
Dissecting ltlsynt

Florian Renkin1*, Philipp Schlehuber-Caissier1, Alexandre
Duret-Lutz1 and Adrien Pommellet1

1EPITA Research Laboratory, EPITA, 14–16 rue Voltaire,
94270 Kremlin-Bicêtre, France.

*Corresponding author(s). E-mail(s): renkin@lrde.epita.fr;
Contributing authors: philipp@lrde.epita.fr; adl@lrde.epita.fr;

adrien@lrde.epita.fr;

Abstract
ltlsynt is a tool for synthesizing a reactive circuit satisfying a specifica-
tion expressed as an LTL formula. ltlsynt generally follows a textbook
approach: the LTL specification is translated into a parity game whose win-
ning strategy can be seen as a Mealy machine modeling a valid controller.
This article details each step of this approach, and presents various refine-
ments integrated over the years. Some of these refinements are unique to
ltlsynt: for instance, ltlsynt supports multiple ways to encode a Mealy
machine as an AIG circuit, features multiple simplification algorithms for the
intermediate Mealy machine, and bypasses the usual game-theoretic approach
for some subclasses of LTL formulas in favor of more direct constructions.

Data Availability Statement: Instructions to reproduce the benchmarks pre-
sented in this article are available from https://www.lrde.epita.fr/∼frenkin/
fmsd22/artifact

Keywords: reactive synthesis, Mealy machines, parity automata, parity games, LTL
formulas

1 Introduction
Program synthesis is a well-established formal method: given a logical specification
of a system, it allows one to automatically generate a provably correct implemen-
tation. It can be applied to reactive controllers (Fig. 1), that is, circuits that read
an input stream of Boolean valuations (here, over Boolean variables a and b) and

1

https://www.lrde.epita.fr/~frenkin/fmsd22/artifact
https://www.lrde.epita.fr/~frenkin/fmsd22/artifact

2 Dissecting ltlsynt

a

b

x
y

Fig. 1: A reactive controller, seen
as a black box that reads some
input signals (here a, b) to pro-
duce some output signals (here x,
y).

latch

xa
Fig. 2: An And-Inverter Graph where the latch
is used to remember if a has been false. Output
x is true as long as a remains true, and becomes
continuously false on the first occurrence of ā.

āx̄ 0

x̄ 1

ax̄
0 x̄0

x0

ax
0

⊤1

Fin(0)∨ Inf(1)

Fig. 3: A deterministic max
odd parity automaton for
a ↔ F(x). An infinite run
is accepting if the maximal
color it visits infinitely often
is odd.

3

71

5 6

2

0

8

a

ā

x̄
0

⊤ x̄1

x
0

⊤⊤ 1x̄0⊤

Fin(0)∨ Inf(1)

Fig. 4: The two-player parity game interpretation of
the automaton of Fig. 3. Player 0 plays from round
nodes and selects input signals; player 1 plays from
square nodes and selects output signals. The game is
winning for player 1 if, regardless of the choices made
by player 0, player 1 can force the infinite play to sat-
isfy the parity max odd acceptance condition. This is
the case here if player 1 always selects the thick tran-
sitions.

simultaneously produce a matching output stream of valuations (here, over x and y).
The ltlsynt tool that we shall discuss solves this problem when the specification
is given as a Linear-time Temporal Logic formula constraining the input and output
signals over time. If this specification is realizable, that is, if it is possible to build a
controller for it, then the output is expected as an And-Inverter Graph (AIG), that is,
a circuit built from and gates , negations , and latches that delay their input
by one tick, and output 0 initially.

For instance, assuming a single input signal a and a single output signal x, the
specification formula a↔ F(x), which states that a should hold initially if and only
if x holds eventually, could be satisfied by constructing a controller such that the
Boolean output value x is continuously equal to the first value of the Boolean input
a. However, many other controllers could satisfy this formula. For instance, in Fig. 2,
signal x holds until the first ā is received, and remains false after that occurrence.
Among possible choices, we are interested in producing a small controller in terms
of AIG size (number of gates and latches).

Dissecting ltlsynt 3

a/x

ā/x̄
⊤/⊤

⊤/x̄

Fig. 5: The winning strategy of Fig. 4,
seen as an incompletely specified Mealy
machine.

ā/x̄

a/x ⊤/x̄

Fig. 6: A reduced Mealy machine, for
the winning strategy of Fig. 4. Note how
the states of this machine are used to
remember if ā has been seen at some
point. This machine can be encoded into
the AIG of Fig. 2.

To obtain the AIG controller, we use an automata-theoretic approach whose main
steps are the following:

• Convert the specification LTL formula into a deterministic parity automa-
ton (Fig. 3).

• Knowing that output signals are controllable while input signals are not, con-
vert this parity automaton into a parity game, where player 0 (the environment)
chooses the input signals, and player 1 (the controller) chooses the output signals.
In addition to being deterministic, this game has to be input complete, i.e., the envi-
ronment must always be able to select any valuation of the input signals (Fig. 4).
The specification is realizable if player 1 has a strategy to respond to any input
stream while satisfying the parity acceptance condition.

• A winning strategy for player 1 can be seen as a Mealy machine (Fig. 5). We
use incompletely specified generalized Mealy machines to capture some of the
freedom provided by the strategy as far as output selection is concerned.

• The above Mealy machine is then reduced (Fig. 6), taking advantage of that
freedom if possible.

• Finally the Mealy machine is encoded in the AIGER format, to represent the
controller as an AIG (Fig. 2).

The above steps are a mere outline of the procedure implemented in our tool,
called ltlsynt, and distributed along with the Spot library (Duret-Lutz et al, 2022),
where most of the operations are implemented. Figure 7 gives a more detailed picture
by including two optimizations: a decomposition of the specification into multiple
sub-specifications (we refer the reader to Finkbeiner et al (2021) for more details
about this technique), and a shortcut to the “standard” construction for some LTL
formulas.

The rest of this article is organized as follows. We define LTL, automata, parity
games, and Mealy machines in Section 2. The rest of the sections delve into specific
steps of this pipeline: Section 3 explains how we convert LTL formulas into determin-
istic parity automata, Section 4 discusses different options for reducing incompletely
specified Mealy machines, Section 5 discusses several ways to encode our Mealy

4 Dissecting ltlsynt

LTL formula ϕ ,
controllable propositions O

decompose ϕ

does ϕi match
G(b1)∧ (ψ ↔ GFb2)?

yes no

translate ϕi
to game

solve game

Fig. 4

Y/N
output

extract
IGMM

translate ϕi
to IGMM

simplify IGMM

Fig. 5

encode as AIG

Fig. 6

AIGER file

Fig. 2

The user supplies the specification of a reac-
tive system using an LTL formula tying some
uncontrollable input signals to some control-
lable output signals.

Optionally decompose ϕ =
∧

i ϕi as a conjunc-
tion of subspecifications ϕi with independent
outputs. (Finkbeiner et al, 2021)

For this subclass of formulas, we can bypass the
game-theoretical framework. (Section 6)

ϕi is converted to a parity game where player 0
plays the input signals, and player 1 plays the
output signals. (Section 3)

The game is solved using a variant of Zielonka’s
algorithm (van Dijk, 2018). A controller is real-
izable if player 1 has a winning strategy for the
initial state.

When ltlsynt is called with option
--realizability, the process can stop here
by combining the results of all ϕis.

Otherwise, an Incompletely specified General-
ized Mealy Machine (IGMM) is created from
the winning strategy, or from ϕi.

Simplifying the IGMM helps to reduce the size
of the controller. (Section 4)

Encoding as an And-Inverter Graph can be done
in a number of ways. Combining the different
“sub-controllers” for the ϕis is done in this step.
(Section 5)

Fig. 7: General outline of the process used by ltlsynt to solve a reactive synthesis
problem.

machines into an AIG. Section 6 shows how to bypass the “standard” construction
for some subclass of LTL formulas. Finally we evaluate some of these choices in
Section 7.

Dissecting ltlsynt 5

2 Concepts

2.1 Valuations and Cubes
Let N= {0,1,2, . . .} be the set of natural numbers, and let B= {⊤,⊥} denote the set
of Boolean values. Given a set X of propositions (i.e., Boolean variables), a valuation
is a function from X to B. Let BX be the set of all possible valuations on X , and
let 2B

X
be its set of subsets. Any element of 2B

X
can be expressed as a Boolean

formula over X , so we shall often represent valuations or set of valuations as Boolean
formulas over X . The negation of proposition p is denoted p̄. We overload ⊤ (resp.
⊥) to denote the Boolean formula that is always true (resp. false), or equivalently the
set BX (resp. /0), and assume that X is clear from the context.

A cube is a (possibly empty) conjunction of propositions or their negations (i.e.,
literals). As an example, given three propositions X = {a,b,c}, the cube a∧ b̄, usually
written ab̄, stands for the set of valuations in which a is true and b is false, i.e.,
{ab̄c,ab̄c̄}. Let KX stand for the set of all cubes over X . KX contains the cube ⊤ (the
empty conjunction), that stands for the set of all possible valuations over X . Note that
any set of valuations can be represented as a disjunction of disjoint cubes.

2.2 Linear-Time Temporal Logic
Given an alphabet Σ, we use Σω to denote the set of infinite words over Σ. For a word
π = π0π1π2 . . . ∈ Σω we note πi its letter at position i ∈ N. We use πi.. to denote the
suffix of π starting at position i, in other words πiπi+1πi+2 . . .= πi...

