-core emptiness checks are based on a Depth-First Search
(DFS) exploration [2] and can be classified into two categories: those based on
a Nested Depth First Search (NDFS) [10], and those based on an enumeration
of Strongly Connected Components (SCC) [24, 2]. While the algorithm of Re-
nault et al. [24] performs a state-based DFS exploration, one can note that the
one suggested by Bloemen and van de Pol [2] performs a DFS over SCCs rather
than states which makes the detection of individual cycles more difficult. All
these concurrent algorithms are based on the swarming technique [13]: multiple
threads, with their own exploration order, are spawned from the initial state;
each thread shares information to prune the exploration of the other threads.
Bloemen and van de Pol [2] have shown recently that their SCC-based algorithm
provide actually the best results. This algorithm uses a (lock-free) concurrent
union-find data structure that centralizes all the shared information. This struc-
ture is adapted with a work stealing mechanism.

In a sequential setting, provisos for emptiness checks have been well studied
these last years [18, 9, 7, 11, 28]. The in-stack proviso introduced by Peled [22]
and implemented in Spin has been improved by Evangelista and Pajault [9] with
several mechanisms to reduce the number of expansions during a DFS explo-
ration. Some of these mechanisms have then been deconstructed by Duret-Lutz
et al. [7] to build new provisos (for liveness properties) that outperform the pre-
vious ones. These authors also proposed original provisos that can exploit the
SCC information when the underlying emptiness check computes it. Other pro-
visos have also been suggested (but not evaluated) in the more complex context
of process algebra to consider τ -transitions [11, 28]. Some works also focus on
non-DFS based emptiness checks [4, 5] thus defining new ways to detect potential
ignoring cycles based on quadratic algorithms.

In a multi-core setting, POR has been less studied. Barnat et al. [1] suggested
an approach based on a topological sort which sounds hard to combine efficiently
with state-of-the-art parallel emptiness checks (see Laarman and Faragó [14]).
Lerda and Sisto [17] proposed an adaptation of the in-stack proviso without
knowing the entire DFS stack. More recently, Laarman and Wijs [16] worked
on the adaption of the in-stack proviso with the best multi-core NDFS-based
emptiness check [10] and achieved good reductions and good scalability.

Even if it has been shown that the best current performance is obtained
using multi-core SCC-based emptiness checks, these algorithms have not yet be
combined with POR due to several problems. For liveness properties, multi-core
SCC-based emptiness checks compute SCCs rather than particular cycles while

3

lw14

Laarman and Wijs [16]

dfs-pr19-safe

dfs-pr19-live
scc-pr19-safe

elpp12

Evangelista

et al. [10]

rdkp16

Renault

et al. [24]

ep10

Evangelista and Pajault [9]

dkpr16-live

Duret-Lutz et al. [7]

hpy96

Holzmann

et al. [12]

c99

Couvreur [6]

Sequential

state-based DFS

Parallel

SCC-based DFS

Parallel state-based DFS

ws-pr19-safe

ws-pr19-live

bp16

Bloemen and

van de Pol [2]

sl

l

sl

sl
s sl

Fig. 1. Contributions of this paper are detailed in green. Red plain boxes correspond to
sequential emptiness checks and blue plain boxes represent parallel emptiness checks.
Dashed boxes are provisos. A proviso box is covered by a emptiness check box if the
two are compatible. An edge links one box to another if the second one reuses ideas
from the first one. Bullets tagged l represent liveness provisos and s the safety ones.

the proviso relies on detecting cycles. For safety properties, the expansion of a
single state in each SCC without successor is enough but has never been realized
in a multi-threaded context.

Figure 1 summarizes the contributions of this paper (in green). First, we aim
at experimentally demonstrating that the improvements suggested in dkpr16
in a sequential setting can be shifted to multi-core one. dfs-pr19-live and
dfs-pr19-safe correspond to this adaptation. We can notice that both are
compatible with the emptiness checks elpp12 and rdkp16. After recalling nec-
essary definitions in Section 2, we introduce in Section 3 these two new provisos
and suggest a new one for safety properties scc-pr19-safe. This last proviso
exploits the underlying SCC computation of rdkp16. Section 4 introduces two
last provisos ws-pr19-live and ws-pr19-safe. These algorithms are the first
provisos compatible with the bp16 emptiness check. Section 5 evaluates the
performances of our provisos and shows that all of them achieve a reduction
comparable to the state-of-the-art while maintaining a good scalability.

2 Preliminaries

A Labeled Transition System (LTS) is a tuple L = 〈V, v0, Act, δ〉 where V is a
finite set of states, v0 ∈ V is a designated initial state, Act is a set of actions and
δ ⊆ V ×Act× V is a (deterministic) transition relation where each transition is
labeled by an action. If (s, α, d) ∈ δ, we say that d is a successor of s. We denote
by post(v) the set of all successors of v ∈ V .

A path between two states v, v′ ∈ V is a finite and non-empty sequence
of adjacent transitions ρ = (v1, α1, v2)(v2, α2, v3) . . . (vn, αn, vn+1) ∈ δ+ with
v1 = v and vn+1 = v′. When v = v′ the path is a cycle. Moreover, when all the
states v1, . . . vn are distinct states, then the cycle is said elementary.

