
Improving Parallel State-Space Exploration
Using Genetic Algorithms

Etienne Renault

LRDE, EPITA, Kremlin-Bicêtre, France

Abstract. The verification of temporal properties against a given sys-
tem may require the exploration of its full state space. In explicit model-
checking this exploration uses a Depth-First-Search (DFS) and can be
achieved with multiple randomized threads to increase performance.

Nonetheless the topology of the state-space and the exploration order can
cap the speedup up to a certain number of threads. This paper proposes a
new technique that aims to tackle this limitation by generating artificial
initial states, using genetic algorithms. Threads are then launched from
these states and thus explore different parts of the state space.

Our prototype implementation runs 10% faster than state-of-the-art al-
gorithms. These results demonstrate that this novel approach worth to
be considered as a way to overcome existing limitations.

1 Introduction and Related Work

Model checking aims to check whether a system satisfies a property. Given a
model of the system and a property, it explores all the possible configurations
of the system, i.e., the state space, to check the validity of the property. Typ-
ically two kind of properties are distinguished, safety and liveness properties.
This paper focus on safety properties that are of special interest since they stip-
ulate that some “bad thing” does not happen during execution. Nonetheless the
adaptation of this work for liveness properties is straightforward.

The state-space exploration techniques for debugging and proving correct-
ness of concurrent reactive systems has proven their efficiency during the last
decades [13, 18, 21, 3]. Nonetheless they suffer from the well known state space
explosion problem, i.e., the state space can be far too large to be stored and thus
explored in a reasonable time. This problem can be addressed using symbolic [4]
or explicit techniques even if we only consider the latter one in this paper.

Many improvements have been proposed for explicit techniques. On-the-fly
exploration [5] computes the successors of a state only when required by the
algorithm. As a consequence, if the property does not hold, only a subset of the
state space is constructed. Partial Order Reductions (POR) [23, 19, 15] avoid the
systematic exploration of the state space by exploiting the interleaving semantic
of concurrent systems. State Space Caching [9] saves memory by “forgetting”
states that have already been visited causing the exploration to possibly revisit
a state several times. Bit-state Hashing [11] is a semi-decision procedure in which

2

each state is associated to a hash value. When two states share the same hash
value, one of this two states (and thus its successors) will be ignored.

The previous techniques focus on reducing the memory footprint during the
state-space exploration. Combining these techniques with modern computer ar-
chitectures, i.e., many-core CPUs and large RAM memories, tends to shift from
a memory problem to an execution time problem which is: how this exploration
can be achieved in a reasonable time?

To address this issue multi-threaded (or distributed) exploration algorithms
(that can be combined with previous techniques) have been developed [12, 2, 7,
18]. Most of these techniques rely on the swarming technique presented by Holz-
mann et al. [13]. In this approach, each thread runs an instance of a verification
procedure but explores the state space with its own transition order.

Nowadays, best performance is obtained when combining swarming with
Depth-First Search (DFS)1 based verification procedures [21, 3]. In these com-
binations, threads share information about states that have been fully explored,
i.e. states where all successors have been visited by a thread. Such states are
called closed states. These states are then avoided by other threads explorations
since they can not participate in invalidating the property. These swarmed-DFS
algorithms are linear but their scalability depends on two factors:

Topology problems. If the state space is linear (only one initial state, one
successor per state), using more than one thread cannot achieve any speedup.
This issue can be generalized to any state space that is deep but not wide.

Exploration order problems. States are tagged closed following the DFS
postorder of a given thread. Thus, a state s can only be marked closed
after visiting at least N states, where N is the minimal distance between the
initial state and s.

1 thread 2 threads 4 threads 8 threads 12 threads

Time in milliseconds 2 960 296 1 796 418 118 6344 981 222 978 711

Speedup 1 1.65 2.50 3.016 3.025

The table above highlights this scalability problem over the benchmark2 used
in this paper. It presents the cumulated exploration time (in a swarmed DFS
fashion) for 38 models extracted from the literature. It can be observed that this
algorithm achieves reasonable speedup up to 4 threads but is disappointing for
8 threads and 12 threads (the maximum we can test).

This paper proposes a novel technique that aims to keep improving the
speedup as the number of threads increases and which is compatible with all
memory reduction methods presented so far.

The basic idea is to use genetic algorithms to generate artificial initial states
(Sections 2 and 3). Threads are then launched with their own verification proce-
dure from these artificial states (Sections 4 and 5). We expect that these threads

1 It should be noted that even if DFS-based algorithms are hard to parallelize [20] they
scale better in practice than parallelized Breadth-First Search (BFS) algorithms.

2 See Section 6 for more details about the benchmark.

3

will explore parts of the state space that are relatively deep regarding to (many)
DFS order(s). Thus, some states may be marked as closed without processing
some path between the original initial state to these states.

Our prototype implementation (Section 6) has encouraging performances:
the proposed approach runs 10% faster (with 12 threads) than state-of-the-art
algorithms (with 12 threads). These results are encouraging and show that this
novel approach worth to be considered as a way to overcome existing limitations.