A set of words L⊆ Σω is called a language. We note L∁ = Σω ∖L its complement.
In the sequel, we work with an alphabet that contains valuations over a set of input

and output propositions (representing the input and output signals of our controller).
Let I and O be two disjoint sets of input and output propositions. A trace is an infinite
word π ∈ (BI∪·O)ω over valuations of I∪· O. We use symbol ∪· to indicate that this is
a disjoint union.

A classical formalism to express specifications on traces is LTL:

Definition 1 (LTL) A Linear-time Temporal Logic formula is built from the following
grammar:

ϕ ::=⊤ | ⊥ | p | ¬ϕ | ϕ⊙ϕ | Fϕ | Gϕ | Xϕ | ϕ Uϕ | ϕ Rϕ

where p ∈ I ∪· O is any proposition, and ⊙ ∈ {∧,∨,→,↔,⊕} represents any binary Boolean
operator (⊕ is exclusive or).

Parentheses are used for grouping, but we omit them from the above grammar
and the upcoming ones for simplicity.

Definition 2 (Semantics of LTL) For a trace π ∈ (BI∪·O)ω and an LTL formula ϕ , we say that
π satisfies ϕ , denoted π ⊨ ϕ , and define this relation inductively as follows:

π ⊨⊤⇔⊤

6 Dissecting ltlsynt

π ⊨⊥⇔⊥
π ⊨ ρ ⇔ π0(ρ) =⊤

π ⊨ ¬ϕ ⇔¬(π ⊨ ϕ)

π ⊨ ϕ⊙ψ ⇔ (π ⊨ ϕ)⊙ (π ⊨ ψ)

π ⊨ Xϕ ⇔ π1.. ⊨ ϕ

π ⊨ Fϕ ⇔∃i ∈ N, πi.. ⊨ ϕ

π ⊨ Gϕ ⇔∀i ∈ N, πi.. ⊨ ϕ

π ⊨ ϕ Uψ ⇔∃i ∈ N, πi.. ⊨ ψ and ∀ j ∈ {0, . . . , i−1} ,π j.. ⊨ ϕ

π ⊨ ϕ Rψ ⇔

{
∀i ∈ N, πi.. ⊨ ψ or
∃i ∈ N, πi.. ⊨ ϕ and ∀ j ≤ i, π j.. ⊨ ψ

In the above, ρ ∈ I∪· O is a proposition, ϕ and ψ are LTL formulas, and ⊙ ∈ {∧,∨,→,↔,⊕}
is any binary Boolean operator.

The language of a formula ϕ is the set of traces that satisfy it: L (ϕ) = {π ∈ (BI∪·O)ω |
π ⊨ ϕ}. Two formulas ϕ and ψ are said to be equivalent if they have the same language, and
we write ϕ ≡ ψ .

We now define some useful subclasses of LTL formulas.

Definition 3 (Some subclasses of LTL) Consider the following grammar rules, where p ∈
I ∪· O is any proposition, ⊖ ∈ {∧,∨,↔,⊕} is any commutative Boolean operator, ⊙ ∈
{∧,∨,→,↔,⊕} is any binary Boolean operator, and ϕ is any LTL formula.

ϕN ::=⊤ | ⊥ | p | ¬p | ϕN ⊖ϕN | FϕN | GϕN | XϕN | ϕN UϕN | ϕN RϕN

ϕX ::=⊤ | ⊥ | p | ¬ϕX | ϕX ⊙ϕX | XϕX

ϕG ::= ϕX | ¬ϕS | ϕG∧ϕG | ϕG∨ϕG | ϕS→ ϕG | XϕG | FϕG | ϕG UϕG

ϕS ::= ϕX | ¬ϕG | ϕS ∧ϕS | ϕS ∨ϕS | ϕG→ ϕS | XϕS | GϕS | ϕS RϕS

ϕO ::= ϕG | ϕS | ¬ϕO | ϕO⊙ϕO | XϕO | ϕO UϕG | ϕO RϕS

ϕP ::= ϕO | ¬ϕR | ϕP⊙ϕP | XϕP | FϕP | ϕP UϕP | ϕP RϕS

ϕR ::= ϕO | ¬ϕP | ϕR⊙ϕR | XϕR | GϕR | ϕR UϕG | ϕR RϕR

ϕµ ::=⊥ | ⊤ | ¬ϕν | ϕµ ∧ϕµ | ϕµ ∨ϕµ | Xϕµ | Fϕ | Gϕµ | ϕ Uϕµ | ⊤Uϕ | ϕµ Rϕµ

ϕν ::=⊥ | ⊤ | ¬ϕµ | ϕν ∧ϕν | ϕν ∨ϕν | Xϕν | Fϕν | Gϕ | ϕν Uϕν | ϕ Rϕν | ⊥Rϕ

ϕξ ::=⊥ | ⊤ | ¬ϕξ | ϕξ ⊙ϕξ | Fϕν | Gϕµ | Fϕξ | Gϕξ | Xϕξ | ϕ Uϕξ | ϕ Rϕξ

Formulas produced by rule ϕN are said to be in negative normal form (NNF): i.e., negation is
only applied to atomic propositions, and implication is not used.
Formulas produced by rule ϕX are LTL(X) formulas, i.e., LTL formulas where the only
temporal operator used is X.
Formulas produced by rules ϕG, ϕS, ϕO, ϕP, ϕR are called respectively syntactic guarantee for-
mulas, syntactic safety formulas, syntactic obligation formulas, syntactic persistence formulas
and syntactic recurrence formulas (Černá and Pelánek, 2003).
Formulas produced by rules ϕµ , ϕν , and ϕξ are called respectively pure eventuality formulas,
pure universality formulas, and suspendable formulas (Babiak et al, 2013).

Dissecting ltlsynt 7

Theorem 2.1 (Folklore) Any LTL formula can be transformed into an equivalent NNF formula
by pushing negations inward, applying rules such as ¬(ϕ1 Uϕ2) ≡ (¬ϕ1)R (¬ϕ2), ¬(ϕ1 ↔
ϕ2)≡ (¬ϕ1)⊕ (¬ϕ2), ϕ1→ ϕ2 ≡ (¬ϕ1)∨ϕ2, etc.

Theorem 2.2 (Etessami and Holzmann (2000); Babiak et al (2013)) Any pure eventuality ϕ

satisfies ϕ ≡Fϕ . Any pure universality ϕ satisfies ϕ ≡Gϕ . Any suspendable formula ϕ satisfies
ϕ ≡ Gϕ ≡ Fϕ ≡ Xϕ .

The sets of syntactic guarantee, syntactic safety, syntactic obligation formulas,
syntactic recurrence formulas and syntactic persistence formulas are related to the
temporal hierarchy of Manna and Pnueli (1990) in a way that has been discussed by
Černá and Pelánek (2003). However, we first need to define automata before we can
state those important results.

2.3 Emerson-Lei Automata
It is a well-known result that Muller automata can recognize the set of all traces
satisfying a given LTL formula and thus, may prove extremely useful in the syn-
thesis process. Emerson-Lei Automata were defined (Emerson and Lei, 1987) and
named (Safra and Vardi, 1989) in the 80s; they provide a way to describe a Muller
acceptance condition using a positive Boolean formula over sets of states that must
be visited finitely or infinitely often. Below we define the transition-based version of
those automata, as used in the Hanoi Omega-Automata Format (Babiak et al, 2015).
Instead of working directly with sets of transitions, we label transitions by multiple
colored marks, as can be seen in Figure 3.

Let M = {0, . . . ,n− 1} be a finite set of n contiguous integers called the set of
marks or colors, from now on also written M = { 0 , 1 , . . .} in our examples. We
define the set C (M) of acceptance formulas according to the following grammar,
where m stands for any mark in M:

α ::=⊤ | ⊥ | Inf(m) | Fin(m) | α ∧α | α ∨α

Acceptance formulas are interpreted over subsets of M. For N ⊆ M we define the
satisfaction relation N |= α inductively according to the following semantics:

N |=⊤, N |= Inf(m) iff m ∈ N, N |= α1∧α2 iff N |= α1 and N |= α2,

N ̸|=⊥, N |= Fin(m) iff m /∈ N, N |= α1∨α2 iff N |= α1 or N |= α2.

An Emerson-Lei automaton is an ω-automaton labeled by marks whose accep-
tance condition is expressed as a positive Boolean formula on sets of marks that occur
infinitely or finitely often in a run. More formally:

Definition 4 (Transition-based Emerson-Lei Automata) A transition-based Emerson-Lei
automaton (TELA) is a tuple A = (Q,M,Σ,δ ,q0,α) where:

• Q is a finite set of states.

8 Dissecting ltlsynt

Table 1: Example of acceptance formulas for traditional acceptance conditions.

Büchi Inf(0)

generalized Büchi Inf(0)∧ Inf(1)∧ Inf(2)∧ . . .
co-Büchi Fin(0)

Rabin
(
Fin(0)∧ Inf(1)

)
∨
(
Fin(2)∧ Inf(3)

)
∨ . . .

Streett
(
Inf(0)∨Fin(1)

)
∧
(
Inf(2)∨Fin(3)

)
∧ . . .

parity min even Inf(0)∨ (Fin(1)∧ (Inf(2)∨ (Fin(3)∧ . . .)))
parity min odd Fin(0)∧ (Inf(1)∨ (Fin(2)∧ (Inf(3)∨ . . .)))
parity max even (((Inf(0)∧Fin(1))∨ Inf(2))∧Fin(3))∨ . . .
parity max odd (((Fin(0)∨ Inf(1))∧Fin(2))∨ Inf(3))∧ . . .

