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Abstract. We present new parallel emptiness checks for LTL model
checking. Unlike existing parallel emptiness checks, these are based on
an SCC enumeration, support generalized Büchi acceptance, and require
no synchronization points nor repair procedures. A salient feature of
our algorithms is the use of a global union-find data structure in which
multiple threads share structural information about the automaton being
checked. Our prototype implementation has encouraging performances:
the new emptiness checks have better speedup than existing algorithms
in half of our experiments.

1 Introduction

The automata-theoretic approach to explicit LTL model checking explores the
product between two ω-automata: one automaton that represents the system,
and the other that represents the negation of the property to check on this
system. This product corresponds to the intersection between the executions of
the system and the behaviors disallowed by the property. The property is verified
if this product has no accepting executions (i.e., its language is empty).

Usually, the property is represented by a Büchi automaton (BA), and the sys-
tem by a Kripke structure. Here we represent the property with a more concise
Transition-based Generalized Büchi Automaton (TGBA), in which the Büchi
acceptance condition is generalized to use multiple acceptance conditions. Fur-
thermore, any BA can be represented by a TGBA without changing the tran-
sition structure: the TGBA-based emptiness checks we present are therefore
compatible with BAs.

A BA (or TGBA) has a non-empty language iff it contains an accepting cycle
reachable from the initial state (for model checking, this maps to a counterex-
ample). An emptiness check is an algorithm that searches for such a cycle.

Most sequential explicit emptiness checks are based on a Depth-First Search
(DFS) exploration of the automaton and can be classified in two families: those
based on an enumeration of Strongly Connected Components (SCC), and those
based on a Nested Depth First Search (NDFS) (see [26, 10, 24] for surveys).

Recently, parallel (or distributed) emptiness checks have been proposed [6,
2, 9, 7, 3, 4]: they are mainly based on a Breadth First Search (BFS) exploration
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which scales better than DFS [23]. Multicore adaptations of these algorithms
with lock-free data structure have been discussed, but not evaluated, by Barnat
et al. [5].

Recent publications show that NDFS-based algorithms combined with the
swarming technique [16] scale better in practice [13, 18, 17, 14]. As its name
implies, an NDFS algorithm uses two nested DFS: a first DFS explores a BA
to search for accepting states, and a second DFS is started (in post order) to
find cycles around these accepting states. In these parallel setups, each thread
performs the same search strategy (an NDFS) and differs only in the search order
(swarming). Because each thread shares some information about its own progress
in the NDFS, synchronization points (if a state is handled by multiple threads
in the nested DFS, its status is only updated after all threads have finished) or
recomputing procedures (to resolve conflicts a posteriori using yet another DFS)
are required. So far, attempts to design scalable parallel DFS-based emptiness
check that does not require such mechanisms have failed [14].

This paper proposes new parallel emptiness checks for TGBA built upon two
SCC-based strategies that do not require such synchronization points nor recom-
puting procedures. The reason no such mechanisms are necessary is that threads
only share structural information about the automaton of the form “states x and
y are in the same SCC” or “state x cannot be part of a counterexample”. Since
threads do not share any information about the progress of their search, we
can actually mix threads with different strategies in the same emptiness check.
Because the shared information can be used to partition the states of the au-
tomaton, it is stored in a global and lock-free union-find data structure.

Section 2 defines TGBAs and introduces our notations. Section 3 presents our
two SCC-based strategies. Finally, Section 4 compares emptiness checks based
on these new strategies against existing algorithms.

2 Preliminaries

A TGBA is a tuple A = 〈Q, q0, δ,F〉 where Q is a finite set of states, q0 is a
designated initial state, F is a finite set of acceptance marks, and δ ⊆ Q×2F×Q
is the (non-deterministic) transition relation where each transition is labelled by
a subset of acceptance marks. Let us note that in a real model checker, transitions
(or states) of the automata would be labeled by atomic propositions, but we omit
this information as it is not pertinent to emptiness check algorithms.

A path between two states q, q′ ∈ Q is a finite and non-empty sequence of
adjacent transitions ρ = (s1, α1, s2)(s2, α2, s3) . . . (sn, αn, sn+1) ∈ δ+ with s1 = q
and sn+1 = q′. We denote the existence of such a path by q  q′. When q = q′

the path is a cycle. This cycle is accepting iff
⋃

0<i≤n αi = F .
A non-empty set S ⊆ Q is a Strongly Connected Component (SCC) iff

∀s, s′ ∈ S, s 6= s′ ⇒ s  s′ and S is maximal w.r.t. inclusion. If S is not
maximal we call it a partial SCC. An SCC is accepting iff it contains an accept-
ing cycle. The language of a TGBA A is non-empty iff there is a path from q0

to an accepting SCC, i.e. the language of A is non-empty (L (A) 6= ∅).
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Fig. 1. LIVE states are numbered by their live number, dead states are stroke. Clouds
represents SCC as discovered so far. The current state of the DFS is 7, and the DFS
stack is represented by thick edges. All plain edges have already been explored while
dashed edges are yet to be explored. Closing edges have white triangular tips.
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3 Generalized Parallel Emptiness Checks

In a previous work [24] we presented sequential emptiness checks for generalized
Büchi automata derived from the SCC enumeration algorithms of Tarjan [27]
and Dijkstra [11], and a third one using a union-find data-structure. This section
adapts these algorithms to a parallel setting.