Related Work. To our knowledge, the combination of parallel state space ex-
ploration algorithms with the generation of artificial initial states using genetic
algorithms has never been done. The closest work is probably the one of Gode-
froid and Khurshid [8] that suggests to use genetic programming as an heuristic
to help random walks to select the best successor to explore. The generation
of other initial states have been proposed to maximize the coverage of random
walks [22]: to achieve this, a bounded BFS is performed to obtain a pool of states
that can be used as seed states. This approach does not help the scalability when
the average number of successors is quite low (typically when mixing with POR).

In the literature there are some work that combine model checking with ge-
netic programming but they are not related to the work presented here: Katz
and Peled [14] use it to synthesize parametric programs, while all the other ap-
proaches are based on the work of Ammann et al. [1] and focus on the automatic
generation of mutants that can be seen as particular “tests cases”.

2 Parallel State Space Exploration

Preliminaries. Concurrent reactive systems can be represented using Transi-
tions Systems (TS). Such a system T = 〈Q, ι, δ, V, γ〉 is composed of a finite
set of states Q, an initial state ι ∈ Q, a transition relation δ ⊆ Q × Q, a finite
set of integer variables V and γ : Q → N|V | a function that associates to each
state a unique assignment of all variables in V . For a state s ∈ Q, we denote
by post(s) = {d ∈ Q | (s, d) ∈ δ} the set of its direct successors. A path of
length n ≥ 1 between two states q, q′ ∈ Q is a finite sequence of transitions
ρ = (s1, d1) . . . (sn, dn) with s1 = q, di = q′, and ∀i ∈ {1, . . . , n − 1}, di = si+1.
A state q is reachable if there exists a path from the initial state ι to q.

Swarming. Checking temporal properties involves the exploration of (all or
some part) of the state space of the system. Nowadays, best performance is
obtained by combining on-the-fly exploration with parallel DFS reachability al-
gorithms. Algorithm 1 presents such an algorithm.

This algorithm is presented recursively for the sake of clarity. Lines 4 and 5
represent the main procedure: ParDFS takes two parameters, the transition sys-
tem and the number n of threads to use for the exploration. Line 5 only launches
n instances of the procedure DFS. This last procedure takes three parameters, s
the state to process, tid the current thread number and a color used to tag new
visited states. Procedure DFS represents the core of the exploration. This explo-
ration relies on a shared hashmap visited (defined line 2) that stores all states
discovered so far by all threads and associate each state with a color (line 1):

4

Algorithm 1: Parallel DFS Exploration.

1 enum color = { open, closed }
2 visited: hashmap of (Q, color) // Shared variable

3 stop← ⊥ // Shared variable

4 Procedure ParDFS(〈Q, ι, δ, V, γ〉 : TS, n : Integer)
5 DFS(ι, 1,open) || . . . || DFS(ι, n,open)

6 Procedure DFS(s ∈ Q, tid : Integer, status : color)
7 if s 6∈ visited then visited.add(s, status)
8 else if visited[s] = closed then return
9 todo ← shuffle(post(s), tid) // Shuffle successors using tid as seed

10 while (¬stop ∧ ¬todo.isempty()) do
11 s′ ← todo.pick()
12 if s′ is in the current recursive DFS stack then continue
13 if (s′ 6∈ visited) ∨ visited[s′] 6= closed) then
14 DFS(s′, tid, status)

15 visited[s]← closed
16 if (s = ι) then stop← >

– open indicates that the state (or some of its successors) is currently pro-
cessed by (at least) a thread,

– closed indicates that the states and all its successors (direct or not) have
been visited by some thread.
The DFS function starts (lines 7 to 8) by checking if the parameter s has al-

ready been inserted, by this thread or another one, in the visited map (line 7). If
not, the state is inserted with the color open (line 7). Otherwise, if s has already
been inserted we have to check whether this state has been tagged closed. In
this case, s and all its successors have been visited: there is no need to revisit
them. Line 9 grabs all the successors of the state s that are then shuffled to
implement the swarming. Finally lines 10 to 14 perform the recursive DFS: for
each successor s′ of the current state, if s′ has not been tagged closed a re-
cursive call is launched. When all successors have been visited, s can be marked
closed.

One can note that a shared Boolean stop is used in order to stop all threads as
soon as a thread closes the initial state. This Boolean is useless for this algorithm
since, when the first threads ends, all reachable states are tagged closed and
every thread is forced to backtrack. Nonetheless this Boolean will be useful later
(see Section 4). Moreover the visited map is thread safe (and lock-free) so that
it does not degrade performances of the algorithm.