• M is a finite set of marks.
• Σ is a finite input alphabet.
• δ ⊆ Q×Σ×2M×Q is a finite set of transitions.
• q0 ∈ Q is an initial state.
• α ∈ C (M) is an acceptance formula.

Given a transition d = (q1, ℓ,A,q2) ∈ δ , we write d = q1
ℓ,A−→ q2; q2 is said to be a

successor of q1, and q1, the origin of d. If A= /0, the transition is said to be uncolored,
and has no direct impact on the acceptance. A run r of A is an infinite sequence of

transitions r = (si
ℓi,Ai−−→ s′i)i≥0 in δ ω such that s0 = q0 and ∀i ≥ 0, s′i = si+1. Since

δ is finite, for any run r, there exists a position jr ≥ 0 such that for each i ≥ jr, the

transition si
ℓi,Ai−−→ s′i occurs infinitely often in r. Let Rep(r) =

⋃
i≥ jr Ai be the set of

colors repeated infinitely often in r.
A run r is accepting if Rep(r) |= α , and we then say that A accepts the word

(ℓi)i≥0 ∈ Σω . We may then write r |= α . The language L (A) is the set of words
accepted by A . Two TELA are equivalent if they have the same language. By exten-
sion, the language of a state q ∈ Q is the language of the automaton using q as initial
state.

Finally, a TELA is deterministic if each state has at most one outgoing edge for
any given letter, in other words, ∀(q,v)∈Q×Σ, |{(s, ℓ,A,d)∈ δ | s= q∧ℓ= v}| ≤ 1,
and it is complete if each state has at least one outgoing edge for any given letter, in
other words, ∀(q,v) ∈ Q×Σ, |{(s, ℓ,A,d) ∈ δ | s = q∧ ℓ= v}| ≥ 1.

The grammar of acceptance formulas can represent many traditional acceptance
conditions, as illustrated in Table 1. For parity acceptance, interpreting the colors
as numbers amounts to checking whether the minimum or maximum color seen
infinitely often is odd or even.

Some subclasses of TELA are of specific interest to us. A DELA is a deterministic
TELA. If it has parity acceptance, we call it deterministic parity automaton (DPA).
ltlsynt works with max odd parity, but the techniques described can be adjusted
to other types of parity acceptance. A NBA is a TELA with Büchi acceptance, and a
DBA is the deterministic version.

The following theorem captures some well-established results linking LTL to
TELA.

Dissecting ltlsynt 9

Theorem 2.3 For any LTL formula there exists an equivalent NBA and an equivalent DPA.
There exist some LTL formulas that cannot be represented by an equivalent DBA.

The following definition and theorem connect the syntactic obligation formula of
Section 2.2 to the class of weak TELA:

Definition 5 A weak automaton is a TELA in which all transitions that belong to the same
strongly connected component have the same color. Without loss of expressivity, one can
always recolor weak automata to use a Büchi acceptance condition Inf(0).

Theorem 2.4 (Černá and Pelánek (2003); Dax et al (2007)) Any syntactic obligation formula
can be converted into an equivalent deterministic weak automaton of minimal size.

Similarly, the classes of syntactic recurrence and syntactic persistence formula
can be connected to specific types of deterministic automata.

Theorem 2.5 (Černá and Pelánek (2003)) For any syntactic recurrence formula there exists
an equivalent deterministic Büchi automaton and dually for any syntactic persistence formula
there exists an equivalent deterministic co-Büchi automaton.

2.4 Operations on Deterministic TELA
We now define operations over deterministic TELA that realize Boolean operations
over their language. Let us first extend our definition of acceptance formulas via some
syntactic sugar.

Definition 6 (Syntactic sugar for acceptance formulas) Let α be an acceptance formula, then
¬α is the acceptance formula defined inductively by

¬⊤=⊥ ¬Inf(m) = Fin(m) ¬(α1∧α2) = (¬α1)∨ (¬α2)

¬⊥=⊤ ¬Fin(m) = Inf(m) ¬(α1∨α2) = (¬α1)∧ (¬α2)

For two acceptance formulas α and β , let us define three additional operations:
α → β = ¬α ∨β

α ↔ β = (α ∧β)∨ (¬α ∧¬β)

α⊕β = (α ∧¬β)∨ (¬α ∧β)

Theorem 2.6 (Complement of a deterministic TELA) Let A = (Q,M,Σ,δ ,q0,α) be a deter-
ministic complete TELA. We define Complement(A) as the automaton (Q,M,Σ,δ ,q0,¬α),
and we obviously have L (Complement(A)) = L (A)∁.

Theorem 2.7 (Generalized product) Let A1 = (Q1,M1,Σ,δ1, i1,α1) and A2 =
(Q2,M2,Σ,δ2, i2,α2) be two deterministic TELA over the same alphabet using two disjoint
sets of colors M1 and M2.

For any⊙∈ {∧,∨,→,↔,⊕} let Product⊙(A1,A2) be the TELA (Q,M,Σ,δ , i,α) where:

10 Dissecting ltlsynt

• Q = Q1×Q2,
• δ = {((s1,s2), ℓ1,m1∪m2,(d1,d2)) | (s1, ℓ1,m1,d1)∈ δ1, (s2, ℓ2,m2,d2)∈ δ2, ℓ1 =
ℓ2},

• i = (i1, i2),
• α = α1⊙α2

Then, it follows that:

L (Product∧(A1,A2)) = L (A1)∩L (A2)

L (Product∨(A1,A2)) = L (A1)∪L (A2)

L (Product→(A1,A2)) = L (A1)
∁∪L (A2)

L (Product↔(A1,A2)) = (L (A1)∩L (A2))∪ (L (A1)
∁∩L (A2))

∁

L (Product⊕(A1,A2)) = (L (A1)∖L (A2))∪ (L (A2)∖L (A1))

The above product can be adapted to the case where the set of colors M1 and
M2 used by each automaton are not disjoint, by first renumbering the colors of one
automaton to make sure they are unique. In the end, the number of colors used by the
above product is |M1|+ |M2|.

In the context of reactive synthesis, we will consider an alphabet Σ = BI∪·O. The
edges of a TELA are labeled by input and output propositions.

2.5 Parity Games
We view parity games as specialized versions of TELA where each state is owned by
one of two players.

Definition 7 (Parity Game) A parity game is a TELA of the form G = (Q0∪· Q1,M,Σ,δ ,q0,α)
such that:

• Q0 and Q1 are two disjoint sets of states respectively controlled by player
0 (“the environment”) and player 1 (“the controller”).

• α is a parity max odd condition.

A run of G is called a play; it is said to be winning for player 1 if it is an accepting
run, otherwise, if the run is non-accepting, it is winning for player 0.

As shown in Figure 3, states in Q0 will be denoted , and states in Q1, . Intu-
itively, player 0 and player 1 take turns and pick a successor in accordance to the
current state and the transitions defined in δ . Player 1 tries to ensure that the resulting
run is accepting, while player 0 is actively preventing this outcome.

A memoryless strategy for a player X (with X ∈ {0,1}) is a function σX : QX → δ

such that σX (q) is always an outgoing transition of q ∈ QX .

A play p = (si
ℓi,Ai−−→ s′i)i≥0 is said to be consistent with σX if ∀si ∈ QX , (si

ℓi,Ai−−→
s′i) = σX (si), that is, the transition leaving any state in QX in that run is determined
by σX . Finally, σX is said to be a winning strategy for player X if any play that is
starting in q0 and consistent with σX is winning for player X .

Dissecting ltlsynt 11

Parity games are known to be positionally determined, this means that one of the
two players has a memoryless winning strategy. Büchi games are positionally deter-
mined too, however as seen in Theorem 2.3, DBA are less expressive than DPA;
we therefore focus on DPA. Several algorithms exist for finding winning strategies
in parity games (Zielonka, 1998; Jurdziński, 2000; van Dijk, 2018), and those that
are defined with state-based acceptance can easily be adapted to transition-based
acceptance. Our implementation is based on Zielonka’s algorithm with improvements
taken from van Dijk (2018).

2.6 Mealy Machines
Reactive controllers produce for an input stream of Boolean valuations a matching
output stream. We model this behavior thanks to a common finite state model known
as Mealy machines, as shown in Figure 5. In particular, we will use Mealy machines
to represent the winning strategies we obtain while solving parity games. However, a
given specification may yield multiple compatible output valuations for a given input:
our model must therefore account for this peculiarity of reactive synthesis.

Definition 8 An Incompletely specified Generalized Mealy Machine (IGMM) is a tuple M =
(I,O,Q,qinit,δ ,λ), where I is a set of input propositions, O a set of output propositions, Q
a finite set of states, qinit an initial state, δ :

(
Q,BI)→ Q a partial transition function, and

λ :
(
Q,BI)→ 2B

O ∖{ /0} an output function such that λ (q, i) =⊤ when δ (q, i) is undefined. If
δ is a total function, we then say that M is input-complete.

It is worth noting that the transition function is input-deterministic but not com-
plete with regards to Q as δ (q, i) could be undefined. (When δ (q, i) is undefined, the
Mealy machine will be free to do anything, hence the convention that λ (q, i) = ⊤.)
Furthermore, the output function may return a set of valuations for a given input val-
uation and state. This is not an unexpected definition from a reactive synthesis point
of view, as discussed earlier.