The sequential versions of Tarjan-based and Dijkstra-based emptiness checks
both have very similar structures: they explore the automaton using a single
DFS to search for accepting SCCs and maintain a partition of the states into
three classes. States that have not already been visited are UNKNOWN; a state
is LIVE when it is part of an SCC that has not been fully explored (i.e., it is part
of an SCC that contains at least one state on the DFS stack); the other states are
called DEAD. A DEAD state cannot be part of an accepting SCC. Any LIVE
state can reach a state on the DFS stack, therefore a transition from the DFS
stack leading to a LIVE state is called a closing edge. Figure 1 illustrates some
of these concepts.

These two algorithms differ in the way they propagate information about
currently visited SCCs, and when they detect accepting SCCs. A Tarjan-based
emptiness check propagates information during backtrack, and may only find
accepting SCC when its root is popped. (The root of an SCC is the first state
encountered by the DFS when entering it.) A Dijkstra-based emptiness check
propagates information every time a closing edge is detected: when this happens,
a partial SCC made of all states on the cycle closed by the closing edge is
immediately formed. While we have shown these two emptiness checks to be
comparable [24], the Dijkstra-based algorithm reports counterexamples earlier:
as soon as all the transitions belonging to an accepting cycle have been seen.

A third algorithm was a variant of Dijkstra using a union-find data structure
to manage the membership of each state to its SCC. Note that this data structure
could be used as well for a Tarjan-based emptiness check.

Here, we parallelize the Tarjan-based and Dijkstra-based algorithms and use
a (lock-free) shared union-find data structure. We rely on the swarming tech-
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Algorithm 1: Main procedure

1 Shared Variables:

2 A: TGBA of 〈Q, q0, δ,F〉
3 stop: boolean

4 uf : union-find of 〈Q ∪ Dead , 2F 〉

5 Global Structures:

6 struct Step { src: Q, acc: 2F ,

7 pos: int , succ: 2δ }
8 struct Transition {src: Q, acc: 2F

9 dst : Q}
10 enum Strategy { Mixed, Tarjan,
11 Dijkstra}
12 enum Status { LIVE, DEAD,
13 UNKNOWN}
14 Local Variales:

15 dfs: stack of 〈Step〉
16 live: stack of 〈Q 〉
17 livenum: hashmap of 〈Q, int 〉
18 pstack : stack of 〈P 〉

19 main(str : Strategy)
20 stop ← ⊥
21 uf .make set(〈Dead , ∅ 〉)
22 if str 6= Mixed
23 EC(str , 1) ‖ . . . ‖ EC(str , n)

24 else
25 str ← Dijkstra
26 EC(str , 1) ‖ . . . ‖ EC(str , bn

2
c)

27 str ← Tarjan
28 EC(str , 1+bn

2
c) ‖ . . . ‖ EC(str , n)

29 Wait for all threads to finish

30 GET STATUS(q ∈ Q) → Status
31 if livenum.contains(q)
32 return LIVE

33 else if uf .contains(varq) ∧
34 uf .same set(q , Dead)
35 return DEAD

36 else
37 return UNKNOWN

38 EC(str : Strategy , tid : int)
39 seed(tid) // Random Number Gen.

40 PUSHstr(∅, q0)
41 while ¬ dfs.empty() ∧ ¬ stop
42 Step step ← dfs.top()
43 if step.succ 6= ∅
44 Transition t ← randomly
45 pick one off from step.succ
46 switch GET STATUS(t .dst)
47 case DEAD
48 skip

49 case LIVE
50 UPDATEstr(t .acc, t .dst)

51 case UNKNOWN
52 PUSHstr(t .acc, t .dst)

53 else
54 POPstr(step)

55 stop ← >

nique: each thread execute the same algorithm, but explores the automaton in
a different order [16]. Furthermore, threads will use the union-find to share in-
formation about membership to SCCs, acceptance of these SCCs, and DEAD
states. Note that the shared information is stable: the fact that two states belong
to the same SCC, or that a state is DEAD will never change over the execu-
tion of the algorithm. All threads may therefore reuse this information freely to
accelerate their exploration, and to find accepting cycles collaboratively.
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3.1 Generic Canvas

Algorithm 1 presents the structure common to the Tarjan-based and Dijkstra-
based parallel emptiness checks.

All threads share the automaton A to explore, a stop variable used to stop
all threads as soon an accepting cycle is found or one thread detects that the
whole automaton has been visited, and the union-find data-structure [20]. The
union-find maintains the membership of each state to the various SCCs of the
automaton, or the set of DEAD states (a state is DEAD if it belongs to the
same class as the artificial Dead state). Furthermore this data structure has
been extended to store the acceptance marks occurring in an SCC.

The union-find structure partitions the set Q′ = Q∪{Dead} labeled with an
element of 2F and offers the following methods:

– make set(s ∈ Q′) creates a new class containing the state s if s is not
already in the union-find.

– contains(s ∈ Q′) checks whether s is already in the union-find.

– unite(s1 ∈ Q′, s2 ∈ Q′, acc ∈ 2F) merges the classes of s1 and s2, and adds
the acceptance marks acc to the resulting class. This method returns the set
of acceptance marks of resulting class. However, when the class constructed
by unite contains Dead , this method always returns ∅. An accepting cycle
can therefore be reported as soon as unite returns F .