4

(a) (b) (c) (d)

Fig. 2. Black nodes and plain edges represent the DFS stack, dashed edges represent
(not yet visited) back edges, and starred states corresponds to already expanded states.
In (a) and (b) conditional provisos do not require an expansion. In (c) and (d), the
source or the dest of the back edge should be preventively expanded. The liveness
proviso of Evangelista and Pajault [9] will avoid the expansion in (d) since it is useless.

A non-empty set C ⊆ V is a Strongly Connected Component (SCC) iff any
two different states v, v′ ∈ C are connected by a path, and C is maximal w.r.t.
inclusion. If C is not maximal we call it a partial SCC.

For the purpose of partial-order reductions, an LTS is equipped with a func-
tion reduced : V → 2V that returns a subset of successors reachable via a
reduced set of actions. For any state v ∈ V , we have reduced(v) ⊆ post(v) and
reduced(v) = ∅ =⇒ post(v) = ∅. The reduced function must satisfy other condi-
tions depending on whether we use ample set, stubborn set or persistent set [see
15, for a survey]. The algorithms we present do not depend on the actual tech-
nique used to compute reduced .

The function reduced preserves only two properties on the corresponding re-
duced LTS: the presence of deadlocks, i.e. states without successors, and the
presence of an infinite sequence, i.e. a cycle. When checking more complex prop-
erties, i.e. LTL formulae (safety or liveness), some additional conditions must be
enforced. The reduced function must be restricted to reflect the variations of the
Boolean values of the atomic propositions (appearing in the property). These
extra conditions can easily be integrated in the computation of reduced .

However, the previous conditions do not prevent from continuously ignoring
the same actions (in a cycle of the reduced LTS). This is the so-called ignoring
problem. This problem can be solved using different provisos depending on the
nature of the property, i.e. safety or liveness. These provisos rely on the presence
of a (fully) expanded states in some cycles. A (fully) expanded state v is simply
a state for which all the successors post(v) are considered in the reduced LTS
even if reduced(v) is strictly included in post(v).

3 Provisos for emptiness checks applying a state-based
DFS

Liveness properties. When checking liveness properties with POR and to
ensure that no action will be ignored for ever, emptiness checks must ensure
that every cycle contains at least one expanded state (i.e. a state for which all
actions are considered). Notice that this property is an over-approximation but

5

Algorithm 1: State-based DFS equipped (highlighted in yellow) for checking
liveness properties with POR

1 ∀v ∈ V : v.status ← unknown
2 visited← ∅
3 ∀p ∈ [1 . . . n] : dfsp ← ∅
4 dfs-pr19-live1(v0)|| . . . || dfs-pr19-liven(v0)
5 Procedure dfs-pr19-livep(v ∈ V)
6 dfsp ← dfsp ∪ {v}
7 next← reduced(v)

8 if next = post(v) then cas(v.status, unknown, expanded)

9 for v′ ∈ mixp(next) do
10 if v′ 6∈ dfsp ∪ visited then dfs-pr19-livep(v

′)

11 else if v′ ∈ dfsp ∧ v.status = unknown ∧ v′.status = unknown then
12 cas(v′.status, unknown, expanded)

13 cas(v.status, unknown, not expanded)

14 if v.status = expanded then
15 next← post(v) \ reduced(v)
16 for v′ ∈ mixp(next) do
17 if v′ 6∈ dfsp ∪ visited then dfs-pr19-livep(v

′)
18 visited← visited ∪ {v}
19 dfsp ← dfsp \ {v}

ensures that the ignoring problem is tackled correctly. Thus it could lead to
useless expansions while all actions have been seen during a particular cycle but
not containing any fully expanded state.

Before diving into a multi-core setting, let us recall how this proviso property
can be enforced for sequential DFS algorithms. Duret-Lutz et al. [7] suggested
simple sequential provisos that are competitive with the state-of-the-art. During
the DFS exploration of state v, the algorithm detects back edges, i.e. transitions
(v, , v′) where v′ is already in the DFS stack. When detecting such transitions,
a cycle has been detected. Then, the algorithm (1) checks if v or v′ is already
expanded and if not (2) chooses to expand the source v, (exclusive) or the desti-
nation v′. In both cases, the expansion of v or v′ ensures that the cycle closed by
(v, , v′) contains at least one expanded state. Since all back edges discovered by
the DFS cover all the elementary cycles, the property is respected. Figure 2 (a
and b) describes cases where no expansion is required, while (c) describes a situ-
ation where an expansion is required (source or destination) and (d) a situation
where a useless expansion is performed.

The aforementioned algorithms can be combined with a parallel swarmed
exploration. Algorithm 1 (without highlighted lines) presents a swarmed explo-
ration where all threads perform a state-based DFS exploration of the reduced
state space.2

The n threads share a visited set (declared line 2) and each thread p main-
tains its own DFS set dfsp (line 3). The threads are spawned line 4. When a new
state v is visited by a thread p, it is first added in the local set dfsp (line 6) and
then a reduced set of successors is computed (line 7). These selected successors
are explored in a randomized order (line 9). Each time a new state is discovered
line 10, a recursive call is realized. After all the successors (not in dfsp) has been

2 All instructions (excepted recursive calls) are considered to be atomic.

6

inserted in visited, v can be itself added into visited and removed from dfsp
(lines 18 and 19).