Problem statement. The previous algorithm (or some adaptations of it [21,
3]) obtains the best performance for explicit model checking. Nonetheless this
swarmed algorithm suffers from a scalability problem. Figure 1 describes a case
where augmenting the number of threads will not bring any speedup3. This figure

3 This particular case will certainly degrade performance due to contention over the
shared hashmap.

5

describes a transition system that is linear. The dotted transitions represent long
paths of transitions. In this example, state x cannot be tagged closed before
state y and all the states between x and y have been tagged closed. The problem
here is that all threads start from state s. Since threads have similar throughput
they will discover x and y approximately at the same time. Thus they cannot
benefit from the information computed by the other threads. This example is
pathological but can be generalized to any state space that is deep and narrow.

s

x

y

Fig. 1. Using
more than one
thread for the
exploration is
useless.

Suppose now that there are 2 threads and that the dis-
tance between s and x is the same than the distance between
x and y. The only way to obtain the maximum speedup is
to launch one thread with a DFS starting from s and launch
the other thread from x. In this case, when the first thread
reaches state x, x has just been tagged closed: the first
thread can backtrack and stop.

A similiar problem arise when performing on-the-fly
model checking since (1) there is only one initial state and
(2) all states are generated during the exploration. Thus a
thread cannot be launched from a particular state. Moreover,
the system’s topology is only known after the exploration:
we need a technique that works for any kind of topology.

The idea developed in this paper is the automatic generation of state x using
genetic algorithms. The generation of the perfect state (the state x in the exam-
ple) is a utopia. Nonetheless if we can generate a state relatively deep regarding
to many DFS orders, we hope to avoid redundant work between threads, and
thus maximize the information shared between threads. In practice we may gen-
erate states that do not belong to the state space, but Section 6 shows that more
than 84% of generated states belongs to it.

3 Generation of Artificial Initial State

Genetic algorithms. For many applications the computation of an optimal
solution is impossible since the set of all possible solutions is too large to be ex-
plored. To address this problem, Holland [10] proposed a new kind of algorithms
(now called genetic algorithms) that are inspired by the process of natural selec-
tion. These algorithms are often considered as optimizer and used to generate
high-quality solutions to search problems. Basically, genetic algorithms start by
a population of candidate solutions and improve it using bio-inspired operators:

- Crossover : selects multiple elements in the population (the parents) and
produces a child solution from them.

- Mutation: selects one element in the population and alters it slightly.

Applying and combining these operators produces a new generation that can
be evaluated using a fitness function. This fitness function allows to select the
best elements (w.r.t the considered problem) of this new population. These best
elements constitute a new population on which mutation and crossover opera-

6

tions can be re-applied. This process is repeated until some satisfying solution
is found (or until a maximal number of generations has been reached).

a b

00101010 00110011

Fig. 2. Chromosome
representation.

Genetic algorithms rely on a representation of so-
lutions that is chromosome-like. In the definition of a
transition system we observe that every state can be
seen as a tuple of integer variables using the γ func-
tion. Each variable can be considered as a gene and
the set of variables can be considered as a chromosome composed of 0 and 1. For
instance, if a state is composed of two variables a = 42 and b = 51 the resulting
chromosome (considering 8 bits integers) would be the one described Figure 2.

Crossover. Concurrent reactive systems are generally composed of a set of Np

processes and a set of shared variables (or channels). Given a transition system
T = 〈Q, ι, δ, V, γ〉 we can define E : V → [0, Np], such that if v is a shared
variable, E(v) returns 0 and otherwise E(v) returns the identifier of the process
where the variable v is defined.

Algorithm 2 defines the crossover operation we use. This algorithm takes
a parameter S which represents the population to use for generating a new
state. Line 2 instantiates a new state s that will hold the result of the crossover
operation. Lines 3 to 5 set up the values of the shared variables of s: for each
shared variable v, an element of S is randomly selected to be the parent. Then,
at line 5, one can observe that γ(s)[v] (the value of v in s) is set according
to γ(parent)[v] (the value of v in the parent). Lines 6 to 9 perform a similar
operation on all the remaining variables.

Process 1
a b

parent1 00000000 00000000

parent2 11111111 11111111

Crossover(S) 00000000 11111111

Fig. 3. Possible Crossover.

These variables are treated by batch,
i.e., all the variables that belong to a
same process are filled using only one
parent (line 7). This choice implies that
in our Crossover algorithm the local
variable of a process cannot have two dif-
ferent parents: this particular processing
helps to exploit the concurrency of un-
derlying system. A possible result of this algorithm is represented Figure 3 (with
8 bits integer variables, only one process, no shared variables, S = {parent1,
parent2} and child the state computed by Crossover(S)).

Algorithm 2: Crossover.

1 Procedure Crossover(S ⊆ Q)
2 s← newState()
3 for v ∈ V s.t. E(v) = 0 do
4 parent← pick randomly one of S
5 γ(s)[v]← γ(parent)[v]

6 for i ∈ [0, Np] do
7 parent← pick randomly one of S
8 for v ∈ V s.t. E(v) = i do
9 γ(s)[v]← γ(parent)[v]

10 return s

Algorithm 3: Mutation.