– same set(s1 ∈ Q′, s2 ∈ Q′) checks whether two states are in the same class.

As suggested by Anderson and Woll [1], we implement a thread safe version
of this union-find structure using compare-and-swap since it relies on linked lists
and an hash table.

The original sequential algorithms maintain a stack of LIVE states in order
to mark all states of an explored SCC as DEAD. In our previous work [24], we
suggested to use a union-find data structure for this, allowing to mark all states
of an SCC as dead by doing a single unite with an artificial Dead state. However,
this notion of LIVE state (and closing edge detection) is obviously dependent on
the traversal order, and will therefore be different in each thread. Consequently,
each thread has to keep track locally of its own LIVE states. Thus, each thread
maintains the following local variables:

– The dfs stack stores elements of type Step composed of the current state
(src), the acceptance mark (acc) for the incoming transition (or ∅ for the
initial state), an identifier pos (whose use is different in Dijkstra and Tarjan)
and the set succ of unvisited successors of the src state.

– The live stack stores all the LIVE states that are not on the dfs stack (as
suggested by Nuutila and Soisalon-Soininen [19]).

– The hash map livenum associates each LIVE state to a (locally) unique
increasing identifier.

– pstack holds identifiers that are used differently in the emptiness checks of
this paper.
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With these data structures, a thread can decide whether a state is LIVE,
DEAD, or UNKNOWN (i.e., new) by first checking livenum (a local structure),
and then uf (a shared structure). This test is done by GET STATUS. Note that
a state marked LIVE locally may have already been marked DEAD by another
thread, thus leading to redundant work. However, avoiding this extra work would
require more queries to the shared uf .

The procedure EC shows the generic DFS that will be executed by all threads.
The order of the successors is chosen randomly in each thread, and the DFS
stops as soon as one thread sets the stop flag. GET STATUS is called on each
reached state to decide how it has to be handled: DEAD states are ignored,
UNKNOWN states are pushed on the dfs stack, and LIVE states correspond to
closing edges. This generic DFS is adapted to the Tarjan and Dijkstra strategies
by calling PUSHstr on new states, UPDATEstr on closing edges, and POPstr when
all the successors of a state have been visited by this thread.

Several parallel instances of this EC algorithm are instantiated by the main

procedure, possibly using different strategies. Each instance is parameterized by
a unique identifier tid and a Strategy selecting either Dijkstra or Tarjan. If main
is called with the Mixed strategy, it instantiates a mix of both emptiness-checks.
When one thread reports an accepting cycle or ends the exploration of the entire
automaton, it sets the stop variable, causing all threads to terminate. The main

procedure therefore only has to wait for all threads to terminate.

3.2 The Tarjan Strategy

Strategy 1 shows how the generic canvas is refined to implement the Tarjan
strategy. In this algorithm, each new LIVE state is numbered with the actual
number of LIVE states during the PUSHTarjan operation. Furthermore each state
is associated to a lowlink, i.e., the smallest live number of any state known to be
reachable from this state. These lowlinks, whose purpose is to detect the root of
each SCC, are only maintained for the states on the dfs stack, and are stored on
the pstack .

These lowlinks are updated either when a closing edge is detected in the
UPDATETarjan method (in this case the current state and the destination of
the closing edge are in the same SCC) or when a non-root state is popped in
POPTarjan (in this case the current state and its predecessor on the dfs stack are
in the same SCC). Every time a lowlink is updated, we therefore learn that two
states belong to the same SCC and can publish this fact to the shared uf tak-
ing into account any acceptance mark between those two states. If the uf detects
that the union of these acceptance marks with those already known for this SCC
is F , then the existence of an accepting cycle can be reported immediately.

POPTarjan has two behaviors depending on whether the state being popped
is a root or not. At this point, a state is a root if its lowlink is equal to its live
number. Non-root states are transferred from the dfs stack to the live stack.
When a root state is popped, we first publish that all the SCC associated to this
root is DEAD, and also locally we remove all these states from live and livenum
using the markdead function.
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Strategy 1: Tarjan

struct P {p : int}

1 PUSHTarjan(acc ∈ 2F , q ∈ Q)
2 uf .make set(q)
3 p ← livenum.size()
4 livenum.insert(〈 q , p 〉)
5 pstack .push(〈 p 〉)
6 dfs.push( 〈 q, acc, p, succ(q)〉 )
7 UPDATETarjan(acc ∈ 2F , d ∈ Q)
8 pstack .top().p ←
9 min(pstack .top().p,

10 livenum.get(d))
11 a ← uf .unite(d , dfs.top().src,
12 acc)
13 if a = F
14 stop ← >
15 report accepting cycle found

16 POPTarjan(s ∈ Step)
17 dfs.pop()
18 〈 ll 〉 ← pstack .pop()
19 if ll = s.pos
20 markdead(s)

21 else
22 pstack .top().p ←
23 min(pstack .top().p, ll)
24 a ← uf .unite(s.src,
25 dfs.top().src, s.acc)
26 if a = F
27 stop ← >
28 report accepting cycle found

29 live.push(s.src)