Highlighted lines implement a new parallel proviso for liveness properties. It is
based on the combination of two ideas: (1) the conditional destination expansion
as suggested by Duret-Lutz et al. [7] since it achieves good results in sequen-
tial settings and, (2) the sharing of the state status (unknown, expanded,
not expanded) as presented by Laarman and Wijs [16].

Initially, all states are tagged unknown (line 1). When an unknown state
yielding no reduction is encountered line 8, its status is fixed to expanded by
a compare-and-swap instruction. When a back-edge is detected between two
unknown states (line 11), the destination is selected for expansion (line 12).
Such an expansion is realized line 14 to 17 by considering the previously ignored
successors. Before this expansion, the status of the state is checked. If this status
is still unknown, no expansion is required for this state and its status can be
fixed to not expanded (line 13).

Safety properties. When checking safety properties with POR and to ensure
that no action will be ignored at all, emptiness checks must ensure that at least
one expanded state is reachable from any visited state. Here again, this property is
an over-approximation. Thus it could lead to useless expansions while all actions
have been seen during a bottom SCC not containing an expanded state.

As for Algorithm 1, the highlighted lines in Algorithm 2 correspond to a
proviso equipping a state-based DFS. This new proviso implements a conditional
destination expansion mixed with a sharing of the state status. During the DFS
exploration, the proviso of Laarman and Wijs [16] systematically expands states
having all its successors on the DFS stack. Here, we expand one of its destinations
and only if the other destination are not already expanded. This is the first time
that a safety proviso based on the expansion of a destination is proposed.

When visiting a state, the algorithm decides to expand it if its direct suc-
cessors (in the reduced set) are all in its local DFS stack. The local variable
allin (declared line 9) tracks if this condition holds. Initially, allin is true and
set to false when the algorithm detects a direct successor not belonging to the
DFS stack (lines 12 & 15). Line 14 implements the conditional expansion: allin
stays true if all the direct successors are on the DFS stack but have an unknown
status.

When a status has been fixed (different from unknown) for a state v, either
v is itself expanded or an expanded state is reachable from it. In both cases, it
is not necessary to expand its predecessor. Then, lines 17 and 18 are executed
only if an expansion is required: a destination is chosen randomly and marked
as to be expanded (just before the DFS will backtrack this state – line 20).

In the previous algorithm, multiple expansions can occur for a given SCC (see
Figure 3). The next algorithm avoids expansion in non bottom SCC and try to
limit the expansions only to the entry point of each bottom SCC. In a sequential
settings, this leads to have at most one expansion per bottom SCC. Recently, a
state-based parallel swarmed DFS computing SCC has been proposed [24]. Here,
we adapt this algorithm to implement the aforementioned idea while exploiting
the status sharing as in the previous algorithm.

7

Algorithm 2: State-based DFS equipped (highlighted in yellow) for checking
safety properties with POR

1 ∀v ∈ V : v.status ← unknown
2 visited← ∅
3 ∀p ∈ [1 . . . n] : dfsp ← ∅
4 dfs-pr19-safe1(v0)|| . . . || dfs-pr19-safen(v0)
5 Procedure dfs-pr19-safep(v ∈ V)
6 dfsp ← dfsp ∪ {v}
7 next← reduced(v)

8 if next = post(v) then cas(v.status, unknown, expanded)

9 allin ← >
10 for v′ ∈ mixp(next) do
11 if v′ 6∈ dfsp ∪ visited then
12 allin ← ⊥
13 dfs-pr19-safep(v

′)

14 else if v′ 6∈ dfsp ∨ v.status 6= unknown ∨ v′.status 6= unknown then
15 allin ← ⊥
16 if allin then
17 v′ ← randomlyPick(reduced(s))

18 cas(v′.status, unknown, expanded)

19 cas(v.status, unknown, not expanded)

20 if v.status = expanded then
21 next← post(v) \ reduced(v)
22 for v′ ∈ mixp(next) do
23 if v′ 6∈ dfsp ∪ visited then dfs-pr19-safep(v

′)
24 visited← visited ∪ {v}
25 dfsp ← dfsp \ {v}

Fig. 3. Example
where a useless
expansion occurs
in bottom-SCC for
Algorithm 2. The
two starred nodes
will be expanded.

The unhighlighted lines of Algorithm 3 correspond
to the one of Renault et al. [24]. The shared variable
S maps to each state v, the set of states S(v) belong-
ing to the same (partial) SCC. The shared set dead
contains all states belonging to fully visited SCCs. Ini-
tially, for any state v, the set S(v) = {v}. Each thread
p maintains two local variables, a stack rootsp which
contains the entry point of each traversed (partial)
SCC and a set visitedp holding each state visited
by thread p. A local unique number v.nump (called
the live number in the SCC computation proposed
by Tarjan [26]) is associated to each state v (line 8).
Each newly discovered state is considered as the root
of an SCC and then inserted in the stack rootsp line
9. This stack as well as the mapping S are updated
each time a closing edge, i.e. a transition (v, , v′) such
that v′ belongs t a partial SCC containing a state of the DFS stack, is detected
(lines 21 to 23). The local unique number of states help to determine the effec-
tive root of the partial SCC: the stack is popped until this entry point becomes
the top of the stack. The mapping S is updated to aggregate all the sets asso-
ciated to popped states (line 23). Notice that the instruction line 23 must be
atomic. When discovering the effective root v of a (complete) SCC (line 28), all
states belonging (i.e. S(v)) to it are marked as dead atomically (line 35), thus
restricting the visit by the other threads (line 15). The mapping S (and the set

