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Abstract

Fish embryo models are widely used as screening tools to assess the efficacy and /or toxicity of chemicals.
This assessment involves the analysis of embryo morphological abnormalities. In this article, we propose
a multi-scale pipeline to allow automated classification of fish embryos (Medaka: Oryzias latipes) based
on the presence or absence of spine malformations. The proposed pipeline relies on the acquisition of fish
embryo 2D images, on feature extraction based on mathematical morphology operators and on machine
learning classification. After image acquisition, segmentation tools are used to detect the embryo before
analysing several morphological features. An approach based on machine learning is then applied to these
features to automatically classify embryos according to the presence of axial malformations. We built and
validated our learning model on 1,459 images with a 10-fold cross-validation by comparison with the
gold standard of 3D observations performed under a microscope by a trained operator. Our pipeline
results in correct classification in 85% of the cases included in the database. This percentage is similar to
the percentage of success of a trained human operator working on 2D images. The key benefit of our
approach is the low computational cost of our image analysis pipeline, which guarantees optimal
throughput analysis.
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Introduction
Toxicological screening of chemicals is based on the analysis of reliable biological descriptors of model
organisms. To assess the effect of compounds, several endpoints are analysed per individual, generating

a large amount of data. For processing the data, automation appears to be necessary.

In compliance with international regulations relative to the welfare of animals used for scientific purposes
[1][2], fish embryos provide ethically acceptable models for the development of screening methods to
assess human and environmental toxicity of chemicals [3][4]. Moreover, early developmental stages of
certain species such as Zebrafish (Danio rerio) and Medaka (Orizia latipes) are transparent, which
facilitates observation of their organogenesis. Finally, fishes are vertebrates and key mechanisms of
embryonic development are conserved throughout evolution from fishes to human. Fish embryos are thus
considered to be a relevant model for studying the impact of chemicals on human embryonic development
[5][6] and are commonly used in pharmacology and toxicology studies [7][8]. In this study, Medaka
embryos are used. We focus on the eleutheroembryo stage that follows hatching and that is characterized
by the presence of the yolk sac providing the energy supply necessary to organism development [9][10].

In the further article, eleutheroembryos are referred to as alevins.

Objectives and constraints
Developmental toxicology assessment consists of classifying alevins according to the presence or the
absence of malformations and is performed manually most of the time [11][12]. This assessment uses
visual analyses that depend on both the operator and the observation conditions. This means that an
operator can have a different analysis of the same data set depending on the observation conditions. To
improve this process, which is time-consuming and subjective, some form of automation is required.
Image processing tools and pattern recognition have been widely used in alevins studies and high-
throughput screening [13][14][15]. In particular, several articles have shown the efficiency of supervised
learning techniques in the scope of alevins phenotypes classification [16]. Nevertheless, most of the
proposed methods are limited to the analysis of the alevin seen from a precise orientation, implying to
manually position each alevin in this specific orientation before starting the image acquisition [17]. In

some of these studies, image-based observations are considered as ground truth [16]. Because every



malformation is not always visible from every point of view, taking image-based observations as a
reference can occult some of these malformations. Here, we propose an experimental protocol that does
not require manual positioning of the alevin in a given orientation and that considers as ground truths the
observation of the alevin under a microscope by a trained user who has the possibility to analyse the
given alevin from any possible orientations. Such conditions correspond to the use case of the software in

areal assay.

Our objective is to propose an automated method for classification of alevins with or without a spine
malformation, one of the most common developmental abnormalities observed [17][18]. This
classification is based on the analysis of 2D images acquired according to the protocol described in [19].
In the acquired images, the alevins can appear in any orientation from the lateral view to the dorsal view
(Figure 1a to c). Moreover, spine malformations cover an important variety of phenotypes, from the most
obvious malformation to slightest defects of the spine curvatures (Figure 1d and e). Some specific cases
of strongly bent alevins are refered as hook-shaped (Figure 1f). This huge variety in alevins phenotypes
makes spine malformation complicated to characterize. Mathematical morphology operators can provide
an accurate description serving as input to a Machine Learning classifier. Working with 2D images
implies loss of information compared to 3D observations made under a microscope. To validate the
proposed set up, we challenge ground truth reliability by quantifying the gap between observations under
a microscope and on 2D images. In addition, in order to quantify human subjectivity, we provide an
estimation of the inter-observer subjectivity rate according to image-based observations made by three

different observers.