Strategy 2: Dijkstra

struct P {p : int , acc : 2F}

1 PUSHDijkstra(acc ∈ 2F , q ∈ Q)
2 uf .make set(q)
3 p ← livenum.size()
4 livenum.insert(〈 q , p 〉)
5 pstack .push(〈dfs.size(), ∅ 〉)
6 dfs.push( 〈 q, acc, p, succ(q)〉 )
7 UPDATEDijkstra(acc ∈ 2F , d ∈ Q)
8 dpos ← livenum.get(d)
9 〈r ,a〉 ← pstack .top()

10 a ← a ∪ acc
11 while dpos < dfs[r ].pos
12 〈r , la〉 ← pstack .pop()
13 a ← a ∪ dfs[r ].acc ∪ la
14 a ← uf .unite(d , dfs[r ].src, a)

15 pstack .top().acc ← a
16 if a = F
17 stop ← >
18 report accepting cycle found

19 POPDijkstra(s ∈ Step)
20 dfs.pop()
21 if pstack .top().p = dfs.size()
22 pstack .pop()
23 markdead(s)

24 else
25 live.push(s.src)

26 // Common to all strategies.

27 markdead(s ∈ Step)
28 uf .unite(s.src, Dead)
29 livenum.remove(s.src)
30 while livenum.size() > s.pos
31 q ← live.pop()
32 livenum.remove(q)

Fig. 2. Worst cases to detect accepting cycle using only one thread. The left automaton
is bad for Tarjan since the accepting cycle is always found only after popping state 1.
The right one disadvantages Dijkstra since the union of the states represented by dots
can be costly.

0 1 .. 0 m n
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If there is no accepting cycle, the number of calls to unite performed in a
single thread by this strategy is always the number of transitions in each SCC
(corresponding to the lowlink updates) plus the number of SCCs (corresponding
to the calls to markdead). The next strategy performs fewer calls to unite.

3.3 The Dijkstra Strategy

Strategy 2 shows how the generic canvas is refined to implement the Dijkstra
strategy. The way LIVE states are numbered and the way states are marked as
DEAD is identical to the previous strategy. The difference lies in the way SCC
information is encoded and updated.

This algorithm maintains pstack , a stack of potential roots, represented (1)
by their positions p in the dfs stack (so that we can later retrieve the incoming
acceptance marks and the live number of the potential roots), and (2) the union
acc of all the acceptance marks seen in the cycles visited around the potential
root.

Here pstack is updated only when a closing edge is detected, but not when
backtracking a non-root as done in Tarjan. When a closing edge is detected, the
live number dpos of its destination can be used to pop all the potential roots on
this cycle (those whose live number are greater than dpos), and merge the sets
of acceptance marks along the way: this happens in UPDATEDijkstra . Note that
the dfs stack has to be addressable like an array during this operation.

As it is presented, UPDATEDijkstra calls unite only when a potential root is
discovered not be a root (lines 10–14). In the particular case where a closing
edge does not invalidate any potential root, no unite operation is performed;
still, the acceptance marks on this closing edge are updated locally line 15. For
instance in Figure 1, when the closing edge (7, 4) is explored, the root of the
right-most SCC (containing state 7) will be popped (effectively merging the two
right-most SCCs in uf ) but when the closing edge (7, 2) is later explored no pop
will occur because the two states now belong to the same SCC. This strategy
therefore does not share all its acceptance information with other threads. In
this strategy, the acceptance accumulated in pstack locally are enough to detect
accepting cycles. However the unite operation on line 14 will also return some
acceptance marks discovered by other threads around this state: this additional
information is also accumulated in pstack to speedup the detection of accepting
cycles.

In this strategy, a given thread only calls unite to merge two disjoint sets
of states belonging to the same SCC. Thus, the total number of unite needed
to build an SCC of n states is necessarily equal to n − 1. This is better than
the Tarjan-based version, but it also means we share less information between
threads.

3.4 The Mixed Strategy

Figure 2 presents two situations on which Dijkstra and Tarjan strategies can
clearly be distinguished.
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The left-hand side presents a bad case for the Tarjan strategy. Regardless of
the transition order chosen during the exploration, the presence of an accepting
cycle is only detected when state 1 is popped. This late detection can be costly
because it implies the exploration of the whole subgraph represented by a cloud.

The Dijkstra strategy will report the accepting cycle as soon as all the in-
volved transitions have been visited. So if the transition (1, 0) is visited before
the transition going to the cloud, the subgraph represented by this cloud will
not be visited since the counterexample will be detected before.

On the right-hand side of Fig. 2, the dotted transition represents a long path
of m transitions, without acceptance marks. On this automaton, both strategies
will report an accepting cycle when transition (n, 0) is visited. However, the two
strategies differ in their handling of transition (m, 0): when Dijkstra visits this
transition, it has to pop all the candidate roots 1 . . .m, calling unite m times;
Tarjan however only has to update the lowlink of m (calling unite once), and it
delays the update of the lowlinks of states 0 . . .m−1 to when these states would
be popped (which will never happen because an accepting cycle is reported).

In an attempt to get the best of both worlds, the strategy called “Mixed”
in Algo. 1 is a kind of collaborative portfolio approach: half of the available
threads run the Dijkstra strategy and the other half run the Tarjan strategy.
These two strategies can be combined as desired since they share the same kind
of information.