Definition 9 (Semantics of IGMMs) Let M = (I,O,Q,qinit,δ ,λ) be an IGMM. For all u ∈ BI

and q ∈ Q, if δ (q,u) is defined, we write that q
u/v−−→ δ (q,u) for all v ∈ λ (q,u). Given two

infinite sequences of valuations ι = i0 · i1 · i2 · · · ∈ (BI)ω and o = o0 · o1 · o2 · · · ∈ (BO)ω , we
note (ι ,o) (Mq if and only if:

• either there is an infinite sequence of states (q j) j≥0 ∈ Qω such that q = q0 and

q0
i0/o0−−−→ q1

i1/o1−−−→ q2
i2/o2−−−→ ·· · ;

• or there is a finite sequence of states (q j)0≤ j≤k ∈ Qk+1 such that q = q0, δ (qk, ik)

is undefined, and q0
i0/o0−−−→ q1

i1/o1−−−→ ·· ·qk.

We then say that starting from state q, M produces output o given the input ι .

Note that if δ (qk, ik) is undefined, the machine is allowed to produce an arbi-
trary output from then on. Furthermore, given an input word ι , there is always at

12 Dissecting ltlsynt

least one output word o such that (ι ,o) (Mq but there might be more. Eventually,
when that machine is encoded into a circuit, we will have to settle on a single output
word per input word, but in the meantime, this additional flexibility can be used for
simplification.

Definition 10 (Realizability of an LTL formula by an IGMM) Let I and O be two disjoint
sets of input and output propositions. Given two sequences ι = i0 · i1 · i2 · · · ∈ (BI)ω and o =
o0 ·o1 ·o2 · · · ∈ (BO)ω , we denote by ι∧o the sequence (i0∧o0) ·(i1∧o1) ·(i2∧o2) · · · ∈BO∪· I .

Let ϕ be an LTL formula built upon I∪· O. We say that an IGMM M = (I,O,Q,qinit,δ ,λ)
realizes the specification ϕ if for any pair of sequences ι ∈ (BI)ω and o ∈ (BO)ω , we have

(ι ,o) (Mqinit =⇒ ι ∧o ⊨ ϕ

We say that a specification ϕ is realizable if there exists an IGMM that realizes it.

In other words, the machine M realizes the specification ϕ if, regardless of the
provided input ι , any output sequence o that M may produce will (together with ι)
satisfy ϕ .

Definition 11 (Variation and specialization) Let M = (I,O,Q,qinit,δ ,λ) and M′ =(
I,O,Q′,q′init,δ

′,λ ′
)

be two IGMMs. Given two states q ∈ Q, q′ ∈ Q′, we say that q′ is a vari-
ation of q if ∀ι ∈ (BI)ω ,

{
o
∣∣ (ι ,o) (M′q′

}
∩
{

o
∣∣ (ι ,o) (Mq

}
̸= /0; and q′ is a specialization

of q if ∀ι ∈ (BI)ω ,
{

o
∣∣ (ι ,o) (M′q′

}
⊆

{
o
∣∣ (ι ,o) (Mq

}
. We say that M′ is a variation (resp.

specialization) of M if q′init is a variation (resp. specialization) of qinit.

Intuitively, all the input-output pairs accepted by a specialization q′ in M′ are also
accepted by q in M. Therefore, if Mq realizes a specification ϕ , then its specialization
M′q′ also realizes ϕ . Figure 6 shows a specialization of Figure 5. This specialization
relation can obviously be used to compute smaller machines that still comply with a
given specification.

Finally, in order for two states to be a variation of one another, for all possible
inputs they must be able to agree on a common output behavior. This property can be
used to reduce the number of states in a given machine; however, additional care has
to be taken as we will show in Section 4.

2.7 The LTL Reactive Synthesis Problem
The LTL Reactive Synthesis problem can be formulated as follow: given an LTL
formula ϕ over a set of variable O∪· I partionned as input and output, does there exist
an IGMM M that realizes ϕ?

This is the problem posed by SYNTCOMP (Jacobs et al, 2017, 2019), the annual
Reactive synthesis competition, which distinguishes two subproblems:

• in the realizability track, the goal is simply to decide the above question without
providing M;

• in the synthesis track, the goal is to construct a reactive controller that realizes the
specification, or to state that the specification is not realizable.

Dissecting ltlsynt 13

translate
to NBA

split I/O
determinize
to DPA

translate
to NBA

determinize
to DPA

split I/O

parity
game

translate
to DELA

paritize
(CAR,IAR,...)

translate
to DELA

paritize
via ACD

Fig.3
Fig.4--

al
go
=s
d

--al
go=d

s

--algo=lar--algo=acd

LTL
input

Fig. 8: Zoom on the block “translate ϕi to game” from Fig. 7. The --algo option of
ltlsynt will select one of several ways to construct a parity game.

In the latter track, the controller has to be constructed as an AIG circuit expressed in
the AIGER format (Biere, 2007). Section 5 will be devoted to the transformation of
IGMM into AIG circuits.

3 Translating LTL Formulas into Games

3.1 Different Approaches
Figure 8 shows four approaches for transforming an LTL formula into a parity game.
In ltlsynt, these approaches can be selected using the --algo option.

The ds branch corresponds to the straightforward approach described in the intro-
duction. The formula is first converted into a non-deterministic Büchi automaton
using Spot’s standard translation (Duret-Lutz, 2014). Then it is determinized into
a parity automaton with a variant of Safra’s determinization (Redziejowski, 2012).
The result, which may look like Fig. 3 is then converted into a game as in Fig. 4 by
splitting transitions of the form i1i2o1o2 into i1i2 o1o2 . By ensur-
ing that at most one intermediate state is created per input valuation, determinism is
preserved (as discussed in Section 3.3). The game is also made input-complete, to
ensure that the environment can freely chose among all input valuations.

The sd approach is similar, except that the split is performed before the deter-
minization. This slightly counter-intuitive order is motivated by the fact that at a given
time, the determinization then has to deal only with valuations in 2O or valuations in
2I , while in the previous approach, it had to cope with 2O∪I valuations.

The other two approaches are attempts to reduce the costs of obtaining a DPA.
This is done by first converting the formula into a deterministic TELA (DELA), i.e.,
using arbitrary acceptance condition, and then converting this automaton into a DPA.
The conversion to deterministic TELA is described in the next section. The two
approaches differ in how the paritization (i.e., the conversion of the TELA to a parity
automaton) is done.

The lar approach uses a paritization procedure based on latest appearance
records with many improvements described in previous work (Renkin et al, 2020).

14 Dissecting ltlsynt

Algorithm 1 Translation of an LTL formula into a deterministic EL-automaton.

1: Input: An LTL formula ϕ in NNF, and an optional binary operator op.
2: Output: A deterministic EL-automaton.
3: function ToDELA(ϕ,op =⊥)
4: if ϕ matches XX . . .X︸ ︷︷ ︸

i copies of X

α then

5: Aα ← ToDELA(α)
6: create Aϕ from Aα by prepending i states in the obvious way
7: return Aϕ

8: if ϕ matches f1⊙·· ·⊙ fn for ⊙ ∈ {∧,∨,↔,⊕}\{op} and n≥ 2 then

9: Partition { f1, ..., fn} as S∪· O∪· R with


S: suspendable formulas
O: obligation formulas
R: anything else

10: A ← Product⊙(ToDELA(
⊙

f∈R f ,⊙),BuildMinWDBA(
⊙

f∈O f))
11: for s ∈ S do
12: A ← ProductSusp⊙(A ,ToDELA(s,⊙))
13: return A
14: if ϕ is a syntactic obligation then
15: return BuildMinWDBA(ϕ)

16: if ϕ matches G(
∧

iFαi) where αi are syntactic guarantees then
17: return GFGuaranteeToDBA(ϕ)

18: if ϕ matches F(
∨

iGαi) where αi are syntactic safeties then
19: return Complement(GFGuaranteeToDBA(¬ϕ))

20: return Determinize(ToNBA(ϕ))

The newest acd approach replaces the above paritization by one based on the
Alternating Cycle Decomposition (ACD) (Casares et al, 2021, 2022). It is guaranteed
to produce automata that are at most as big as lar.

3.2 From LTL to Deterministic TELA
There exist a number of tools, such as delag (Müller and Sickert, 2017) or
ltl3tela (Major et al, 2019) for transforming LTL formulas into deterministic
TELA (DELA). Spot’s own built-in procedure for this purpose, used by ltlsynt, is
inspired from delag.

Algorithm 1 shows a slightly simplified view of how Spot translates ϕ into a
deterministic TELA. Formula ϕ is assumed to be in a negative normal form (i.e., ¬
have been pushed down in front of the atomic propositions, and implications have
been rewritten away, as in Theorem 2.1) where equivalence (↔) and xor (⊕) can still
be used.

It builds upon the following procedures:

Dissecting ltlsynt 15

Product⊙ builds a product of two deterministic automata using a standard syn-
chronous product, and combines their acceptance conditions using ⊙∈ {∧,∨,↔
,⊕} (see Theorem 2.7).

ProductSusp⊙ also builds a product, but assumes the second argument is a suspend-
able property. As a consequence, the actual product needs only to be performed
in the accepting SCCs of the first automaton. This construction is similar to con-
structions discussed by Müller and Sickert (2017) and Babiak et al (2013), and is
justified by Theorem 2.2.

BuildMinWDBA transforms any obligation formula into a minimal weak determin-
istic Büchi automaton using a procedure described by Dax et al (2007).

GFGuaranteeToDBA is an algorithm inspired from a similar one by Esparza et al
(2018) and discussed in more details later. It can convert any formula of the form
G(

∧
iFαi), where αis are syntactic guarantee formulas, into a deterministic Büchi

automaton.
Complement dualizes the acceptance condition of any deterministic TELA to com-

plement it (see Theorem 2.6).
ToNBA converts an LTL formula into a non-deterministic Büchi automaton. (Duret-

Lutz, 2014)
Determinize determinizes a non-deterministic automaton into a parity automa-

ton, using a Safra-based algorithm. Spot implements Redziejowski’s algo-
rithm (2012).