1 Procedure Mutation(s ∈ Q)
2 for v ∈ V do
3 r ← random(0..1)
4 if r > threshold then
5 γ(s)[v] =

randomly flip one bit in(γ(s)[v])

6 γ(s)[v] = bound project(γ(s)[v])

7

Mutations. The other bio-inspired operator simulates alterations that could
happen while genes are combined over multiples generations. In genetic algo-
rithms, these mutations are performed by switching the value of a bit inside of
a gene. Here, all the variables of the system are considered as genes.

Algorithm 3 describes this mutation. For each variable in the state s (line 2),
a random number is generated. A mutation is then performed only if this number
is above a fixed threshold (line 4): this restriction limits the number of mutations
that can occur in a chromosome. We can then select randomly a bit in the current
variable v and flip it (line 5). Finally, line 6 exploits the information we may have
about the system by restricting the mutated variable to its bounds.

Process 1
a b

s 00000100 00001000

Mutation(s) 00000101 00001000

Fig. 4. Possible Mutation.

Indeed, even if all variables are con-
sidered as integer variables there are
many cases where the bounds are known
a priori: for instance Boolean, enumera-
tion types, characters, and so on are rep-
resented as integers but the set of value
they can take is relatively small regard-
ing the possible values of an integer. A possible result of this algorithm is repre-
sented Figure 4 (with 8 bits integer variables and only two character variables,
i.e., that have values between [0..255]).

Fitness. As mentioned earlier, every new population must be restricted to the
only elements that help to obtain a better solution. Here we want to generate
states that are (1) reachable and (2) deep with respect to many DFS orders.
These criteria help the swarming technique by exploring parts of the state space
before another thread (starting from the real initial state) reaches them.

We face here a problem that is: for a given state it is hard to decide whether it
is a good candidate without exploring all reachable states. For checking deadlocks
(i.e., states without successors) Godefroid and Khurshid [8] proposed a fitness
function that will only retains state with few transitions enabled4.

Since we have different objectives a new fitness function must be defined. In
order to maximize the chances to generate a reachable state, we compute the
average outgoing transitions (Tavg) of all the states that belong to the initial
population. Then the fitness function uses this value as a threshold to detect
good states. Many fitness function can be considered:

– equality: the number of successors of a good state is exactly equal to Tavg.
The motivation for this fitness function is that if there areN > 1 independent
processes that are deterministic then at every time, any process can progress.
Thus a good state has exactly N (equal to Tavg) outgoing transitions.

– lessthan: the number of successors of a good state is less than Tavg. The
motivation for this fitness function is that if there are N > 1 independent
deterministic processes that communicate then at any time each process can
progress or two processes can be synchronized. This latter case will reduce
the number of outgoing transitions

4 Godefroid and Khurshid [8] do not generate states but finite paths and their fitness
fonction analyzes the whole paths to keep only those with few enabled transitions.

8

– greaterthan: the number of successors of a good state is greater than Tavg.
The motivation for this fitness function is that if there areN > 1 independent
and non-deterministic processes then at any time each processes can perform
the same amount of actions or more.

Algorithm 4: The generation of
new states.

1 Procedure Generate(S ⊆ Q)
2 for i← 0 to nb generation

do
3 S′ ← ∅
4 for j ← 0 to pop size do
5 s← Crossover(S)
6 Mutation(s)
7 if Fitness(s) then

S′ ← S′ ∪ {s}
8 S ← S′

9 return S

Generation of artificial state.
Algorithm 4 presents the genetic al-
gorithm used to generate artificial
initial states using the previously
defined functions.

The only parameter of this al-
gorithm is the initial population S
we want to mutate: S is obtained
by performing a swarmed bounded
DFS and keeping trace of all en-
countered states. From the initial
population S, a new generation can
be generated (lines 4 to 8). At any
time the next generation is stored in S′ (lines 7 and 3). The algorithm stops
after nb generation generations (line 2). Note that this algorithm can report
an empty set according to the fitness function used.

4 State-Space Exploration with Genetic Algorithm

This section explains how Algorithm 1 can be adapted to exploit the genera-
tion of artificial initial states mentioned in the previous section. Algorithm 5
describes this parallel state-space exploration using genetic algorithm. The ba-
sic idea is to have a collaborative portfollio approach in which threads will share
information about closed states. In this strategy, half of the available threads
runs a the DFS algorithm presented Section 2, while the other threads perform
genetic exploration. This exploration is achieved by three steps:

1. Perform swarmed bounded depth-first search exploration that stores into a
set P all encountered states (line 7). This exploration is swarmed, so that
each thread has a different initial population P. (Our bounded -DFS differs
from the literature since it refers DFS that stops after visiting N states.).

2. Apply Algorithm 4 on P to obtain a new population P ′ of artificial initial
states (line 8).

3. Apply the DFS algorithm for each element of P ′ (lines 9 to 11). When the pop-
ulation P ′ is empty, just restart the thread with the initial state ι (line 12).