No spine malformation

Figure 1. Images of 9 dpf Medaka alevins as acquired by our set-up. a to c: healthy alevins shown in

Spine malformation

lateral view in a, three-quarters view in b and dorsal view in c. d to f: alevins showing different types of
spine malformations, d being a major spine malformation (lateral view), e a slight “S-shaped”

malformation (three quarter view) and f a hook-shaped alevin (dorsal view ).

Assessing the efficacy of our automated classifier implies to pay attention to both the sensitivity and the
specificity of the classification. The sensitivity (i.e. the capacity of a test to indicate a correct positive
result) corresponds to the proportion of malformed alevins correctly detected. Specificity refers to the
ability of the test to correctly indicate a negative result, i.e. the ratio of healthy alevins correctly
detected. The overall accuracy is the average of both numbers weighted by their population. The
chemicals safety assessment involves reducing the number of false negatives, i.e. high sensitivity. On
the other hand, in particular in an industrial context, specificity also needs to be high, because false
detection of abnormalities could penalize production. Consequently, both specificity and sensitivity
tests must be optimized, which corresponds to the conventional choice of optimizing the overall

accuracy.



Proposed method
In this article, we describe a new automated method to detect alevin spine malformations. Most of these
malformations are characterized by abnormal spine curvature. Some alevins also exhibit shortened
spines or humps. Inter-individual variability and the single orientation acquired in 2D images
complicates the detection of axial malformations, due to the variability in alevin orientation from one
image to the other. The first difficulty is thus to identify relevant parameters in order to characterize
such a panel of malformations. Our method is based on binary spine modelling in order to extract
numerical values relative to spine characterization. To this end, we consider an approach based on the
morphological skeleton [20][21]. Features such as dimensions, curvature, angles are then deduced from
this skeleton and gathered in a features vector in order to feed a random forest classifier [22]. The

flowchart of our methodology is summarized in Figure 2.

The proposed method comprises two phases. The learning phase builds the classification model, which
is then used to classify data during the testing phase. Learning is based on a set of labelled data. It
begins with a pre-processing step (described in detail in the Appendix) that reduces the acquired data to
the region of interest [19]. In the feature extraction step, the alevin spine is segmented using
mathematical morphology operators [23]. Following segmentation, morphological parameters are
measured on the spine and the alevin mask. A random forest classifier is built and fitted to the set of
labelled data. During the testing phase, features are also extracted from the testing dataset and images

are classified according to the trained random forest model.

Our pipeline is made up of simple and fast operators, that are, for the most part, available in off-the-
shelf image analysis software packages such as the PINK image processing library [24] and scikit-learn

library [25].
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Figure 2. Flowchart of the alevin morphological abnormalities detection assay based on image

processing. This detection method is assessed by cross-validation in the presented study.

Contributions and outlines

The main contributions to this article are the following:

- A dataset of 1459 alevins associated with ground-truth is built. Each alevin is screened under a
microscope and through observation of acquired 2D images. For each alevin, the presence or
absence of malformations is established by a trained operator during the microscope observations,
such labelling being considered as ground-truth. Furthermore, a second labelling is produced by
independently reading the 2D images, allowing one to assess the loss of information due to the 2D
acquisition of 3D alevins. To challenge ground truth reliability, additional observations and
labelling are performed by three experts on a subset of 200 images, making assessment of inter-
expert subjectivity possible;

- The efficacy of mathematical morphology operators is shown for characterizing alevin

malformations and for feeding an automated classifier;



- The 2D images are used to show that alevins can automatically be classified with an accuracy
similar to image-based human classification and with time efficiency (a few seconds for each
image) that is compatible with its use in a high throughput industrial context.