Let us explain this algorithm by starting on line 20, which is the only necessary
line. It is well known that (1) any LTL formula can be converted into a non-
deterministic Büchi automaton with an exponential blowup, (2) not all LTL formulas
may be represented as deterministic Büchi automaton. As a consequence, applica-
tions that require deterministic automata usually rely on more complex acceptance
conditions. For instance there exists procedures for transforming non-deterministic
Büchi automata (NBA) into deterministic Rabin automata or into deterministic
parity automata (DPA), and those also have exponential blowups. Line 20 uses
such a determinization to obtain a DPA from an LTL translation, at the cost of
a doubly-exponential construction in the worst case (Kupferman and Rosenberg,
2010).

The other lines are therefore here to help reduce the cost of this construction,
by providing specialized constructions for certain subclasses of formulas, and by
decomposing the formula into smaller parts that are cheaper to translate and later
recompose.

The idea behind the decomposition is that if a formula ϕ has the shape f1⊙·· ·⊙
fn, for some Boolean operator ⊙ ∈ {∨,∧,↔,⊕}, then the deterministic TELA Aϕ

can be obtained by making a synchronous product of the deterministic TELA A fi
obtained for each fi, using operator ⊙ to combine the acceptance conditions. In this
process, the translation of the smaller fi might use more specialized algorithms. If
more specialized algorithms are not available, empirical experiences tell us that it is
usually best to translate ϕ without decomposing it, because the complexity of the
translation is mostly proportional to the size of the produced automata anyway.

16 Dissecting ltlsynt

It is important to be able to decompose on ↔ and ⊕ and not just ∧ and ∨. The
reason is that↔ in particular often occurs in synthesis specifications, and translating
f ↔ g as Product⊙(A f ,Ag) involves only one product, while the equivalent formula
(f ∧g)∨ (¬ f ∧¬g) would require three products. The same reduction in number of
products is achieved for ⊕, but would not be obtained for →. Hence we are happy
to assume implications have been removed when the input formula was rewritten in
negative normal form.

This idea of decomposing the LTL formula to call specialized constructions is
similar to that used in the tool delag (Müller and Sickert, 2017). In delag, a for-
mula is split into syntactic safety, syntactic guarantee, another class called fairness,
and anything else. We generalize this slightly by using using syntactic obligations
(a super-class of syntactic safety and syntactic guarantee), suspendable formulas (a
super-class of delag’s fairness class), and anything else. The partition into these
three classes is done on lines 8–9.

Several operations occur on line 10. Then, all formulas of set R, which do not
belong to a subclass for which we have a dedicated construction, are translated recur-
sively with ToDELA(

⊙
f∈R f ,⊙). The reason for the recursion, as opposed to calling

Determinize(ToNBA(
⊙

f∈R f)) directly, is that if R contains a single formula whose
top-level operator is a Boolean operator different from ⊙, it might be decomposed
again.

Similarly, all formulas of set O, are translated into a minimal weak determin-
istic Büchi automaton following a technique of Dax et al (2007); essentially, for
a syntactic obligation formula α , the following steps, which are embodied in the
BuildMinWDBA function, produce a minimal WDBA (Theorem 2.4):

1. translate α into an NBA Nα ,
2. ignoring accepting states, use the powerset construction on Nα to obtain the

deterministic structure Dα ,
3. any SCC of Dα that intersects an accepting SCC of Nα in the synchronous product

of Nα ⊗Dα should be marked as accepting
4. now Dα is a weak deterministic automaton for α , and it can be minimized using

Löding’s algorithm (2001).

The automata resulting from the translations of
⊙

f∈R f and
⊙

f∈O f are then
composed by taking their product (we are still on line 10). (For simplicity we assume
here that if O or R is empty, its translation gives a simple universal automaton. But the
implementation of course skips the product in this case.) Spot’s implementation of
Product⊙ has an extra trick, used here: when one of the operand is a weak automaton,
it does not need to contribute colors to the resulting product.

Lines 11–12 integrate the suspendable formulas to the result one after the other,
by translating them recursively, and then using the ProductSusp⊙ method.

When the ToDELA function is called, the input formula has generally been sim-
plified using folklore rewritings such a changing (X f1)⊙ (X f2) into X(f1⊙ f2). For
this reason, lines 4–7 strip any leading Xs in order to apply the construction to the
rest of the formula.

Dissecting ltlsynt 17

0 1

2 3

a

ā a

ā

ā a

0

⊤

(a)

0 1

2 3

a

ā a

ā

ā a
0⊤

(b)

0 1

2

a

ā ā a
a
0

ā0

(c)

1

2

ā a

a0

ā0

(d)

Fig. 9: (a) a DBA for F(a↔ Xa); (b,c,d) three DBAs for GF(a↔ Xa).

Finally, lines 14–19 detect subclasses of formulas for which a specialized con-
struction exists. If ϕ is a syntactic obligation, the aforementioned BuildMinWDBA
function is used.

If formula ϕ has the form G(
∧

iFαi), and αi is a syntactic guarantee formula, then
the following algorithm from Esparza et al (2018) can be used:

1. Translate
∧

iFαi into a DBA A with a single accepting state that is terminal. The
simple structure of

∧
iFαi makes this possible. (Fig. 9(a) gives an example.)

2. Build Aϕ from A by redirecting the loop of the accepting states to the initial state.
(Fig. 9(b).)

Our implementation of GFGuaranteeToDBA improves upon the above by redi-
recting not the outgoing transition of the accepting states, but its incoming transitions
(Fig. 9(c)): for each transition going to the terminal state, pretend that this letter is
read from the initial state to pick the new destination. If such a transition is neces-
sarily preceded by some forced sequence of valuations, any suffix of this sequence
of valuations can actually be replayed from the initial state, allowing tighter loops.
Finally, note that state 0 and 1 of Fig. 9(c) have the same successors, so they can be
merged to obtain the automaton Fig. 9(d).

3.3 Splitting Automata
Once a parity automaton has been obtained (as in Fig. 3), we split its transitions to
separate input signals from output signals, and obtain a parity game (as in Fig. 4). In
this game player 1 (“the controller”) selects the output valuations and can effectively
react to the input valuations selected by player 0 (“the environment”).

On the --algo=sd path of Fig. 8, we apply this split operation to non-
deterministic Büchi automata. Therefore, below, we define it for any acceptance
condition, and partition the states of the resulting automaton as Q0 ∪· Q1, with
Q0/1 being the set of states belonging to player 0/1, allowing this automaton to be
interpreted as a game if desired.

Definition 12 (Splitting an Emerson-Lei Automata) Let A = (Q,M,BI∪·O,δ ,q0,α) be a
TELA. The split of A is the TELA As = (Q0∪· Q1,M,BI ∪BO,δ0∪δ1,q0,α), where:

• Q0 = Q,
• Q1 = Q×BI ,

18 Dissecting ltlsynt

0

1

2

ax̄
0

ax
1

(a) 0 3

1

2

a
x̄
0

x
1

(b)

Fig. 10: (a) Original automaton with I = {a} and O = {x}. (b) Split automaton
interpreted as a game with Q0 as round states, and Q1 as diamonds states.

• δ0 =
{

s
ℓi, /0−−→ (s, ℓi)

∣∣∣ℓi ∈ BI , ℓo ∈ BO,s
ℓ,A−→ d ∈ δ , ℓ= ℓi∧ ℓo

}
,

• δ1 =
{
(s, ℓi)

ℓo,A−−→ d
∣∣∣ℓi ∈ BI , ℓo ∈ BO,s

ℓ,A−→ d ∈ δ , ℓ= ℓi∧ ℓo

}
.

Figure 10 shows a small example demonstrating how edges with identical inputs
are fused into a single edge for the environment player. This ensures that states in Q0
are always deterministic, while states in Q1 are only deterministic if the input TELA
is deterministic.

In a similar manner to transitions, we can split runs: if r ∈ (BI∪·O)ω , r = (ri)i≥0,
and we consider ∀i≥ 0, ri = rI

i r
O
i where rI

i ∈ BI and rO
i ∈ BO are again the respective

projections of ri. Then the split of r is the run rs = rI
0rO

0 rI
1rO

1 . . . in (BI ·BO)ω . Obvi-
ously, A accepts a run r if and only if As accepts rs: splitting a TELA preserves the
underlying specification as a game.

Two Implementation Details

The definition of TELA and game used here are deliberately simplified concepts to
ease the notations. In particular, our implementation of TELA labels transitions with
subsets of valuations (i.e., arbitrary Boolean formulas over I∪· O) instead of only one
valuation at a time, in order to reduce the number of transitions stored and iterated
upon. The splitting procedure detailed above is easily adapted to this setting: using
subsets of valuations as ℓi in (s, ℓi) will also help reduce the size of Q1.

Furthermore, if the acceptance condition is parity max odd, the transitions intro-
duced in δ0 can be colored using the minimal color used in the outgoing transitions of
their destination states (with no acceptance mark being considered smaller than any
color). For instance if the automaton of Fig 10(b) has parity max odd acceptance, the
transition between states 0 and 3 can be colored with 0 , the minimum color seen in
the outgoing transitions of 3.