One can note (line 1) that the color enumeration has been augmented with
open gp. This new status may seem useless for now but allows to distinguish
states that have been discovered by the genetic algorithm from those discov-
ered by the traditional algorithm. In this algorithm open gp acts and means
exactly the same than open but: (1) this status is useful for the sketch of termi-
nation proof below and, (2) the next section shows how we can exploit similar
information.

9

Algorithm 5: Parallel DFS Exploration using Genetic Algorithm.

1 enum color = { open, open gp, closed }
2 visited: hashmap of (Q, color)
3 stop← ⊥
4 Procedure ParDFS GP(〈Q, ι, δ, V, γ〉 : TS, n : Integer)
5 DFS(ι, 1,open) || . . . || DFS(ι, bn

2
c,open) || DFS GP(ι, bn

2
c+ 1) || . . . || DFS GP(ι, n)

6 Procedure DFS GP(ι ∈ Q, tid : Integer)
7 P ← Bounded DFS(ι, tid) // Swarmed exploration using tid as a seed

8 P ′ ← Generate(P) // Described Algorithm 4

9 while P ′ not empty ∧ ¬stop do
10 s← pick one of P ′

11 DFS(s, tid,open gp)

12 if ¬stop then DFS(ι, tid,open)

Termination. Until now we have avoided mentioning one problem: there is no
reason that a generated state is a reachable state. Nonetheless even if the state
is not reachable, some of its successors (direct or not) may be reachable. Since
the number of unreachable states is generally much larger than the number of
reachable states, we have to ensure that Algorithm 5 terminates as soon as all
reachable states have been explored.

First of all let us consider only threads running the DFS algorithm. Since this
algorithm has already been prove (see. [21] for more details), only the intuition is
given here. When all the successors of an open state have been visited, this state
is tagged as closed. Since all closed states are ignored during the exploration,
each thread will restrict parts of the reachable state space. At some point all the
states will be closed: even if a thread is still performing its DFS procedure, all
the successors of its current state will be marked closed. Thus the thread will
be forced to backtrack and stop.

The problem we may have with using genetic algorithm is that all the threads
performing the genetic algorithm may be running while all the other ones are idle
since all the reachable states have already been visited. In this case, a running
thread can see only unreachable states, i.e. open gp, or closed ones. To handle
this problem, a Boolean stop is shared among all threads (line 2). When this
Boolean is set to > all threads stop regardless the exploration technique used
(line 10, Algorithm 1). We observe line 9 that the use of other artificial states
is also stopped, and no restart will be performed (line 12). This Boolean is
set to > only when all the successors of the real initial state have been explored
(line 16, Algorithm 1). Thus, one can note that even if a thread using the genetic
algorithm visits first all reachable states it will stop all the other threads.

5 Checking Temporal Properties

Safety properties cover a wide range of properties: deadlock freedom (there is no
state without successors), mutual exclusion (two processes execute some critical

10

section at the same time), partial correction (the execution terminates in a state
that does not satisfies the postcondition while the precondition of the run was
satisfied), etc. One interesting characteristic of safety properties is that they can
be checked using a reachability analysis (as described Section 2). Nonetheless, our
genetic reachability algorithm (Algorithm 5) cannot be directly used to check
safety properties. Indeed, if a thread (using genetic programming) reports an
error we do not know if this error actually belongs to the state space.

Algorithm 6 describes how to adapt Algorithm 5 to check safety properties.
To simplify things we focus on checking deadlock freedom, but our approach
can be generalized to any safety property. This algorithm5 relies on both Al-
gorithms 1 and 5 The basic idea is still to launch half of the threads from the
initial state ι and the remaining ones from some artificial initial state (line 7).

– For a thread performing reachability with genetic algorithm the differences
are quite few. When a deadlock state is detected (line 24) we just tag this
state as deadlock gp rather than closed. This new status is used to
mark all states leading to a deadlock state. Indeed since we do not know if
the state is a reachable one we cannot report immediately that a deadlock
has been found. Moreover we cannot mark this state closed otherwise a
counterexample could be lost. This new status helps to solve the problem:
when such a state is detected to be reachable, a deadlock is immediately
reported. The other modifications are lines 20 and 22: when backtracking, if
a deadlock has been found no more states will be explored.

– For a thread performing reachability without genetic algorithm the differ-
ences are also quite few. Lines 16 to 18 only check if the next state to process
has been marked deadlock gp. In this case this state is a reachable one
and it leads to a deadlock state. We can then report that a deadlock has
been found and stop all the other threads. A deadlock can also be reported
directly (line 23), if the current state is a deadlock.

Deadlock – sketch of proof. Due to lack of space only the schema of a proof,
that the algorithm will report a deadlock if and only if there exists a reachable
state that has no successors, is given here.

Theorem 1. For all systems S, the algorithm terminates.
Theorem 2. A thread reports a deadlock iff ∃s ∈ Q, post(s) = ∅.