Section 1 introduces the classifier used in the proposed approach, presenting the functions and

mechanisms related to the random forest estimator. The features extraction process is presented in

Section 2, including the description of our automated method for alevin spine segmentation and for

spine geometrical description. Section 3 explains how the learning model is established. The

experimental setup is described in Section 4 and the assessment results are provided in Section 5.

1. Background notions for random forest classification
Decision trees are often used as predictive models for classification purposes in supervised learning. In

this section, we quickly recall the basic concepts behind decision trees and random forest classifiers.

A decision tree is a directed binary tree where non-leaf nodes carry decision rules and where leaves are
labelled. The decision rules associated with each node take the form of Boolean test functions pointed
toward their respective children. The label associated to a leaf corresponds to a final class. More
formally, a decision tree is a 4-tuple (N, P, F, L) defined by the ensemble of nodes N, the ensemble of
parent relations between them P, the mapping F which associates a Boolean test function to each non-

leaf node and a mapping L that provides a label to each leaf node.

A decision tree-based algorithm classifies data based on a set of features (a.k.a. descriptors). At each
non-leaf node, an associated test function takes a single feature as argument and compares it to a fixed
threshold. Depending on the result of the comparison, either the right or the left child node is chosen.
Thus, starting from the root of the tree and given a feature vector, a path is created from the root
through the nodes until it reaches a leaf. The algorithm returns as output, the label of this leaf. The

definition of a test function ensemble F is given in Section 3.

The accuracy of a decision tree-based algorithm can be assessed on a data sample by comparing the

predicted values on this sample with a corresponding set of correctly labelled data. On a sample of size



Ngamples WE Tespectively call y and ¥ the series of labelled and predicted values. If y; is the label of the
i data and 9, is the corresponding predicted value, then we calculate the accuracy rate of the algorithm
on this sample as the fraction of correct predictions over the total number of data in this sample. More

precisely, the accuracy of the sample is given by:

1

(1) accuracy(y,9) = Z?imple 1 7).

Nsample

where 1(y;,¥,) is equal to 1 if y; is equal to ¥, and O otherwise.

Fitting a Boolean test function to a training set of labelled data consists of finding the most relevant
feature and its associated optimal threshold, according to certain criteria, like optimal accuracy on a
training set. Then, the training set is split into two parts according to this Boolean test function and the
process is carried out recursively on the two child nodes, until another criterion is fulfilled, such as
desired accuracy or maximum branch depth. A limitation of decision trees is their tendency to overfit
the data. Overfitting is defined as the tendency of a classifier to correspond too closely to a particular
set of training data, jeopardizing its ability to correctly classify future observations. For this reason, it is
recommended to not train decision trees on the entire available dataset but to train and test respectively
on a collection of subsets and their complement in multiple ways. This process is called cross-

validation.

Overfitting can also be reduced significantly by training multiple decision trees, using multiple subsets
of features and submitting the results of these trees to a voting process. This process is what forms the
basis to Random Forests (RF). RF are defined as an ensemble of decision trees that outputs a final
prediction class corresponding to a function of every tree output classes. This principle is based on the
idea that, as a single entity, a decision tree is not effective for high dimensional data. However the
combination of many weak decision trees can produce a stronger and more reliable classifier [22]. To
this end, RF are fitted using the general technique of bootstrap aggregating, or bagging. Each decision
tree is computed (node split functions are defined) on a random subset of the training dataset, using a
randomly selected set of features [26]. This technique is currently used to reduce misclassification error

due to single application of the partitioning clustering procedure [27][28].



Feature characterization is a key requirement for decision tree building. The aim of this process is to
obtain various objective descriptions of the data that needs to be classified. Such descriptions are then
used as arguments to the decision functions. In our method, the classifier is designed to classify images
of alevins depending on the presence or the absence of axial malformation. The following section

describes features that enable characterization of such malformations.

2. Feature extraction for alevin spine characterization
We describe in this section a method for obtaining a geometric description of alevins from 2D images.
Image analysis, including mathematical morphology, is used to characterize the spinal shape of alevins
from grey-scale images [23][29]. Section 2.1 proposes a procedure to approximate the alevin’s spine.

Feature characterization is presented in Section 2.2.