4 Simplifying Winning Strategies using Generalized
Mealy Machines

Once a winning strategy for player 1 has been found for a game, we extract it as an
Incompletely specified Generalized Mealy Machine. This is done in a simple way:
first every outgoing edge of a state in Q1 that is not part of the strategy is removed, as
well as all colors. Then the reachable part of the remaining automaton can be seen as
a collection of pairs of transitions of the form i1i2 o1o2 which we fuse back

Dissecting ltlsynt 19

into i1i2/o1o2 to obtain a Mealy machine. For instance the Mealy machine in
Fig. 5 is obtained from the game together with the strategy highlighted by the thick
transitions in Fig. 4 using this approach.

These Mealy machines will then be encoded into And-Inverter Graphs as we
discuss in Section 5, but first they can be simplified.

If a Mealy machine has n states, the AIG will use ⌈logn⌉ latches to remember its
current state; and reducing this number will usually reduce the size of the AIG (but
that is not always true). For instance the Mealy machine in Fig. 5 requires two latches
(two bits are needed to distinguish the three states), while the one of Fig. 6 requires
only one latch (as shown in Fig. 2).

As shown in Fig. 4, a strategy determines for each state which transition to
choose. As transitions are labeled by arbitrary sets of valuations (over the out-
put propositions), the strategy implicitly defines a set of valid output valuations to
respond to the last input valuation. The controller is free to pick any one of these
valuations and is guaranteed to respect the initial specification.

This brings us back to the notion of specialization of Mealy machines, introduced
in Section 2.6. Please recall that intuitively, a Mealy machine M1 is a specialization
of a Mealy machine M2 if for any input sequence, any associated output produced
by M1 can also be produced by M2.

Our goal is to derive a specialization of a given Mealy machine having fewer
states. In the following subsections, we give an overview of two ways to perform such
a reduction: in the first one, called minimization, we seek to obtain the specialization
having the fewest states possible. In the second one, called reduction, we seek to
reduce the number of states of the machine, without necessarily achieving the optimal
result. The later reduction is motivated by the high computational complexity of the
minimization: the problem is known to be NP-complete (Pfleeger, 1973).

These two simplifications are further detailed in a previous work (Renkin et al,
2022), so we only provide intuitions here.

4.1 SAT-Based Minimization of IGMM
Here we discuss a minimization procedure based on the approach presented by
Abel and Reineke (2015). Besides improving their algorithm on several points,
we generalize this approach to our strictly more expressive Mealy machine model
IGMM.

If the Mealy machine was completely specified, we would minimize it by comput-
ing a quotient of equivalent states. However, the freedom we get from the incomplete
specification allows some of the states to belong to several classes of that equiva-
lence relation, depending on how we decide to specialize those states. To capture this
notion of group of compatible states, we define variation classes, and require three
additional properties: variation classes have to cover the entire automaton, they have
to behave similarly with respect to their successor classes and their possible output.

Definition 13 (Variation class) Given an IGMM M = (I,O,Q,qinit,δ ,λ), a variation class
C ⊆ Q is a set of states, such that all elements are pair-wise variations (See Def. 11). That is

20 Dissecting ltlsynt

0

1

2

3

5 44

6

a/z̄
ā/x̄ȳz̄

a/z̄
ā/z

a/⊤

ā/z

a/z̄

ā/⊤

ā/⊤

a/⊤
ā/⊤a/z

a/⊤
ā/⊤

(a) Original IGMM M

0

1

2
ā/x̄ȳz̄

a/z
ā/za/z̄

a/z̄
ā/z

a/⊤

(b) Minimal specialization of M

Fig. 11: Minimization example

∀q,q′ ∈C,q′ is a variation of q. In the remainder of this section, we will call a variation class
simply class as there is no ambiguity.

Note that variation classes should not be mistaken for equivalence classes, since
being a variation is not an equivalence relation.

Definition 14 (Cover condition) We say that a set of classes S covers the machine M if every
state of M appears in at least one class.

Definition 15 (Closure condition) We say a set of classes S is closed if for all C j ∈ S and for
all input i ∈ BI there exists a class Ck ∈ S such that for every state q of C j we have either
δ (q, i) ∈Ck or δ (q, i) is undefined.

Definition 16 (Nonemptiness condition) We say that a class C has a nonempty output if⋂
q∈C λ (q, i) is not empty for all input i ∈ BI .

A set of classes that satisfies the three previously described conditions gives rise
to a specialization of the original machine. Therefore, finding the minimal number of
classes able to satisfy the conditions amounts to finding the minimal specialization.

For instance in Figure 11a, colors are used to represent three variation classes that
satisfy the three additional constraints. (States 4 and 6 belong to the three classes.)
The minimal corresponding IGMM is the one of Figure 11b.

In order to find such a decomposition, we fix the number of classes n and encode
the conditions given above as a SAT problem. Once we have found the smallest n for
which a satisfying assignment has been found by a SAT solver, we can extract the
minimal IGMM from it.

A basic iterative algorithm would be to ask if the conditions can be satisfied with
one class, and if not, increase the number of classes by one. This naive approach
can be improved as shown in Algorithm 2 by first computing a lower bound on the
number of classes necessary : for each pair of states q and q′, we test if they are
variations of one another. If not, these two states cannot be in the same class. We

Dissecting ltlsynt 21

Algorithm 2 SAT-based minimization

1: bool[][] mat← isNotVariationOf(M) ▷ Computing the variation matrix
2: set P← extractPartialSol(mat) ▷ Looking for a partial solution P
3: clauses← empty list
4: for n← |P| to |Q|−1 do ▷ Using the lower bound inferred from P
5: addCoverCondition(clauses, M, P, mat, n)
6: addClosureCondition(clauses, M, P, mat, n)
7: (sat, solution)← satSolver(clauses) ▷ Solving cover & closure cond.
8: while sat do
9: if verifyNonEmpty(M, solution) then

10: return buildMachine(M, solution)
11: addNonemptinessCondition(clauses, M, solution)
12: (sat, solution)← satSolver(clauses)

return copyMachine(M) ▷ If no solution has been found, return M

therefore compute a set of states such that no two states in the set are variations of
one another. The size of this set gives us a lower bound on the number of classes
necessary.

4.2 Bisimulation-based Reductions
Our second approach relies on an adaptation of a procedure called bisimula-
tion (Babiak et al, 2013) used to reduce the size of an ω-automaton. Again, describing
the method in detail is beyond the scope of this paper because this work has been pre-
viously published (Renkin et al, 2022); however, we would like to share some insights
about how this transformation works. This procedure uses as an intermediate step an
association between a state of the automaton and a Boolean formula called signature.
This signature is computed iteratively in such a way that two states with the same
signature recognize the same language. We will now present two algorithms based
on an adaptation of this signature-based approach that seeks to reduce an IGMM.

4.2.1 Bisimulation Reduction
Definition 17 (Bisimilarity) Two states q and q′ are bisimilar if q is a specialization of q′ and
q′ is a specialization of q.

For instance states 4 and 6 in Figure 11a are bisimilar. We can therefore replace
the edge that goes from 3 to 6 by an edge that goes from 3 to 4, thereby obtaining a
machine with 6 states.

Generally, the bisimulation reduction of an automaton is the quotient of that
automaton with respect to the above bisimilarity relation. However, this reduction
does not take any advantage of the flexibility provided by an IGMM.

22 Dissecting ltlsynt

{4,6}

{3}

{2} {0} {1} {5}
leaves

Fig. 12: Specialization graph
of the IGMM of Fig. 11a

q r(q)

0 → 0
1 → 1
2 → 2
3 → 1
4 → 1
5 → 5
6 → 1

Fig. 13: Chosen repre-
sentative mapping.

0

1

2

5

a/z̄

ā/x̄ȳz̄

a/z̄

ā/z

a/⊤
ā/z

ā/⊤

a/z

Fig. 14: IGMM obtained by
reducing that of Fig. 11a

4.2.2 Bisimulation Reduction with Output Assignment

In order to merge more states, we introduce an additional preprocessing step called
“output assignment.” Consider that we have two states q and q′ such that for every
input sequence, any output that can be associated to a run starting at q can also be
produced when starting at q′. If q and q′ are not bisimilar, it means that a run starting
at q′ can produce a larger set of output sequences than a run starting in q for the
same input sequence. By restricting what can be produced from q′ to match what is
produced from q, we have effectively made them bisimilar and they can therefore be
merged using the approach described above. Note that as we restrict the outputs from
q′, the resulting machine is a specialization of the original one.

To achieve this, we introduce a specialization relation based on the signature.
This relation shown in Figure 12 gives us a relation of specialization between states.
In this example, state 0 is a specialization of states 3, 4 and 6. The main idea is to
associate to each state a state that specializes it. It gives us a representative function
given in Figure 13. Once this representative function is found we restrict the output
of each state to match the output given by the representative function (i.e., λ (q, i) =
λ (r(q), i)). The resulting specialization of the original IGMM can then be reduced
by bisimulation (Fig. 14). Note that this procedure produces a machine with as many
states as leaves in the specialization tree.

5 Encoding Generalized Mealy Machines as
And-Inverter Graphs

The final step in our pipeline is to encode the obtained Mealy machine as an And-
Inverter Graph (AIG). And-Inverter Graphs are a special type of directed acyclic
graph which is widely used in logic synthesis (Mishchenko et al, 2006; Brayton and
Mishchenko, 2010) either as the final circuit or as an intermediate representation
before further optimizations. The most common format to represent such circuits is
called AIGER (Biere, 2007), which is also the output format used in the synthesis-
tracks of SYNTCOMP (Jacobs et al, 2017, 2019).

Dissecting ltlsynt 23

As previously mentioned, AIGs correspond to circuits built from and gates with
exactly two inputs , negations which can appear on edges and negate the signal
if present, and latches that delay their input by one tick, and output 0 initially.