To simplify the sketch of proof, we denote by classical thread a thread that
does not perform genetic algorithm while the other threads are called gp threads.
The following invariants hold for all lines of Algorithm 6:
Invariant 1. If stop is > then no new state will be discovered.
Invariant 2. A deadlock state can only be open, open gp or deadlock gp.
Invariant 3. No direct successor of a closed state is a deadlock state.
Invariant 4. A state is closed iff all its successors that are not on the thread’s

recursive stack are closed.
Invariant 5. Only gp threads can tag a state deadlock gp.
Invariant 6. A state is deadlock gp iff it is a deadlock state or if one of its

successors (direct or not) is a deadlock state.

5 Main differences have been highlighted to help the reader.

11

Algorithm 6: Parallel Deadlock Detection Using Genetic Algorithm.

1 enum color = { open, open gp, closed , deadlock gp }
2 visited: hashmap of (Q, color)
3 stop← ⊥
4 deadlock ← ⊥
5 Procedure ParDeadlockGP(〈Q, ι, δ, V, γ〉 : TS, n : Integer)
6 DeadlockDFS(ι, 1,open) || . . . || DeadlockDFS(ι, bn

2
c,open) ||

7 DeadlockDFS GP(ι, bn
2
c+ 1) || . . . || DeadlockDFS GP(ι, n)

8 Procedure DeadlockDFS(s ∈ Q, tid : Integer, status : color)
9 if s 6∈ visited then visited.add(s, status)

10 else if visited[s] = closed then return
11 todo ← shuffle(post(s), tid)
12 while (¬stop ∧ ¬todo.isempty()) do
13 s′ ← todo.pick()
14 if s′ is in the current recursive DFS stack then continue
15 if (s′ 6∈ visited ∨ visited[s′] 6= closed) then

16 if s′ ∈ visited ∧ visited[s′] = deadlock gp ∧ status = open then

17 deadlock ← >; stop← >
18 break

19 DeadlockDFS(s′, tid, status)

20 if visited[s′] = deadlock gp ∧ status = open gp then

21 visited[s]← deadlock gp

22 return

23 if post(s) = ∅ ∧ status = open then deadlock ← >; stop← >
24 if post(s) = ∅ ∧ status = open gp then visited[s]← deadlock gp
25 else v[s]← closed
26 if (s = ι) then stop← >
27 Procedure DeadlockDFS GP(ι ∈ Q, tid : Integer)
28 P ← Bounded DFS(ι, tid) // Also check deadlock during this DFS

29 P ′ ← Generate(P)
30 while P ′ not empty ∧ ¬stop do
31 s← pick one of P ′

32 DeadlockDFS(s, tid,open gp)

33 if ¬stop then DeadlockDFS(ι, tid,open)

Invariant 7. Only classical thread can report that a deadlock has been found.
Invariant 8. If a state is reachable then all its direct successors are reachable.

Invariants, combined to the sketch of proof of the previous section, helps to
prove Theorem 1: the algorithm stops either because a deadlock is detected or
because all reachable states have been explored. These invariants establish both
directions of Theorem 2: invariant 7 and 8 are the most important for correctness.

Discussion. The verification of complex temporal properties involves the explo-
ration of an automaton which is the result of the synchronous product between
the state space of the system and the property automaton. Thus a state is com-

12

posed of two parts: the system state and the property state. Genetic algorithms
presented so far can then be applied by considering that the property state is
a variable just like the other system’s variables. The adaptation of Algorithm 6
for checking liveness properties is straightforward: when a gp thread detects an
accepting cycle, all the states forming it are tagged with an accepting cycle
status. When a classical thread detects such a state, a counterexample is raised.

6 Evaluation

Benchmark Description. To evaluate the performance of our algorithms, we
selected 38 models from the BEEM benchmark [16] that cover all types of models
described by the classification of Pelánek [17]. All the models where selected such
that Algorithm 1 with one thread would take at most 40 minutes on Intel(R)
Xeon(R) @ 2.00GHz with 250GB of RAM. This six-core machine is also used
for the following parallel experiments6. All the approaches proposed here have
been implemented in Spot [6]. For a given model the corresponding system is
generated on-the-fly using DiVinE 2.4 patched by the LTSmin team7.

Reachability. To evaluate the performance of the algorithm presented Section 4
we conducted 9158 experiments, each taking 30 secondes on the average. Table 1
reports selected results to show the impact of the fitness function and the thresh-
old over the performance of Algorithm 5 with 12 threads (the maximum we can
test). For each variation, we provide nb the number of models computed within
time and memory constraints, and Time the cumulated walltime for this config-
uration (to run the whole benchmark). For a fair-comparison, we excluded from
Time models that cannot be processed. Table 1 also reports state-of-the-art and
random (used to evaluate the accuracy of genetic algorithms by generating ran-
dom states as seed state). This latter technique is irrelevant since it is five time
slower than state-of-the-art and only process 32 models over 38.

If we now focus on genetics algorithms, we observe that the threshold highly
impacts the results regardless the fitness function used: the more the threshold
grows, the more models are processed within time and memory constraints.