Discussion. All these strategies have one drawback since they use a local check
to detect whether a state is alive or not: if one thread marks an SCC as DEAD,
other threads already exploring the same SCC will not detect it and will continue
to perform unite operations. Checking whether a state is DEAD in the global
uf could be done for instance by changing the condition of line 43 of Algo. 1 into:
step.succ 6= ∅ ∧ ¬uf .same set(step.src,Dead). However such a change would be
costly, as it would require as many accesses to the shared structure as there
are transitions in the automaton. To avoid these additional accesses to uf , we
propose to change the interface of unite so it returns an additional Boolean flag
indicating that one of the two states is already marked as DEAD in uf . Then
whenever unite is called and the extra bit is set, the algorithm can immediately
backtrack the dfs stack until it finds a state that is not marked as DEAD.

Moreover these strategies only report the existence of an accepting cycle but
do not extract it. When a thread detects an accepting cycle, it can stop the others
threads and can optionally launch a sequential counterexample computation [10].
Nonetheless, when performing a Dijkstra strategy the extraction can be limited
to the states that are already in the union-find. The search of the accepting
cycle can also be restricted to states whose projection are in the same SCC of
the property automaton.
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3.5 Sketch of Proof

Due to lack of space, and since the Tarjan strategy is really close to the Dijkstra
strategy, we only give the scheme of a proof1 that the latter algorithm will
terminate and will report a counterexample if and only if there is an accepting
cycle in the automaton.

Theorem 1. For all automata A the emptiness check terminates.

Theorem 2. The emptiness check reports an accepting cycle iff L (A) 6= ∅.

The theorem 1 is obvious since the emptiness check performs a DFS on a
finite graph. Theorem 2 ensues from the invariants below which use the following
notations. For any thread, n denotes the size of its pstack stack. For 0 ≤ i < n,
Si denotes the set of states in the same partial SCC represented by pstack [i]:

Si =

{
q ∈ livenum

∣∣∣∣∣ dfs[pstack [i].p].pos ≤ livenum[q]

livenum[q] ≤ dfs[pstack [i+ 1].p].pos

}
for i < n− 1

Sn−1 = {q ∈ livenum | dfs[pstack [n− 1].p].pos ≤ livenum[q]}

The following invariants hold for all lines of algorithm 1:

Invariant 1. pstack contains a subset of positions in dfs, in increasing order.

Invariant 2. For all 0 ≤ i < n − 1, there is a transition with the acceptance
marks dfs[pstack [i+ 1].p].acc between Si and Si+1.

Invariant 3. For all 0 ≤ i < n, the subgraph induced by Si is a partial SCC.

Invariant 4. If the class of a state inside the union-find is associated to acc 6= ∅,
then the SCC containing this state has a cycle visiting acc. (Note: a state in the
same class as Dead is always associated to ∅.)
Invariant 5. The first thread marking a state as DEAD has seen the full SCC
containing this state.

Invariant 6. The set of DEAD states is a union a maximal SCC.

Invariant 7. If a state is DEAD it cannot be part of an accepting cycle.

These invariants establish both directions of Theorem 2: invariants 1–4 prove
that when the algorithm reports a counterexample there exists a cycle visiting all
acceptance marks; invariants 5–7 justify that when the algorithm exits without
reporting anything, then no state can be part of a counterexample.

4 Implementation and Benchmarks

Table 1 presents the models we use in our benchmark and gives the average
size of the synchronized products. The models are a subset of the BEEM bench-
mark [21], such that every type of model of the classification of Pelánek [22] is
represented, and all synchronized products have a high number of states, tran-
sitions, and SCC. Because there are too few LTL formulas supplied by BEEM,

1 Appendix A contains the full proof.
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Table 1. Statistics about synchronized products having an empty language (X) and
non-empty one (×).

Avg. States Avg. Trans. Avg. SCCs
Model (X) (×) (X) (×) (X) (×)

adding.4 5 637 711 7 720 939 10 725 851 14 341 202 5 635 309 7 716 385
bridge.3 1 702 938 3 114 566 4 740 247 8 615 971 1 701 048 3 106 797

brp.4 15 630 523 38 474 669 33 580 776 94 561 556 4 674 238 16 520 165
collision.4 30 384 332 101 596 324 82 372 580 349 949 837 347 535 22 677 968

cyclic-sched 724 400 1 364 512 6 274 289 12 368 800 453 547 711 794
elevator.4 2 371 413 3 270 061 7 001 559 9 817 617 1 327 005 1 502 808

elevator2.3 10 339 003 13 818 813 79 636 749 120 821 886 2 926 881 6 413 279
exit.3 3 664 436 8 617 173 11 995 418 29 408 340 3 659 550 8 609 674

leader-el.3 546 145 762 684 3 200 607 4 033 362 546 145 762 684
prod-cell.3 2 169 112 3 908 715 7 303 450 13 470 569 1 236 881 1 925 909

we opted to generate random formulas to verify on each model. We computed a
total number of 3268 formulas.2

The presented algorithms deal with any kind of generalized Büchi automata,
but there exists specialized algorithms for subclasses of Büchi automata. For
instance the verification of a safety property reduces to a reachability test. Sim-
ilarly, persistent properties can be translated into automata where SCC can-
not mix accepting cycles with non-accepting cycles [8] and for which a simpler
emptiness check exists. Our benchmark contains only non-persistent properties,
requiring a general emptiness check.