The input corresponds to an Incompletely specified Generalized Mealy Machine
which we want to encode as AIG. Note that the actual behavior of the AIG only
needs to correspond to a specialization of the input machine. Recall that the output
function for IGMMs is defined as λ : (Q,BI)→ 2B

O ∖ { /0}. This means that for a
given state and input valuation BI there possibly exist multiple output valuations in
BO compatible with the specification. Such non-determinism can however not be
expressed by a logical circuit, and we therefore need to choose one of the possible
valuations, causing the encoded machine to be a specialization of the input machine.
We use a function called ChooseOneValuation to resolve these choices when we do
not have further constraints. This function takes an output label L ∈ 2B

O ∖ { /0} and
returns a valuation o ∈ BO such that o ∈ L. (Our implementation attempts to select
some o that maximizes the number of do-not-care variables and then maximize the
number of variables that are set to ⊥.)

5.1 Encoding Using Boolean Functions
To encode the machine M = (I,O,Q,qinit,δ ,λ) as AIG, we assume, without loss of
generality, that each state is associated to a unique number in {0, . . . |Q|− 1} where
the initial state qinit corresponds to 0.

We use a set of N = ⌈log2(|Q|)⌉ latches to remember the current state of the
machine. For a latch ℓ ∈ {ℓ0, ℓ1, . . . , ℓN−1}, we write vℓ its current Boolean value.

Our first step is to convert the IGMM into a set of Boolean functions that repre-
sents the behavior of the controller. That is, each output signal o ∈ O is associated to
a Boolean function f o that can be computed using the current value of the latches and
the current value of each input signal. Similarly, for each ℓ, there exists a function
f ℓ that computes its next value based on the current values of all latches and input
signals.

As an example, Figure 15 shows a possible encoding for the IGMM of Figure 5.
(We do not use Fig. 6 because the Boolean encoding would be too simple to illustrate
the upcoming variants of AIG encoding.)

Algorithm 3 shows how these functions are computed from the input IGMM.
Initially, all output and latch functions are initialised to the false formula (lines 3–
4). Then for each state q, lines 6–11 compute a Boolean formula f q representing
its encoding using latches. Here, the function BinaryEnc(q) returns the array of
⌈log2(|Q|)⌉ Boolean values corresponding to the binary encoding of q. Then the loop
on line 12 considers the edges leaving q for each input valuation u: if the output
of that edge is not completely specified, an output valuation v ∈ BO is chosen with
ChooseOneValuation on line 16. (For instance, in Figure 15 this function chooses
to output x̄ for any input read from state 2.) For each latch ℓ that should be true in
the encoding of the destination state, lines 17–19 add the clause f q ∧ u to f ℓ. And
similarly, for each output signal o that is true in v, lines 20–22 add that clause to the
formula f o.

24 Dissecting ltlsynt

0

1

2
a/x

ā/x̄
⊤/⊤

⊤/x̄

f x = vℓ1∧ vℓ0∧a (1)

f ℓ0 = (vℓ1∧ vℓ0∧ ā)∨ (vℓ1∧ vℓ0) (2)

f ℓ1 = (vℓ1∧ vℓ0∧a)∨ (vℓ1∧ vℓ0) (3)

vℓ1vℓ0 vℓ1vℓ0

vℓ1vℓ0

Fig. 15: Possible Boolean encoding of the IGMM of Figure 5. Two latches ℓ0 and ℓ1
are used to keep track of the current state of the machine. Function f x specifies that
x should be emitted only if we are in state 0 (encoded with vℓ1∧ vℓ0) and if a is read.
It implies that x̄ will be output in other cases (therefore this encoding has made the
choice to output x̄ from state 2). Functions f ℓ0 and f ℓ1 give similar conditions for the
values of the latches.

Algorithm 3 ToSymbolicMealy

1: Input: IGMM M = (I,O,Q,qinit).
2: Output: Boolean functions for all outputs and latches.
3: ∀ j ∈ {0, . . . ,N−1} : f ℓ j ←⊥
4: ∀o ∈ O : f o←⊥
5: for q ∈ Q do
6: f q =⊤
7: for j ∈ {0, . . . ,N−1} do ▷ Encode q as a conjunction of latches
8: if BinaryEnc(q)[j] then
9: f q← f q∧ vℓ j

10: else
11: f q← f q∧ v̄ℓ j

12: for u ∈ BI do ▷ Update all functions for each input
13: if δ (q,u) is undefined then
14: continue
15: q′ = δ (q,u)
16: v = ChooseOneValuation(λ (q,u))
17: for j ∈ {0, . . . ,N−1} do
18: if BinaryEnc(q′)[j] then
19: f ℓ j ← f ℓ j ∨ (f q∧u)
20: for o ∈ O do
21: if v(o) =⊤ then
22: f o← f o∨ (f q∧u)

return
{

f o
∣∣ o ∈ O

}
,
{

f ℓ
∣∣ ℓ ∈ {ℓ0, . . . ℓN−1}

}

Dissecting ltlsynt 25

vℓ1 vℓ1 vℓ1

vℓ0 vℓ0 vℓ0

a a

⊤ ⊥

f x f ℓ1 f ℓ0

n1 n2 n3

n4 n5

Fig. 16: BDD representation of f x, f ℓ0 , and f ℓ1 from Figure 15. A BDD is like a
decision tree with sharing of identical subtrees. Each round node is labeled by a
Boolean variable that is questioned, plain edges should be followed when the variable
is true, and dashed edges when it is false. Variables always appear in the same order
along a branch.

In our implementation, these Boolean functions are represented using Binary
Decision Diagrams (BDD) (Bryant, 1986). Continuing the example of Figure 15,
Figure 16 shows how f ℓ0 , f ℓ1 and f x are stored. These Boolean functions then have
to be encoded into an AIG. The next two sections propose two different encodings.

5.2 If-Then-Else Encoding
Our first AIG encoding is inspired from the BDD representation of our functions.
Assuming an order over the variables has been fixed, the BDD representation of a
function can be seen as an If-The-Else normal form where each node v

n1 n2

can be

read as “if v then n1 else n2”.
This can be naturally encoded as (v ∧ n1) ∨ (v̄ ∧ n2), or, since we should be

only using NOT and AND gates, v∧n1∧ v̄∧n2. That expression can of course be
simplified when n1 and n2 are ⊤ or ⊥.

Continuing our running example, Figure 17 shows the AIG encoding for each
node of Figure 16, and Figure 18 shows the circuit assembled from those parts.

This encoding uses at most three gates per node in the BDD representation of
all Boolean functions. It is also sensitive to the ordering of variables in the BDD
representation.

26 Dissecting ltlsynt

f x = (vℓ1 ∧⊥)∨ (vℓ1∧n1) = vℓ1∧n1 G1 f xvℓ1
n1

n1 = (vℓ0 ∧⊥)∨ (vℓ0∧n4) = vℓ0∧n4 G2 n1
vℓ0
n4

n4 = (a∧⊤)∨ (ā∧⊥) = a a n4

f ℓ0 = (vℓ1 ∧⊥)∨ (vℓ1∧n3) = vℓ1∧n3 G3 f ℓ0
vℓ1
n3

n3 = (vℓ0 ∧⊤)∨ (vℓ0∧n5) = vℓ0∧ vℓ0∧n5 G4

G5
n3

n5

vℓ0

n5 = (a∧⊥)∨ (ā∧⊤) = ā a n5

f ℓ1 = (vℓ1 ∧n2)∨ (vℓ1∧n1)

= (vℓ1 ∧n2)∧ (vℓ1∧n1)
G6

G7

G8

f ℓ1

n2
vℓ1

n1

n2 = (vℓ0 ∧⊥)∨ (vℓ0∧⊤) = vℓ0
vℓ0 n2

Fig. 17: Step-by-step encoding of functions f x, f ℓ0 , and f ℓ1 as And-Inverter Graphs,
based on the If-Then-Else normal form of these functions, naturally visible in
Figure 16.

G1 xG2a

ℓ0

ℓ1G6

G7

G8

G3G4
G5

Fig. 18: Full circuit assembled from the bits in Figure 17.

5.3 Irredundant-Sum-Of-Products Encoding
An alternative way to encode Boolean functions using AND and NOT gates, is to first
rewrite these Boolean functions into disjunctive normal form (also known as sum-
of-products). In particular there exist BDD-based algorithms to compute so called
irredundant sum-of-products (ISOP) where each product is a prime implicant that
cannot be removed without changing the function (Minato, 1992).

Figures 19–20 show this encoding of our running example.
However, note that (regardless of the encoding used) the encoder can easily detect

that a gate computing a combination of signals already exists, and reuse it. This is the
case of gate H2 in Figure 19.

Without the above optimization, this encoding would use as many gates as sym-
bols ∨ or ∧ in the ISOP of the encoded function. Each product of the ISOP can be
also encoded in multiple ways (Figure 21), and the same is true for the encoding of
their sum.

Dissecting ltlsynt 27

f x = vℓ1∧ vℓ0∧a H1
H2

f x
vℓ0

vℓ1

a

f ℓ0 = (vℓ1∧ ā)∨ (vℓ1∧ vℓ0)

= (vℓ1∧ ā)∧ (vℓ1∧ vℓ0)
H3

H4

H5

f ℓ0
vℓ1

a

vℓ0

f ℓ1 = (vℓ0∧a)∨ (vℓ1 ∧ vℓ0)

= (vℓ0∧a)∧ (vℓ1 ∧ vℓ0)
H6

H7

H2

f ℓ1
vℓ0

a

vℓ1

Fig. 19: Encoding of functions f x, f ℓ0 , f ℓ1 as And-Inverter Graphs based on Irredun-
dant Sums-of-Products.