8

Algorithm 3: State-based DFS equipped (highlighted in yellow) for checking
safety properties with POR - unhighlighted lines correspond to the SCC compu-
tation algorithm as presented in Renault et al. [24]

1 ∀v ∈ V : S(v)← {v}
2 dead← expanded← ∅
3 ∀p ∈ [1 . . . n] : visitedp ← ∅
4 ∀p ∈ [1 . . . n] : rootsp ← ∅
5 scc-pr19-safe1(v0)|| . . . || scc-pr19-safen(v0)
6 Function scc-pr19-safe(v ∈ V) : Boolean
7 visitedp ← visitedp ∪ {v}
8 v.nump ← |visitedp|
9 rootsp.push(v)

10 next← reduced(v)

11 isTerm ← reduced(v) 6= post(v) // S(v) is a TSCC without exp. st.

12 if ¬isTerm then
13 expanded← expanded ∪ {v}
14 for v′ ∈ mixp(next) do
15 if v′ ∈ dead then
16 isTerm ← ⊥
17 else if v′ 6∈ visitedp then
18 t← scc-pr19-safe(v′)

19 isTerm ← isTerm ∧ t
20 else
21 while v′.nump < rootsp.top().nump do
22 r ← rootsp.pop()

23 S(r)← S(v′)← S(r) ∪ S(v′)

24 if isTerm ∧ v ∈ expanded then
25 isTerm ← ⊥
26 next← post(v) \ reduced(v)
27 goto 14
28 if v = rootsp.top() then
29 if isTerm then
30 expanded← expanded ∪ {v}
31 isTerm ← ⊥
32 next← post(v) \ reduced(v)
33 goto 14
34 rootsp.pop()
35 dead← dead ∪ S(v)
36 return isTerm

dead) can be efficiently implemented using a lock-free version of an union-find
data structure.

To limit the number of expansions, the algorithm expands only the root of
each bottom SCC not already containing an expanded state. The local variable
isTerm tracks such an SCC (line 11, 16 and 19). When popping the root of a
bottom SCC (line 28) for which no expanded state has been already discovered,
an expansion is realized (lines 30–33). However, a same bottom SCC may have
different entry points for different threads. To limit the number of expansions,
the algorithm detects some of these situations line 24.

Notice that the two first provisos presented in this section are compatible
with most of the optimizations presented by Evangelista and Pajault [9] as well
as the one suggested by Duret-Lutz et al. [7]. Moreover, these provisos can be in-
tegrated in any emptiness checks based on a state-based DFS swarm exploration
for instance CNDFS [10] or Renault et al. [24] algorithm. The latest presented
proviso is only compatible with Renault et al. [24].

9

4 Provisos for SCC-based DFS emptiness checks

Provisos presented in the previous section are not compatible with the best
currently known parallel emptiness check [2]. Until now, there is no proviso,
neither for safety nor for liveness properties, for this model-checking algorithm.
This algorithm differs from the previous ones since it does not perform a DFS
in terms of states but only in terms of SCCs: in particular, the states of a same
SCC may be visited (and processed) in any order. One can note that SCCs are
still marked dead in a DFS post-order (see Algorithm 4 without highlighted
lines). We denote this kind of algorithms as SCC-based DFS emptiness-checks.

The algorithm of Bloemen and van de Pol [2] has been introduced to tackle
the main drawback of the algorithm suggested by Renault et al. [24]. Indeed,
in this last algorithm, each SCC must be completely processed by the same
thread before it can be marked dead. To improve this, Bloemen and van de
Pol [2] introduced a work-stealing mechanism to allow SCCs to be cooperatively
treated (see the outer loop line 9 of Algorithm 4). Notice that this mechanism
induces a more complex shared union-find data-structure (see [2]).

In this approach, all threads start a DFS until they reach a (partial) SCC
which is currently processed by one (or more) other thread(s). The states be-
longing to this SCC (aggregated by the DFS) are then distributed among the
various threads (line 10) and marked done (line 27) when all their successors
are dead or detected to belong to the current SCC. When the last state of an
SCC is marked done, the SCC itself is marked dead (line 29).

a b

Fig. 4. Two
threads coopera-
tively discovering a
cycle. Dashed edges
represent paths
from the initial
state while plain
edges represent
currently processed
edges.

Liveness properties. Implementing a proviso for live-
ness properties in this algorithm is complex since the
work stealing mechanism removes all possible knowl-
edge about cycles in this SCC. When checking liveness
properties, the proviso must ensure that each elemen-
tary cycle contains (at least) one expanded state. In se-
quential and for such a cycle, the states can be marked
done by the algorithm in any order. Our proviso con-
sists to expand any state with at least one successor
marked done. In a sequential setting, this approach
ensures that all cycles or size n > 1 contains at least
one expanded state (n − 1 for the worst case, n/2 in
average).

However, in a parallel setting, this approach is not
sufficient. Let us consider the example of Figure 4 with
two threads, one visiting state a, the second state b,
and with a and b known to belong to the same SCC. Thread t1 selects a line 9,
while thread t2 selects b and both a and b are not already done. The test line
15 prevents from a recursive call (for both t1 and t2). Since a and b will only
be marked done line 27, t1 as well as t2 will not detect that an expansion is
required. Indeed, the only successor of a (resp. b) is not done.