2.1. Alevin axial segmentation method
In this section, we start from a first segmentation of the whole alevin contour obtained during a pre-
processing step summarized in the appendix. We denote by M the resulting segmentation (Figure 4a).
Our aim is then to obtain, from M, a segmentation which approximates the curve of the alevin’s spine.
After smoothing the contour of the alevin, this methodology implements morphological skeletonisation.
More precisely, the spine approximation method uses the curvilinear skeleton principle described in

[20]. An overview of the spine segmentation from the alevin mask is given in Figure 3.

Firstly, in order to filter out any artefact ramification, we begin by filling the convex areas on the alevin

contour M with a morphological closing or,, by a disk-shaped structuring element I, of size r; [23].

In the following, we denote by M, the result of this process applied to M :

(1) M = gr,, (0.
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Figure 3. Flowchart of alevin spine approximation.

On the other hand, concave areas due to alevin abnormalities such as significant oedemas or poor initial
segmentation are more problematic because they may cause important ramifications in the subsequent
skeleton application step. To filter out these concave areas, which can be more or less significant in
size, we consider an iterative process which determines the smallest amount of filtering used to obtain a
skeleton without any ramification. In our methodology, such filtering is performed with morphological
openings by disk-shaped structuring elements. More precisely, we consider the curvilinear skeleton
S;(X) of the largest connected component of the opening of X by a disk-shaped structuring element of
radius i. Hence, if we denote by r, the minimal radius considered in the proposed setting, we consider
the resulting skeleton S defined by:

() st= Sry+3.min(5,2) "),
where A = min{i € N such as S, 5;(M") has two extremities}. A further pruning step removes
potential residual ramifications in §, by filtering out the skeleton branches with a length less than «
pixels. We write:

(3) §? = pruning,(s1),

where pruning, denotes the skeleton pruning strategy of parameter a.
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Figure 4. Spine approximation steps on the cropped image of an alevin. The red line represents the

contour of the initial mask M in a, the initial curvilinear skeleton §% in b, the extended curvilinear

skeleton S in c and the straight line L linking both ends.

From its definition, the curvilinear skeleton S? (Figure 4b) does not reach the borders of the alevin’s
shape M (Figure 4a). In order to more effectively approximate the alevin’s actual spine, both
extremities of the skeleton S2 are detected and extended up to the mask boundaries. To achieve this, for
each skeleton extremity p’, we draw the straight line linking p' to the point located five points behind
the skeleton curve. This segment extends past p‘all the way to the border of M. The resulting skeleton
is denoted by § in the following (Figure 4c). This spine segmentation is accurate in cases of alevins
seen in dorsal view because such alevins appear symmetric. However, in lateral view, the spine
segmentation is systematically deviated near the yolk sac, instead of following the dorsal line.
Nevertheless, it is not a problem for our purpose. Indeed, exact spine segmentation is not a goal per-se.
It is a way to measure features for classification (see Section 2.2), and the observed deviation does not

highly impact the features measurement further described. Finally, both skeleton extremities are then
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linked via a line segment £, as shown in (Figure 4d). Because a healthy alevin is expected to present a
straight spine when it is anaesthetized, this segment is used in the following section as a reference to

compare the actual alevin’s spine to a healthy spine.

2.2. Geometrical features description
Classifying alevin malformations from images by using a learning-based approach requires an accurate
description of the malformation that we want to detect. Hence, from the segmentations obtained as
described in Section 2.1, we select relevant and discriminative features to reliably distinguish between
alevins with and without a spine abnormality. Features are measured through the assessments of (i) the
alevin dimensions (Section 2.2.1), (ii) the curvature (Section 2.2.2), (iii) the regularity (Section 2.2.3)

and (iv) the discontinuities of the alevin’s shape (Section 2.2.4).