Among the 3268 formulas, 1706 result in products with the model having
an empty language (the emptiness check may terminate before exploring the
full product). All formulas were selected so that the sequential NDFS emptiness
check of Gaiser and Schwoon [15] would take between 15 seconds and 30 minutes
on an four Intel(R) Xeon(R) CPUX7460@ 2.66GHz with 128GB of RAM. This
24-core machine is also used for the following parallel experiments.

All the approaches mentioned in Section 3 have been implemented in Spot [12].
The union-find structure is lock-free and uses two common optimizations: “Im-
mediate Parent Check”, and “Path Compression” [20].

The seed used to choose a successor randomly depends on the thread identifier
tid passed to EC. Thus our strategies have the same exploration order when
executed sequentially; otherwise this order may be altered by information shared
by other threads.

Figure 3 presents the comparison of our prototype implementation in Spot
against the cndfs algorithm implemented in LTSmin and the owcty algorithm
implemented in DiVine 2.4. We selected owcty because it is reported to be the

2 For a description of our setup, including selected models, formulas, and detailed
results, see http://www.lrde.epita.fr/~renault/benchs/TACAS-2015/results.

html.

http://www.lrde.epita.fr/~renault/benchs/TACAS-2015/results.html
http://www.lrde.epita.fr/~renault/benchs/TACAS-2015/results.html
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most efficient parallel emptiness check based on a non-DFS exploration, while
cndfs is reported to be the most efficient based on a DFS [14].

We generate the corresponding system automata using the version of DiVinE
2.4 patched by the LTSmin team.3 For each emptiness check, we limit the ex-
ecution time to one hour: all the algorithms presented in this paper proceess
the 3268 synchronized products within this limit while owcty fails over 11 cases
and cndfs fails over 784 cases. DiVinE and LTSmin implement all sorts of
optimizations (like state compression, caching of successors, dedicated memory
allocator...) while our implementation in Spot is still at a prototype stage. So in
absolute time, the sequential version of cndfs is around 3 time faster5 than our
prototype implementation which is competitive to DiVinE. Since the implemen-
tations are different, we therefore compare the average speedup of the parallel
version of each algorithm against its sequential version. The actual time can be
found in the detailed results2.

The left-hand side of Figure 3 shows those speedups, averaged for each model,
for verified formulas (where the entire product has to be explored). First, it
appears that the Tarjan strategy’s speedup is always lower than those of Dijkstra
or Mixed for empty products. These low speedups can be explained by contention
on the shared union-find data structure during unite operations. In an SCC of
n states and m edges, a thread applying the Tarjan strategy performs m unite

calls while applying Dijkstra one needs only n−1 unite invocations before they
both mark the whole SCC as DEAD with a unique unite call.

Second, for all strategies we can distinguish two groups of models. For adding.4,
bridge.3, exit.3, and leader-election.3, the speedups are quasi-linear. However for
the other six models, the speedups are much more modest: it seems that adding
new threads quickly yield no benefits. A look to absolute time (for the first group)
shows that the Dijkstra strategy is 25% faster than cndfs using 12 threads where
it was two time slower with only one thread.

A more detailed analysis reveals that products of the first group have many
small SCC (organized in a tree shape) while products of the second group have
a few big SCC. These big SCC have more closing edges: the union-find data
structure is stressed at every unite. This confirms what we observed for the
Tarjan strategy about the impact of unite operations.

The right-hand side of Figure 3 shows speedups for violated formulas. In
these cases, the speedup can exceed the number of threads since the different
threads explore the product in different orders, thus increasing the probability to
report an accepting cycle earlier. The three different strategies have comparable
speedup for all models, however their profiles differ from cndfs on some models:

3 http://fmt.cs.utwente.nl/tools/ltsmin/#divine
4 This figure can be zoomed in color in the electronic version.
5 Note that the time measured for cndfs does not includes the on-the-fly generation

of the product (it is precalculated because doing the on-the-fly product in LTSmin
exhibits a bug) while the time measured for the others includes the generation of
the product.

http://fmt.cs.utwente.nl/tools/ltsmin/#divine
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Fig. 3. Speedup of emptiness checks over the benchmark. 4
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they have better speedups on bridge.3, exit.3, and leader-election.3, but are worse
on collision.4, elevator.4 and production-cell.3. The Mixed strategy shows speedups
between those of Tarjan and Dijkstra strategies.
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5 Conclusion

We have presented some first and new parallel emptiness checks based on an
SCC enumeration. Our approach departs from state-of-the-art emptiness checks
since it is neither BFS-based nor NDFS-based. Instead it parallelizes SCC-based
emptiness checks that are built over a single DFS. Our approach supports gen-
eralized Büchi acceptance, and requires no synchronization points nor repair
procedures. We therefore answer positively to the question raised by Evange-
lista et al. [14]: “Is the design of a scalable linear-time algorithm without repair
procedures or synchronisation points feasible?”. Our prototype implementation
has encouraging performances: the new emptiness checks have better speedup
than existing algorithms in half of our experiments, making them suitable for
portfolio approaches.