To solve this problem, we introduce the shared sets wipp that represent
states currently processed by a thread p. Highlighted lines of Algorithm 4 detail
this new proviso for liveness properties. A state is inserted into wipp when first
discovered by a thread p (line 10) and removed either line 28 when the state

10

Algorithm 4: SCC-based DFS equipped (highlighted in yellow) for checking
liveness properties with POR - unhighlighted lines correspond to the SCC com-
putation algorithm as presented in Bloemen and van de Pol [2]

1 ∀v ∈ V : S(v)← {v}
2 dead← done← expanded← ∅
3 ∀p ∈ [1 . . . n] : Rp ← wipp ← ∅
4 ws-pr19-live1(v0)|| . . . || ws-pr19-liven(v0)

5 Procedure ws-pr19-livep(v ∈ V)
6 Rp.push(v)

7 if v 6∈ expanded ∧ post(v) = reduced(v) then
8 expanded← expanded ∪ {v}
9 while v′ ∈ (S(v) \ done) do

10 wipp ← wipp ∪ {v′}
11 next← v′ ∈ expanded ? post(v′) : reduced(v′)
12 while next 6= ∅ do
13 w ← randomlyPick(next)
14 if w ∈ dead then continue

15 else if 6 ∃w′ ∈ Rp : w ∈ S(w′) then
16 wipp ← wipp \ {v′}
17 ws-pr19-livep(w)

18 goto 9
19 else
20 if v′ 6∈ expanded ∧ w ∈ (done ∪ (

⋃
i∈[1...n] wipi)) \ expanded then

21 expanded← expanded ∪ {w}
22 next← next ∪ (post(v′) \ reduced(v′))
23 while w 6∈ S(v) do
24 r ← Rp.pop()
25 t← Rp.top()
26 S(r)← S(t)← S(r) ∪ S(t)

27 done← done ∪ {v′}
28 wipp ← wipp \ {v′}
29 if S(v) 6⊆ dead then dead← dead ∪ S(v)
30 if v = Rp.top() then Rp.pop()

has been marked done or line 16 before performing a recursive call. Doing a
recursive call ensures that state v′ will not be marked by the current while loop
line 12. Indeed, when backtracking from the recursive call, line 18 the thread
will realize a jump to the outer loop. This jump implies that all the successors
of a state must be seen without performing a recursive call before this state is
marked done. This is the main difference between our algorithm and the one of
Bloemen and van de Pol [2]. Line 20 checks when an expansion is required. A
state is expanded if one of its successors is done or belong to a wipp sets and
neither the source nor the destination is expanded.

Notice that the introduction of the wipp sets also solves the expansion of the
elementary cycles of size 1. As for the previous algorithms, the expanded set
allows to share expansions between threads.

Safety properties. As for liveness properties, a proviso for safety properties has
never been proposed for the algorithm of Bloemen and van de Pol [2]. The goal,
like in Algorithm 3, is to limit expansions only to bottom SCCs and to minimize
the number of expansions in such SCCs. Detecting that the SCC is a bottom
one can be done as easily as for Algorithm 3. A Boolean isTerm is associated to
each SCC and updated consequently (lines 1, 8, 15, 18 and 29 of algorithm 5).
Notice that this Boolean is associated to an SCC rather than a state in order to
propagate the information inside of the work stealing mechanism.

11

Algorithm 5: SCC-based DFS equipped (highlighted in yellow) for checking
safety properties with POR - unhighlighted lines correspond to the SCC compu-
tation algorithm as presented in Bloemen et al. [3]

1 ∀v ∈ V : S(v)← {v}, S(v).isTerm ← >
2 dead← done← expanded← ∅
3 ∀p ∈ [1 . . . n] : Rp ← ∅
4 ws-pr19-safe1(v0)|| . . . || ws-pr19-safen(v0)

5 Procedure ws-pr19-safep(v ∈ V)
6 if v 6∈ expanded ∧ post(v) = reduced(v) then
7 expanded← expanded ∪ {v}
8 S(v).isTerm ← ⊥
9 Rp.push(v)

10 while pick v′ from (S(v) \ done) do
11 isExpanded ← v′ ∈ expanded

12 next← isExpanded ? post(v′) : reduced(v′)
13 foreach w ∈ mixp(next) do
14 if w ∈ dead then
15 S(v′).isTerm ← ⊥
16 else if 6 ∃w′ ∈ Rp : w ∈ S(w′) then
17 ws-pr19-safep(w)

18 if w 6∈ S(v′) then S(v′).isTerm ← ⊥
19 else
20 while w 6∈ S(v) do
21 r ← Rp.pop()
22 t← Rp.top()
23 S(r)← S(t)← S(r) ∪ S(t)

24 while v′ 6∈ done do // Ensure good removing or expansion

25 nb←
∣∣S(v′) ∩ done

∣∣
26 // Expand the last element

27 if S(v′) \ done = {v′} ∧ S(v′).isTerm then
28 expanded← expanded ∪ {v′}
29 S(v′).isTerm ← ⊥
30 break

31 else
32 // v′ is about to be done while another thread

33 // requires an expansion

34 if ¬isExpanded ∧ v′ ∈ expanded then
35 break

36 // Otherwise mark states DONE but only one by one

37 else
38 if nb =

∣∣S(v′) ∩ done
∣∣ then done← done ∪ {v′}

39 if S(v) 6⊆ dead then dead← dead ∪ S(v)
40 if v = Rp.top() then Rp.pop()

To implement the proviso, we can exploit a property of the original algorithm:
when the last state of an SCC is marked done, the SCC is then marked dead.
Capturing this instant could be useful to trigger an expansion in each bottom
SCC. This approach, even if satisfying, does not work in the algorithm. Indeed,
the algorithm is not aware that the state is the last one to be marked done.