2.2.1. Dimension measurement on the alevin masks

A first set of parameters, namely a,jevin» Lalevins Wmaxs Wmeans ri}nage and ri%nage described below are related

to the dimensions of the alevin. The alevin area @y, 1S measured on mask M in number of pixels. The
parameter l,..;, refers to the alevin’s length, measured as the Euclidean length of the skeleton S.
Maximum and average widths are calculated using the maximal balls principle. For that, the Euclidean
distance map is computed to the exterior of the alevin mask M [30][31] and restricted to the skeleton §.
Thus, each point of the skeleton is associated with its distance to the external part of the alevin mask'.
The largest and the average values are extracted and multiplied by two to obtain the maximal and average
widths denoted by Wy, and Wy,ea,, respectively. We compute the ratios riﬁ,age and riﬁ,age between the

alevin’s length and width as follow:

1% w,
(4) Timage = T s and 1ig g, = 0.
8 lalevin 8 lalevin

2.2.2.  Curvature assessment from the graphical representation of the alevin’s spine
The aim of this part is to extract features related to spine deviation from the straight line joining its two

T, and 2, . We

extremities. The relevant parameters are denoted by AUC, d .y, Ameans T gzraph, arap

graph>

build an image representation of the alevin’s spine in order to simplify its analysis in a direct

' This weighted skeleton is called the extinction function [23]
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orthonormal frame. We aim to lay both the spine extremities on the abscissa axis. To this end, we

search for the composition of the translation T and the rotation R that register the line segment joining

the extremities of the spine curve to the segment [(0,0), (, 0)] where [ is the distance between the two

extremities. The result is shown on Figure 5b.
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Figure 5. Graphical representation of the curvilinear skeleton S in a direct orthonormal frame. The spine

curve is represented after translation T (a) and after translation T and rotation R (b).

Depending on the curve shape, it is not always possible to represent the detected alevin spine as an

explicit function. In particular, when multiple points of the curve, representing the alevin spine in the

presenting orthonormal frame, have the same abscissa, the spine is considered to have a hook. This case is

described in Section 4.2 and Figure I/f. In the normal case, we consider the spine curve as the graphic

representation of a function f in an orthonormal frame. We write (x;, f (x;)) the coordinates of the i”

point of the curve. The total number of points on the curve is n. This representation is used to measure

several numerical parameters, which are chosen for their ability to characterize the spine shape. In

particular, the abscissas axis is taken as reference and spine deviation is estimated with the following

features.

The area under the curve (AUC) of the function |f| is computed using the trapezoidal rule [32], where |f|

is the absolute value of f(x) for every points x of the domain:

13



(5) AUC = Z?:l (lf(xl—1)2|+|f(xl)|) X (xi _ xi_l)-

The use of the absolute value allows analysing every alevin equally, even those with S-shaped spinal cord
i.e. those for which function f is somewhere above and somewhere below the line segment joining the
extremities of the alevin’s spine. The maximal deviation d,, 4, and the average deviation d,,¢q, are
calculated considering the maximal and average distances between the spine curve and the abscissas axis
respectively, meaning the maximum and average values of the curve ordinates:

(6) dmax = max(f(xi)) fOT' S [0' Tl] ; and

(7) dimean =3 21t f (%)-

2

. 1 3 . .
From these parameters, three ratios 7y.,ph. Tgraph» a0d Tgrapp are considered to characterize the flatness of
the spine:
d d AUC
8 ,r.l — Ymax | _r2 — Ymax | and ,',.3
( ) graph Lalevin  "graph Amean ’ graph Lalevin

2.2.3.  Curve regularity assessment

The spine shape can also be discriminant even if no important deviation is detectable. Even a slight curve
in the alevin’s spine can be representative of an anomaly depending on the regularity of the curve. Indeed,
a recently anaesthetized alevin or immediately after hatching and still undergoing deployment could have
such an appearance without this necessarily pointing to a malformation. We now describe parameters rpz
and 72 that represent information about the regular appearance of the spine curve. For this purpose, we
approximate the function f (see Section 2.2.2) by a parabola. Hence, we define the parabolic function f,
defined by:

9) fr(x) =a;x*+b;x + ¢,
where the triplet (a4, by, ¢;) is chosen to most effectively approximate the initial function f via least-
squares. We then consider the determination coefficient rpz as follows:

TizoU (x)—fp (xi)?
10 r2 =1—-= 0 U Ip\i
10 p T (Flx) -m)z 7

1 . . . ..
where m = =) f(x;) is the average of the function ordinates. In a similar way, we compute the
n

determination coefficient 7,2 of the cubic function £, defined by the equation

fe(x) = ayx®+ b,x*+ c,x + d, and that most effectively approximates the initial function f:

14



TP ()~ fex)?
11 r2 =1 — 2= Te ey
an ¢ T o(f (i) —m)?