The table also reports the best threshold8 for all fitness function, i.e. 0.999.
It appears that greaterthan only processed 37 models: this fitness function
does not seem to be a good fitness function since (1) it tends to explore useless
parts of the state-space and (2) the variations of the threshold highly impacts
the performance of the algorithm. All the other fitness function provide similar
results for a threshold fixed at 0.999. Nonetheless we do not recommend equality
since a simple variation of the threshold (0.7) could lead to extremely poor

6 For a description of our setup, including selected models, detailed results and code,
see http://www.lrde.epita.fr/~renault/benchs/VECOS-2018/results.html

7 See http://fmt.cs.utwente.nl/tools/ltsmin/#divine for more details. Also note that
we added some patches (available in the webpage) to manage out-of-bound detection.

8 We evaluate other thresholds like 0.9999 or 0.99999 but it appears that augmenting
the threshold does not increase performance, see the webpage for more details.

http://www.lrde.epita.fr/~renault/benchs/VECOS-2018/results.html

13

Threshold
0.7 0.8 0.9 0.999

nb Time (ms) nb Time (ms) nb Time (ms) nb Time (ms)

greaterthan 35 1 041 015 35 970 248 35 1 000 184 37 900 468
equality 35 3 217 183 35 965 259 35 934 947 38 907 148
lessthan 35 972 038 35 951 767 35 928 978 38 904 776
lessstrict 35 970 668 35 983 225 35 935 319 38 894 131

No threshold
random (trivial comparator to evaluate genetic algorithms) 32 5 079 869

Algorithm 1 (state-of-the-art with 12 threads) 38 978 711

Table 1. Impact of the threshold and the fitness function on Algorithm 5 with 12
threads (nb generation=3, init=1000, pop size=50). The time is expressed in mil-
lisecond and is the cumulated time taken to compute the whole benchmark (38 models);
nb is the number of instances resolved with time and memory limits.

results. Our preference goes to lessthan and lessstrict since they seem to be
less sensitive to threshold variation while achieving the benchmark 9% faster
than state-of-the-art algorithm. Thus, while the speedup for 12 threads was 3.02
for state-of-the-art algorithm, our algorithm achieves a speedup of 3.31.

Note that the results reported Table 1 include the computation of the arti-
ficial initial states. On the overall benchmark, this computation take in average
slightly less than 1 second per model (30 seconds for the whole benchmark). This
computation has a negligible impact on the speedup of our algorithm.

We have also evaluated (not reported here, see webpage for more details) the
impact of the size of the initial population and the size of each generation over
the performance. It appears that augmenting (or decreasing) these two param-
eters deteriorate the performance. It is worth noting that the best value of all
parameters are classical values regarding to state-of-the-art genetic algorithms.
Finally, for each model (and lessthan as fitness), we compute a set of artifi-
cial initial states and run an exploration algorithm from each of these states. It
appears that 84.6% of the 7 866 005 486 generated states are reachable states.

Safety properties. Now that we have detected the best values for the param-
eters of the genetic algorithm we can evaluate the performance of our deadlock
detection algorithm. In order to evaluate the performance of our algorithm we
conduct 418 experiments. The benchmark contains 21 models with deadlocks and
17 models without. Table 2 compares the relative performance of state-of-the-
art algorithm and Algorithm 6. For this latter algorithm, we only report the two
fitness functions that give the best performance for reachability. Indeed, since
Algorithm 6 is based on Algorithm 5 we reuse the best parameters to obtain the
best performance. Results for detecting deadlocks are quite disappointing since
our algorithm is 15% to 30% slower. A closer look to these results show that
deadlocks are detected quickly and Algorithm 6 has degraded performance due
to the computation of artificial initial states.

14

Algorithm 1 Algorithm 6
(state-of-the-art) lessthan lessstrict

Time (ms) States Time (ms) States Time (ms) States

Deadlocks 2 888 7.01e6 3 713 5.87e6 3 414 5.47e6

No deadlocks 516 152 5.79e8 462 881 6.73e8 468 683 6.82e8

Table 2. Comparison of algorithms for deadlock detection. Each runs with 12 threads,
and we report the variation of two different fitness functions: lessstrict and lessthan.
Results presents the cumulated time and states visited for the whole benchmark.

On the contrary we observe that our algorithm is 10% faster (regardless
whether we use lessthan or lesstrict) than the classical algorithm when the
system has no deadlock. One can note that this algorithm performs better than
simple reachability algorithm. Indeed, even if the system has no deadlock: the
algorithm can find non-reachable deadlock. In this case, the algorithm backtracks
and the next generation is processed. This early backtracking force the use of a
new generation that will helps the exploration of the reachable states. To achieve
this speedup, we observe an overhead of 13% for the memory consumption. The
use of dedicated memory reduction techniques could help to reduce this footprint.

Discussion. Few models in the benchmark have a linear topology, which can be
considered as the perfect one for the algorithms presented in this paper. Nonethe-
less, we observe a global improvement of state-of-the-art algorithm. We believe
that other fitness function (based on interpolation or estimation of distribution)
could help to generate better states, i.e. deep with respect to many DFS orders.