To solve this problem, we propose a pessimistic approach (as previously).
When a state is about to be marked done (lines 24 to 38), three situations may
occur. First of all (line 27), the current state v′ is the last one of the bottom
(partial) SCC: in this case, the state is expanded line 28 and the SCC does not
require any more expansion, i.e. isTerm is set to false. Second of all (line 34-
35), the state is about to be marked done while another thread required the
expansion of this state. In this case, new successors must be explored for this

12

state, and the break line 35 will force this exploration. Finally, two (or more)
states may be concurrently candidate for being done. Line 25 and 38 prevent
concurrent multiple insertions in the set done (and thus potentially missing a
required expansion). Each thread captures line 25 the current number of done
states in the (partial) SCC while line 38 checks that this number has not changed
in between. This leads to sequentialize the insertions in done. Notice that line
38 must be performed atomically even if it contains a conditional statement.

5 Evaluation

Benchmark Description. To evaluate the performance of the new provisos, we
selected 21 models from the BEEM benchmark [20] that cover all types of models
described by the classification of Pelánek [21]. All the models were selected such
that Algorithm 1 with one thread and without applying POR would take at most
20 minutes on Intel(R) Xeon(R) @ 2.00GHz with 250GB of RAM. We fix the
maximum running time to 40 minutes.3 Here we compute only a reduced LTS
explored by the algorithms presented in the previous sections. When applied in
the context of a model checker, the visited reduced LTS will be larger due to
the observation of visible transitions [23]. Experiments were run three times and
only the median of the three values were kept.

According to Bloemen et al. [3], the performances of parallel emptiness checks
may rely on the underlying graph structure. To evaluate this, the 21 models se-
lected are divided into two categories: M1 (models with short cycles and many
small SCCs) and M2 (models with long cycles and a small number of large
SCCs). Bloemen et al. [3] observe that the performances for the algorithm sug-
gested by Renault et al. [24] are degraded forM2 which is the motivation of the
introduction of their new algorithm.

In this benchmark, we compared all the new algorithms presented in this
paper with the only parallel provisos of the state-of-the-art, i.e lw14-live (see
Algo. 1 in Laarman and Wijs [16]),4 lw14-safe (see Algo. 2 in Laarman and
Wijs [16]). All the presented results have been computed using the same canvas
and are then comparable. See Figure 1 for an overview of our contributions and
the compatibility with existing emptiness checks.

Implementation Details. Since all the presented algorithms rely on hashta-
bles and linked lists, they can be implemented lock-free. The reduced function
implements the stubborn set method from Valmari [27] as described by Pater
[19] but in a deterministic way, i.e. for any state s, reduced(s) always returns
the same set. However, because the computation of a reduced set5 of enabled
transitions can be costly, we opted for its memoization using mutexes. This is

3 For a description of our setup, including selected models, detailed results and code,
see http://www.lrde.epita.fr/~renault/benchs/ICFEM-2019/results.html

4 Notice that we only consider the blue DFS (without lines 33–37). When implement-
ing an emptiness check the ignored lines could trigger complementary expansions.
Thus the reported values here can be interpreted as the optimal bound (time, re-
duction, ...) for this algorithm.

5 Our implementation uses persistent sets since a special attention must be paid when
combining ample sets with on-the-fly exploration [25].

http://www.lrde.epita.fr/~renault/benchs/ICFEM-2019/results.html

13

2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

WS−PR19−LIVE
DFS−PR19−LIVE
LW14−LIVE Liveness − Models M1

2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

WS−PR19−LIVE
DFS−PR19−LIVE
LW14−LIVE Liveness − Models M2

2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

WS−PR19−SAFE
DFS−PR19−SAFE
LW14−SAFE
SCC−PR19−SAFE Safety − Models M1

2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

WS−PR19−SAFE
DFS−PR19−SAFE
LW14−SAFE
SCC−PR19−SAFE Safety − Models M2

Fig. 5. Mean Reduction rates (in percent) on the whole benchmark, depicted for
liveness and safety and for the two categories M1 and M2. The x-axis represents the
number of threads when the y-axis the mean of the reduction rates.

an implementation choice but a pure lock-free version remains possible. All the
approaches proposed here have been implemented in Spot [8]. For a given model
the corresponding Kripke structure is generated on-the-fly using DiVinE 2.4
patched by the LTSmin team.6

Reduction rates. Figure 5 gives the mean of the reduction rates for the bench-
mark. It appears that the reduction rate of each algorithm is insensitive to the
thread number. ForM1, all algorithms tend to have a similar reduction rate even
if laarman (live and safe) is slightly worse than the others (both for liveness
and safety cases). For liveness and models M2, it appears that ws-pr19-live
significantly degrades the reduction rate. This is due to the pessimistic approach
imposed by the lack of information from the DFS stack. This effect is minored
for the safety case because expansions are limited to the bottom SCCs and by
our strategy that minimizes the number of expansions in such SCCs.
Time analysis. Tables 1 and 2 describe the measure for the two categories of
model and all the algorithms running with 1 to 12 threads. For safety, lw14-safe
and ws-pr19-safe have comparable running times. Since ws-pr19-safe has
a smaller reduction rate than lw14-safe, the work-stealing mechanism im-
plemented in ws-pr19-safe shows its efficiency. Nonetheless, scc-pr19-safe

6 See http://fmt.cs.utwente.nl/tools/ltsmin/#divine for more details.

14

lw14-live dfs-pr19-live ws-pr19-live
States Time Sp. States Time Sp. States Time(s) Sp.