The core of our algorithms relies on a union-find (lock-free) data structure to
share structural information between multiple threads. The use of a union-find
seems adapted to this problem, and yet it has never been used for parallel empti-
ness checks (and only recently for sequential emptiness checks [24]): we believe
that this first use might stimulate other researchers to derive new emptiness
checks or ideas from it.

In some future work, we would like to investigate different variations of our
algorithms. For instance could the information shared in the union-find be used
to better direct the DFS performed by the Dijkstra or Tarjan strategies and help
to balance the exploration of the automaton by the various threads? We would
also like to implement Gabow’s algorithm that we presented in a sequential
context [24] in this same parallel setup. Changing the architecture, we would
like to explore how the union-find data structure could be adapted to develop
asynchronous algorithms where one thread could call unite without waiting for
an answer. Another topic is to explore the use of SCC strengths [25] to improve
parallel emptiness checks.
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4. J. Barnat, L. Brim, and P. Ročkai. A time-optimal on-the-fly parallel algorithm
for model checking of weak LTL properties. In ICFEM’09, vol. 5885 of LNCS, pp.
407–425, 2009. Springer.
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21. R. Pelánek. BEEM: benchmarks for explicit model checkers. In SPIN’07, vol. 4595
of LNCS, pp. 263–267. Springer, 2007.
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This appendix is for interested reviewers and not meant for publication.

A Sketch of Proof for the Dijkstra-based Emptiness
Check

To prove the Dijkstra strategy we assume that each line of algorithm 1 and
strategy 2 is executed atomically. This hypothesis is realistic because (1) the
union-find we use is lock-free, and (2) the only other shared variable is the stop
variable that can also be modified using compare-and-swap instructions.

We only provide a proof of Theorem 2, since Theorem 1 is the consequence
of doing a DFS.
Theorem 2. The emptiness check reports an accepting cycle iff L (A) 6= ∅.

The proof uses following definitions and notations:

- A state is locally alive iff it is present in the local hashmap livenum of a
thread;

- A state is dead iff it is present in the shared union-find structure (uf ) and if
it is in the same partition than the artificial state Dead ;

- For any thread, n denotes the size of its pstack stack.
- For 0 ≤ i < n, Si denotes the set of states in the same partial SCC repre-

sented by pstack [i], i.e.:

Si =

{
q ∈ livenum

∣∣∣∣∣ dfs[pstack [i].p].pos ≤ livenum[q]

livenum[q] ≤ dfs[pstack [i+ 1].p].pos

}
for i < n− 1

Sn−1 = {q ∈ livenum | dfs[pstack [n− 1].p].pos ≤ livenum[q]}

Some of these definitions and notations are represented Figure 4. In the
following, we prove each invariant independently. Then all these invariants are
used to prove the one theorem.

Invariant 1. pstack contains a subset of positions in dfs, in increasing order.

Proof. By definition pstack holds positions of elements inside the dfs stack. So
we only have to prove that they are increasing. During a PUSHDijkstra operation,
dfs and pstack are both enlarged and the new value pushed on the top pstack
(dfs.size()) is necessarily greater than the others values of pstack (strategy 2,
line 5).

Moreover, the size of pstack is only decreased during a POPDijkstra (strategy 2,
line 22) and during an UPDATEDijkstra (strategy 2, line 12). UPDATEDijkstra removes
elements from pstack without removing elements from dfs, so the invariant still
holds. POPDijkstra removes element from dfs, but any such element of pstack is
also removed. �

Invariant 2. For all 0 ≤ i < n−1, there is a transition with the acceptance marks
dfs[pstack [i+1].p].acc between Si and Si+1. More precisely: for all 0 ≤ i < n−1,
there exists ` ∈ 2AP , such that (dfs[pos − 1].src, `, dfs[pos].acc, dfs[pos].src) ∈
∆, with pos = pstack [i+ 1].p
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Proof. After the first call to PUSHDijkstra (algorithm 1, line 39), the initial state
is inserted in the stacks dfs and pstack (strategy 2, line 5–6). Then n = 1 and the
invariant is trivially verified. Variables pstack and dfs are also modified during
PUSHDijkstra operations (algorithm 1, line 51). The new position inserted in pstack
(strategy 2, line 5) references the state inserted in dfs (strategy 2, line 6). By
definition and since n has just been increased, the state dfs[pstack [i+1].p−1].src
with i = n− 2, represents the top of the stack dfs before the call to PUSHDijkstra .
This state is the source of the transition computed line 43 (algorithm 1). Before
line 51 (algorithm 1), pstack [n− 1].p references the top element of the dfs stack.
After line 51 (algorithm 1), dfs[pstack [n − 1].p].src is the destination of the
transition computed line 43 while dfs[pstack [n − 1].p].acc is the acceptance set
of this transition. Invariant 2 is therefore preserved by PUSHDijkstra .

UPDATEDijkstra and a POPDijkstra can only modify pstack by doing some calls
to pop but decreasing n preserves the invariant (strategy 2, line 12 and 22).
Furthermore, invariant 1 ensures that pstack is a subset of positions in dfs. �

Invariant 3. For all 0 ≤ i < n, the subgraph induced by Si is a partial SCC.