7 Conclusion

We have presented some first and new parallel exploration algorithms that rely
on genetic algorithms. We suggested to see variables of the model as genes and
states as chromosomes. With this definition we were able to build an algorithm
that generates artificial initial states. To detect if such a state is relevant we pro-
posed and evaluate various fitness functions. It appears that these seed states
improve the swarming technique. This combination between swarming and ge-
netic algorithms has never been proposed and the benchmark show encouraging
results (10% faster than state-of-the-art). Since the performance of our algo-
rithms highly relies on the generation of good artificial states we would like to
see if other strategies could help to generate better states.

This work mainly focused on checking safety properties even if we proposed
an adaptation for liveness properties. A future work would be to evaluate the
performance of our algorithm in this latter case. We also want to investigate
the relation between artificial state generation and POR, since both rely on the
analysis of processes variables. Finally, we strongly believe that this paper could
serve as a basis for combining parametric model-checking with neural network.

15

References

1. P. E. Ammann, P. E. Black, and W. Majurski. Using model checking to generate
tests from specifications. In ICFEM’98, pp. 46–54, december 1998.

2. J. Barnat, L. Brim, and P. Ročkai. Scalable shared memory LTL model checking.
STTT, 12(2):139–153, 2010.

3. V. Bloemen and J. van de Pol. Multi-core SCC-Based LTL Model Checking, pp.
18–33. Lecture Notes in Computer Science. Springer, 2016.

4. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. Hwang. Sym-
bolic model checking: 1020 states and beyond. In Proc. of the Fifth Annual IEEE
Symposium on Logic in Computer Science, pp. 1–33, 1990. IEEE.

5. C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient
algorithm for the verification of temporal properties. In CAV’90, vol. 531 of LNCS,
pp. 233–242. Springer, 1991.

6. A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu.
Spot 2.0 — a framework for LTL and ω-automata manipulation. In ATVA’16, vol.
9938 of LNCS, pp. 122–129. Springer, Oct. 2016.

7. H. Garavel, R. Mateescu, and I. Smarandache. Parallel State Space Construction
for Model-Checking. Technical Report RR-4341, INRIA, 2001.

8. P. Godefroid and S. Khurshid. Exploring Very Large State Spaces Using Genetic
Algorithms, pp. 266–280. Springer, Berlin, Heidelberg, 2002.

9. P. Godefroid, G. J. Holzmann, and D. Pirottin. State space caching revisited. In
CAV’92, vol. 663 of LNCS, pp. 178–191. Springer, 1992.

10. J. H. Holland. Genetic algorithms. Scientific American, 1992.
11. G. J. Holzmann. On limits and possibilities of automated protocol analysis. In

PSTV’87, pp. 339–344. North-Holland, May 1987.
12. G. J. Holzmann and D. Bosnacki. The design of a multicore extension of the SPIN

model checker. IEEE Transaction on Software Engineering, 33(10):659–674, 2007.
13. G. J. Holzmann, R. Joshi, and A. Groce. Swarm verification techniques. IEEE

Transaction on Software Engineering, 37(6):845–857, 2011.
14. G. Katz and D. A. Peled. Synthesis of parametric programs using genetic pro-

gramming and model checking. In INFINITY’13, pp. 70–84, 2013.
15. A. Laarman, E. Pater, J. Pol, and H. Hansen. Guard-based partial-order reduction.

STTT, pp. 1–22, 2014.
16. R. Pelánek. BEEM: benchmarks for explicit model checkers. In SPIN’07, vol. 4595

of LNCS, pp. 263–267. Springer, 2007.
17. R. Pelánek. Properties of state spaces and their applications. International Journal

on Software Tools for Technology Transfer (STTT), 10:443–454, 2008.
18. R. Pelánek, T. Hanžl, I. Černá, and L. Brim. Enhancing random walk state space

exploration. In FMICS’05, pp. 98–105. ACM Press, 2005.
19. D. Peled. Combining partial order reductions with on-the-fly model-checking. In

CAV’94, vol. 818 of LNCS, pp. 377–390. Springer, 1994.
20. J. H. Reif. Depth-first search is inherently sequential. Information Processing

Letters, 20:229–234, 1985.
21. E. Renault, A. Duret-Lutz, F. Kordon, and D. Poitrenaud. Variations on parallel

explicit model checking for generalized Büchi automata. International Journal on
Software Tools for Technology Transfer (STTT), pp. 1–21, Apr. 2016.

22. H. Sivaraj and G. Gopalakrishnan. Random walk based heuristic algorithms for
distributed memory model checking. Electronic Notes in Theoretical Computer
Science, 89(1):51 – 67, 2003.

23. A. Valmari. Stubborn sets for reduced state space generation. In ICATPN’91, vol.
618 of LNCS, pp. 491–515, 1991. Springer.

	Improving Parallel State-Space Exploration Using Genetic Algorithms