M
1

1 th. 412.3 3 755 – 410.1 3 732 – 411.5 4 651 –
2 th. 413.9 1 983 1.89 410.1 1 960 1.90 411.5 2 505 1.86
4 th. 415.2 1 136 3.30 410.1 1 124 3.32 411.5 1 429 3.25
8 th. 414.6 805 4.66 410.1 773 4.83 411.5 1 021 4.55
12 th. 414.6 691 5.43 410.1 678 5.50 411.5 829 5.60

M
2

1 th. 202.0 1 372 – 181.5 1 218 – 256.3 2 761 –
2 th. 199.3 718 1.91 182.2 632 1.93 256.2 1 392 1.98
4 th. 197.3 391 3.50 182.2 343 3.55 256.0 721 3.83
8 th. 195.1 246 5.56 182.3 222 5.49 255.9 466 5.93
12 th. 193.9 186 7.34 182.2 165 7.36 255.7 359 7.69

Table 1. States in 106, times in seconds and speedup for liveness provisos

lw14-safe dfs-pr19-safe scc-pr19-safe ws-pr19-safe
State Time Sp. State Time Sp. State Time Sp. State Time Sp.

M
1

1 th. 412.3 5 124 – 410.1 3 734 – 410.1 4 179 – 410.1 5 041 –
2 th. 413.9 2 709 1.84 410.1 1 961 1.90 410.4 2 235 1.87 410.1 2 744 1.84
4 th. 414.6 1 527 3.38 410.1 1 124 3.32 410.3 1 372 3.04 410.1 1 493 3.38
8 th. 414.5 1 067 4.87 410.1 803 4.65 410.7 870 4.80 410.1 1 034 4.87
12 th. 414.7 809 6.23 410.1 641 5.82 410.5 784 5.33 410.1 809 6.23

M
2

1 th. 202.0 1 372 – 180.2 1 214 – 179.1 1 380 – 179.1 1 935 –
2 th. 199.6 724 1.90 180.5 633 1.92 179.2 713 1.93 179.1 997 1.94
4 th. 197.2 391 3.50 180.7 339 3.58 179.2 336 4.10 179.1 543 3.56
8 th. 195.1 263 5.21 180.8 214 5.67 179.5 257 5.37 179.2 362 5.35
12 th. 194.0 187 7.32 180.7 165 7.32 179.5 205 6.72 179.2 296 6.52

Table 2. States in 106, times in seconds and speedup for safety provisos

2 4 6 8 10 12

1
2

3
4

5

lin
ea

r s
pe

ed
up

WS−PR19−LIVE
DFS−PR19−LIVE
LW14−LIVE

Liveness − Models M2

359

166

187

2 4 6 8 10 12

1
2

3
4

5

lin
ea

r s
pe

ed
up

WS−PR19−SAFE
DFS−PR19−SAFE
LW14−SAFE
SCC−PR19−SAFE

Safety − Models M2

297

166

187
205

Fig. 6. Speedup on models M2

15

and dfs-pr19-safe perform better. However, the complex data structure of
scc-pr19-safe impacts negatively its running time. For liveness, lw14-live
performs better than ws-pr19-live. dfs-pr19-live performs better than the
two others regardless the category of models.

Finally, we can notice that the work-stealing mechanism of ws-pr19-live
particularly improves the speedup for models M2. The Figure 6 displays the
speedup curves for both liveness and safety andM2. For modelsM1, the speedup
of all algorithms are comparable.

6 Conclusion

To our knowledge, only the work of Laarman and al. proposes provisos de-
signed for parallel model checking. Nonetheless, in sequential settings and for
liveness properties, Duret-Lutz et al. [7] empirically shown that variations on the
traditional proviso could improve performances. In this paper, we demonstrate
that the application of the suggested provisos (in particular dfs-pr19-live and
dfs-pr19-safe) can also benefit to the parallel emptiness check based on a
state-based DFS. During this investigation, we also proposed a new proviso also
based on destination expansion but dedicated to safety properties.

However, the best existing parallel emptiness checks are based on an SCC
computation. For the best of them (bp16 [2]), no existing provisos can be directly
applied since it is based on a work-stealing mechanism breaking the DFS post-
order. In this paper, we proposed new provisos for this parallel emptiness check
(for both liveness and safety properties). Moreover, we also presented a dedicated
proviso for safety properties for Renault et al. [24]. Figure 1 summarizes the
compatibility of the different provisos with respect to existing emptiness checks.