Both rpz and 12 coefficients are used as descriptors of spine curve regularity.

2.2.4.  Curve discontinuities assessment
Some alevins exhibit disruptions in their spine, that can be detected by the presence of large, abrupt
angles. Such irregularities may not cause important deviations with respect to the straight line linking
both extremities. As a result, they cannot be sufficiently characterized by the previously described
features. To reveal such irregularities, an algorithm was developed in order to approximate the skeleton
by a broken line and to assess the main angles in the alevin curve. It consists of searching for the
significant extrema of the piecewise affine function that best represents the spine curve and of linking

them by line segments.

We consider the skeleton curve as a 1D signal that is smoothed by a convolution with a Gaussian kernel
of size g. This step reduces the number of spurious angular variations that are mostly due to the discrete
aspect of the pixel-supported signal. Reflective boundary conditions are used to limit border effects on the
skeleton signal. We then search for local extrema. Their coordinates are gathered in a vector V. Both

extremities are added at the beginning and at the end of V.

Because of the discrete domain representation, or due to some oscillations on the spine segmentation,
some of these extrema are close to each other and do not represent significant angular changes. To filter
out extrema that are not significant, we search for steady portions of the spine curve. We define as a
steady portion a subsequence in vector V that is as long as possible and whose successive points are close
to each other. A vertical distance threshold d; is defined below which two successive points of V' are
considered to be within a steady portion. From the vector V, all the extrema located between the two
extremities of a steady portion are removed. A horizontal distance threshold d, is then defined, below
which a steady portion is simplified by replacing its extremities with a unique centred point. The broken

line that links the selected extrema is finally considered. An example of this process is presented in Figure

15



6. The number of angles 14,45 detected on the broken line created, the minimal angle 6, and the

maximal angle 0,,,, are saved as features.
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Figure 6. Alevin spine approximation by a piecewise affine function. The red line shows the spine
segmentation S in a, the approximated spine in b, superimposed on the cropped image. The approximated
spine is represented in a direct orthonormal frame in c. In b and c: the areas (i) and (ii) are detected as
steady portions of the curve whose only extremities are maintained as the broken line angles. The red
crosses represent the extrema deleted from the initial spine graphical representation. In fine, the retained
angles and the delineation of the approximated broken line appear in blue. For this alevin, the following

parameters are measured: N upges = 5, 6,y = 149°, and 6,,,, = 172°.

We summarize the parameters characterizing the alevin’s spine and used during classification in Table 1.
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Alevin dimension descrlptors Qalevin > lalevin > Wmean 5 Wmax > rimage ’ rimage

Curvature descriptors AUC ; d d T,

1
graph» T,

. 2 1'3
max> “mean > graph> ‘graph

Curve regularity descriptors rp2 ;12

Curve break descriptors TMangles > Omin > Omax

Table 1. List of features extracted from alevin segmentations and used during axial classification

3. Learning model
Many parameters and rules are involved in our RF model and determine the capacity of the model to
classify correctly. They are specified before the classifier training step and make it possible to adapt it

to the data constraints. We present some of them in this section.

During learning, we search for the ensemble N of nodes, the parent relations P between them and the
set F of test functions associated with each node. For each tree, we firstly consider a single root node to
which we associate all the labelled data from the training sample. Then, we recursively decide if the
node needs to be split with the associated dataset. To decide if a node needs to be split or if the learning
model needs to be stopped, we use the standard entropy criterion. Applied to a sample, entropy
measures its level of impurity, in term of label distribution. A sample with an entropy of zero means this
sample only contains elements with the same label. Conversely, entropy is maximal when uniform label
distribution is observed in the sample. The entropy of a binary sample S of labelled data is defined by:
(1