Proof. Here again, we only focus on lines impacting the pstack variable. After
the first call to PUSHDijkstra , the initial state is in the dfs stack and the only
element in the stack pstack references this (initial) state. Therefore the invariant
is trivially verified. In the same way, after every call to PUSHDijkstra (strategy ??,
line 51) a partial SCC composed of a unique state is created. The invariant is
then trivially verified.

dfs

live

dead states

Locally alive states

0 1 2 3 5 6 7

4 8

pstack [i] pstack [i+ 1]

dfs[pstack [i+ 1].p− 1].acc

Fig. 4. Notations and definitions used in this annex.
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When a closing edge is detected UPDATEDijkstra is called (algorithm 1, line 49).
At this moment the destination of the closing edge d belongs to some partial
SCC Sj . If Sj is the top partial SCC (j = n − 1) the size of pstack is not
modified (the while loop is not entered at line 11 of strategy 2) and the invariant
is preserved. If j is smaller than n − 1, thanks to the invariants 2–3, there is a
path between Sj and Sn−1 and because of the considered closing edge there is
also a path between Sj and Sn−1. As a consequence, Sj ∪ . . . ∪ Sn−1 forms a
partial SCC. After the execution of the while loop, pstack has been popped so
that it size equals j + 1, and the new Sj contains all the states of the previous
union. �

Invariant 4. If the class of a state inside the union-find is associated to acc 6= ∅,
then the SCC containing this state has a cycle visiting acc. (Note: a state in the
same class as Dead is always associated to ∅.)

Proof. By definition, the first call to make set(s), with s ∈ Q, associates s to
∅ in the shared union-find (strategy 2, line 2). In the same way, all states in the
same partition than the artificial state Dead are associated to ∅ (strategy 2, line
28). In the two previous situations the invariant is trivially verified.

The acceptance set is only modified at line 15 (strategy 2). In this case,
the new acceptance set results from previous unite operations (strategy 2, line
14). According to invariant 3, we know that the acceptance set passed to unite

represents (a part of) acceptance set in the current SCC. For line 14 (strategy 2)
we distinguish only three cases because, by definition, unite returns either ∅ or
a superset of the acceptance set given in parameter:

– the acceptance set returned by unite is ∅, the invariant is verified.
– the acceptance set returned by unite is equal to the parameter a. The in-

variant is verified.
– the acceptance set returned is a superset of the parameter a. The other

acceptance marks can only come from a unite operation of other thread
(strategy 2, line 14). In this case we know that there exists a cycle visiting
these acceptance marks (invariant 3). The union of acceptance marks is then
valid.

�

Invariant 5. The first thread marking a state as DEAD has seen the full SCC
containing this state.

Proof. A state is marked DEAD only during the markdead operation (precisely
line 28 of strategy 2). A thread can call this method only if it detects that the
top of pstack is equal to the dfs size (the root for the partial SCC represented by
Si). During the unite operation with the artificial state Dead , this thread has
seen all states of Si (which is a partial SCC according to invariant 3) and all non-
DEAD states (according to lines 30 to 37 of algorithm 1). Then we distinguish
two cases:
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- this thread is the first marking DEAD a state of this SCC. Then Si contains
all states of this SCC. Indeed, if Si does not contains all states of the SCC,
there is a state which has not been visited. Since only DEAD states are
ignored, it means that another thread marked this state as DEAD: this
contradicts the fact that the thread is the first marking dead a state of this
SCC.

– otherwise it’s not the first thread.

�

Invariant 6. The set of DEAD states is a union of maximal SCC.

Proof. When the first thread marks a state x as DEAD, it has seen all states
and transitions of this SCC (invariant 5). Therefore it has seen all the closing
edges. Since there is at least one closing edge per cycle and each closing edge
causes the entire cycle to be united by UPDATEDijkstra , all the states of all the
cycles have been merged into a single class that contains x. The call to markdead

by this first thread will therefore add a maximal SCC to the DEAD states.
When any later thread marks a state as DEAD, the resulting call to unite

has no effect since all the states of this SCC have already been marked DEAD
by the first thread. �

Invariant 7. If a state is DEAD, it cannot be part of an accepting cycle.

Proof. According to invariant 5, the first thread marking an SCC as dead has
visited the whole SCC. During this exploration, all the states of all the cycles of
the SCC have been merged in a single class (strategy 2, line 14) and the union-
find has accumulated all the acceptance sets of the all the transitions of the
SCC. When a state is about to be marked as DEAD for the first time (strategy
2, line 23), we know two things: (1) the entire SCC has been merged into a single
class (proof of invariant 6), and (2) the union-find has accumulated the union
X of all acceptance marks of the SCC. We necessarily have X 6= 2F otherwise a
counterexample would have been reported on line 16 (strategy 2). Consequently
this SCC cannot contain an accepting cycle. �

Proof of theorem 2. (=⇒) The counterexample detection can only happen at
line 16 of strategy 2. This detection depends of the acceptance set at the top of
the stack pstack (strategy 2, lines 15–16). From invariants 1 to 4 we know that
there exists a cycle that visits all these acceptance marks. (⇐=) Let us assume
that the algorithm terminates without reporting a counterexample. Consider the
first thread that reaches line 54: it necessarily exited the while loop because dfs
was empty. Thus, this thread has marked as DEAD all descendants of the initial
state that were not already marked DEAD by another thread. As a consequence,
no state of the automaton can be part of a counterexample. �
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