One of the challenging problems in parallelizing explicit state model checking
is the model checking of stutter-free LTL properties on distributed systems. In
this paper we propose, for the first time, several algorithms (that can be directly
integrated into the bests known emptiness checks) to tackle this problem. All
provisos presented and evaluated in this paper achieve comparable speedups.
However, the reduction rate of ws-pr19-live for models with long cycles and a
small number of large SCCs is significantly degraded compared to the other pro-
posed algorithms. An open question remains: can we develop a liveness proviso
for bp16 that preserves a good reduction rate for any category of models?

References

1. J. Barnat, L. Brim, and P. Rockai. Parallel partial order reduction with topological
sort proviso. In SEFM’10, pp. 222–231, Sept. 2010.

2. V. Bloemen and J. van de Pol. Multi-core scc-based ltl model checking. In HVC’16,
Lecture Notes in Computer Science, pp. 18–33. Springer, Nov. 2016.

3. V. Bloemen, A. Laarman, and J. van de Pol. Multi-core on-the-fly scc decomposi-
tion. vol. 51, march 2016.

4. D. Bosnacki, S. Leue, and A. Lafuente. Partial-order reduction for general state
exploring algorithms. In SPIN’06, vol. 3925 of LNCS, pp. 271–287. Springer.

16

5. D. Bošnaăźki, S. Leue, and A. Lluch Lafuente. Partial-order reduction for general
state exploring algorithms. International Journal on Software Tools for Technology
Transfer (STTT), 11(1):39–51, Feb. 2009.

6. J.-M. Couvreur. On-the-fly verification of temporal logic. In FM’99, vol. 1708 of
LNCS, pp. 253–271, Sept. 1999. Springer.

7. A. Duret-Lutz, F. Kordon, D. Poitrenaud, and E. Renault. Heuristics for checking
liveness properties with partial order reductions. In ATVA’16, vol. 9938 of LNCS,
pp. 340–356. Springer, Oct. 2016.

8. A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu.
Spot 2.0 — a framework for LTL and ω-automata manipulation. In ATVA’16, vol.
9938 of LNCS, pp. 122–129. Springer, Oct. 2016.

9. S. Evangelista and C. Pajault. Solving the ignoring problem for partial order
reduction. International Journal on Software Tools for Technology Transfer, 12(2):
155–170, 2010.

10. S. Evangelista, A. Laarman, L. Petrucci, and J. van de Pol. Improved multi-core
nested depth-first search. In ATVA’12, vol. 7561 of LNCS, pp. 269–283. Springer.

11. H. Hansen and A. Valmari. Safety property-driven stubborn sets. In Reachability
Problems. Springer, 2016.

12. G. J. Holzmann, D. A. Peled, and M. Yannakakis. On nested depth first search.
In SPIN’96, vol. 32 of DIMACS: Series in Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society, May 1996.

13. G. J. Holzmann, R. Joshi, and A. Groce. Swarm verification techniques. IEEE
Transaction on Software Engineering, 37(6):845–857, 2011.

14. A. Laarman and D. Faragó. Improved on-the-fly livelock detection. In NASA
Formal Methods (NFM’13), pp. 32–47, 2013. Springer.

15. A. Laarman, E. Pater, J. Pol, and H. Hansen. Guard-based partial-order reduction.
STTT, pp. 1–22, 2014.

16. A. W. Laarman and A. J. Wijs. Partial-order reduction for multi-core ltl model
checking. In HVC 2014, vol. 8855 of LNCS, pp. 267–283. Springer, 2014.

17. F. Lerda and R. Sisto. Distributed-memory model checking with spin. In Interna-
tional SPIN Workshop on Model Checking of Software, pp. 22–39, 1999. Springer.

18. R. Nalumasu and G. Gopalakrishnan. An efficient partial order reduction algorithm
with an alternative proviso implementation. FMSD, 20(1):231–247, Jan. 2002.

19. E. Pater. Partial order reduction for pins, March 2011.
20. R. Pelánek. BEEM: benchmarks for explicit model checkers. In SPIN’07, vol. 4595

of LNCS, pp. 263–267. Springer, 2007.
21. R. Pelánek. Properties of state spaces and their applications. International Journal

on Software Tools for Technology Transfer (STTT), 10:443–454, 2008.
22. D. Peled. Combining partial order reductions with on-the-fly model-checking. In

CAV’94, vol. 818 of LNCS, pp. 377–390. Springer, 1994.
23. D. Peled, A. Valmari, and I. Kokkarinen. Relaxed visibility enhances partial order

reduction. Formal Methods in System Design, 19(3):275–289, 2001.
24. E. Renault, A. Duret-Lutz, F. Kordon, and D. Poitrenaud. Variations on parallel

explicit model checking for generalized Büchi automata. International Journal on
Software Tools for Technology Transfer (STTT), pp. 1–21, Apr. 2016.

25. S. Stephen. What’s wrong with on-the-fly partial order reduction. In CAV’19,
Lecture Notes in Computer Science, pp. 478–495. Springer, 2019.

26. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

27. A. Valmari. Stubborn sets for reduced state space generation. In ICATPN’91, vol.
618 of LNCS, pp. 491–515, 1991. Springer.

28. A. Valmari. More stubborn set methods for process algebras. In Concurrency, Se-
curity, and Puzzles: Essays Dedicated to Andrew William Roscoe on the Occasion
of His 60th Birthday, pp. 246–271. Springer, 2017.

	Combining Parallel Emptiness Checks with Partial Order Reductions