H1
ℓ1H6

H7

H2

ℓ0H3H5

H4

a

x

Fig. 20: Full circuit assembled from the bits of Figure 19.

x

f
g

e

d

c

b

a

(a)

x

a
b
c
d
e
f
g

(b)

Fig. 21: The product a∧b∧ c∧d∧ e∧ f ∧g requires 6 gates that can be arranged as
a binary tree of any shape.

In SYNTCOMP, only the number of gates and latches is taken into consideration
to measure the quality of the generated circuit. Another measure that could be used is
the delay between the input and output: i.e., the number of gates on the longest path
through the circuit. Balancing the binary tree of gates encoding n-ary conjunctions
and disjunctions helps reducing this delay and improving the sharing of gates in the
circuit (as will be discussed below).

28 Dissecting ltlsynt

5.4 Other Improvements to the Encoding
Dual Encoding

An idea to reduce the number of gates needed is to check whether it is easier to
encode the function itself or its negation. So instead of encoding f x = a∨ b∨ c we
can encode f x̄ = ā∧ b̄∧ c̄ and negate the output. This can, depending on the function,
lead to substantial gains.

Choosing the Specialization and Using Flexibility

The IGMM used within ltlsynt is strictly more expressive than traditional Mealy
machines, as they associate to a state and input valuation a set of outputs (the elements
of which all satisfy the specification). However, the actual circuit cannot represent
sets of outputs, but needs to respond to a concrete input valuation with a concrete
output valuation. In Algorithm 3, the function ChooseOneValuation picks one of the
compatible output valuations, which is then used to construct a circuit.

We use the following heuristic to choose a cube (over the output variables) such
that

• All valuations compatible with the cube are compatible with the original condition.
• It minimizes the cost function α.nhigh + β .nlow + γ.ndc with nhigh being the

number of outputs set to ⊤, nlow being the number of outputs set to ⊥ and ndc
being the number of outputs that do not appear in the cube. α,β ,γ are fixed non-
negative integer values corresponding to costs.

For instance, assume we have δ (q, ℓ) = xyz∨ xz̄ for some q and ℓ with O =
{x,y,z}. The compatible cubes are xyz and xz̄ with the respective costs 3α and
α + γ +β .

We typically use costs such that β < γ < α . The reasoning behind this is simple:
we prefer an output that is set to ⊥ as in such a case there is no need to encode the
current transition hopefully leading to fewer gates. The opposite case with the output
being set to ⊤ is, usually, the least favorable as here the transition must be encoded.
In between we have variables which do not appear (also referred to as do-not-care or
just dc variables) in the cube, which can therefore be set to ⊤ or ⊥.

Finally, we can use this information about the do-not-care in the following way:
for each output o we build two Boolean functions, one denoted f o which corresponds
to the cases where o must be set to ⊤. The second one, denoted f o,dc, corresponds to
cases where o can be set to ⊤. We can then proceed to encode f o and f o∨ f o,dc and
use whichever results in fewer gates.

Increase Gate Sharing

So far we have seen heuristics which try to minimize the number of gates needed
to represent a given Boolean function. Another important aspect is to increase the
number of gates which are shared between different Boolean functions. Indeed, the
symbolic representation of the Mealy machine to be encoded has one function per

Dissecting ltlsynt 29

latch and output. Increasing the number of gates shared between these outputs might
therefore yield significant overall reductions.

In the case of the ITE construction, this idea comes down to reordering the vari-
ables within the BDD. In order for this to be effective, the BDD variables would have
to be reordered with respect to the Boolean functions to be encoded (and only those).
Unfortunately we are currently not able to do this, due to the architecture of Spot.

However, we can use this idea and apply it to the ISOP construction. To this
end we split the tree generated for each product (a cube) and arrange it into two
subtrees: one connecting latches, and one connecting input variables. The intuition
is that such a decoupling should increase the chance of reusing the gate to encode
another function: particular valuations of the latches, or valuations of input variables
are likely to be reused elsewhere in the circuit

Other Implementation Details

As shown in Figure 7 (and discussed later in Section 7.3) we seek to decompose the
given formula if possible (Finkbeiner et al, 2021). In the case where decomposition
is successful, multiple IGMMs have to be encoded jointly into a single AIG.

For the decomposition to be successful, the set of output variables of the different
IGMMs built have to form a partition of all controllable propositions. The output of
each IGMM can therefore be computed separately without any dependency between
the different machines.

We can therefore take the following approach: each Mealy machine is associated
to its own set of latches of appropriate size. Then Algorithm 3 is run for each of the
machines and the resulting Boolean functions are encoded indifferently.

In this setting, splitting the cubes into sub-cubes over latches and inputs dur-
ing the ISOP construction can be advantageous as it improves the gate-sharing of
expressions over the input variables, which are common to all machines.

In the above we have discussed the different options used to translate a Boolean
function into an AIG (ITE, ISOP, dual encoding, splitting propositions). Unfortu-
nately we have not discovered any good heuristic allowing us to choose among these
options. We therefore implemented a mechanism which lets us easily test multiple
configurations and retain the smallest solution.

When using ltlsynt, the encoding is controlled via the --aiger

option. The argument is a comma-separated list with elements of the form
ite|isop|both[+ud][+dc][+sub0|sub1|sub2]. The first and only mandatory
part determines whether to use the ITE or ISOP construction method. The option
both will first use ITE, then ISOP and retain the smaller for each Boolean function
to encode.

The other options are

+ud : enables the use of the dual encoding
+dc : enables the use of do-not-care variables
+subX : Controls whether there is a distinction between the variables

X = 0: No distinction
X = 1: Split cube into sub-cubes over inputs and latches

30 Dissecting ltlsynt

X = 2: Search for common variables1

The effects of these options are discussed in Section 7.1.2

6 Bypassing the Game Theoretical Framework
We are now going to discuss a synthesis method applicable to a subset of LTL for-
mulas. Section 7.2 will show that this subset concerns 15% of the specifications used
in SYNTCOMP’19. The method consists of two parts.

The first part is a syntactical analysis of the formula. If the specification is found
to belong to a specific subclass of LTL, this analysis can indicate whether the spec-
ification is realizable or not, otherwise ltlsynt will have to go through the usual
construction.

The second part consists in a direct construction of a Mealy machine for the
specification, based on some automata-theoretic operations.

The subset of LTL formulas supported by this approach is G(b1)∧ (φ1↔ φ2)︸ ︷︷ ︸
ψ

where b1 is a synthetizable Boolean formula (i.e., there is no input valuation u such
that u∧b1 is false), and additionally one of the following cases applies:

• φ1 is an LTL formula with only inputs that can be translated into a determinis-
tic Büchi automaton, φ2 is GF(b2) where b2 and ¬b2 are synthetizable Boolean
formulas.

• φ1 is an LTL formula with only inputs that can be translated into a deterministic
co-Büchi automaton, φ2 is FG(b2) where b2 and ¬b2 are synthetizable Boolean
formulas.

As indicated in Theorem 2.5, we know that for any syntactic recurrence formula,
there exists a deterministic Büchi automaton. The LTL translation algorithm of Spot,
called ToNBA, usually tries to build deterministic automata, but it does not guarantee
that any recurrence formula will be translated into a DBA. Algorithm 4 therefore
uses the syntactic check as a first filter, and then try its luck with ToNBA to maybe
obtain a DBA. The dual is performed on persistence formulas to obtain deterministic
co-Büchi automata.

A way to read a formula like φ1↔GF(b2) is If φ1 is verified, then b2 must be true
infinitely often, otherwise b2 must be verified finitely often.

Our construction therefore creates an automaton A for φ1 (line 8) and then adds
b2 to each 0 -colored edge of this automaton (second case of the f helper function)
and ¬b2 to an uncolored edge (third case). At the same time, b1 is added to all edges
to satisfy the G(b1) part of the original formula. The colors are completely removed
from the final automaton and its acceptance is set to ⊤ to match that of a Mealy
machine. (Our implementation then interprets the automaton built by Algorithm 4 as
an IGMM.)

Formulas of the shape φ1↔ FG(¬b2) are dealt with in a dual manner.

1This option was not detailed as it was not found to be better than X = 1.

Dissecting ltlsynt 31

Algorithm 4 Creation of a valid strategy for a subset of LTL formula

1: if φ does not have the shape G(b1)∧ (φ1↔ GF(b2))︸ ︷︷ ︸
shape 1

where φ1 is a syntactic

recurrence with only inputs, or the shape G(b1)∧ (φ2↔ FG(¬b2))︸ ︷︷ ︸
shape 2

where φ2 is a

syntactic persistence with only inputs then
2: return unsupported
3: if b1 is not synthetizable then
4: return unrealizable
5: if b2 and ¬b2 are not both synthetizable then
6: return unsupported
7: if φ has shape 1 then
8: A ← ToNBA(φ1)
9: if A is not deterministic then

10: return unsupported
11: else if φ has shape 2 then
12: A¬φ2 ← ToNBA(¬φ2)
13: if A¬φ2 is not deterministic then
14: return unsupported
15: A ← Complement(A¬φ2) ▷ A det. co-Büchi automaton for φ2

16: let (Q,M,Σ,δ ,q0,α) = A
17: δ ′←{(s, f (s, ℓ,M,d), /0,d) | (s, ℓ,M,d) ∈ δ}

where f (s, ℓ,M,d) =


ℓ∧b1 if SccOf(s) = SccOf(d)
ℓ∧b1∧b2 if SccOf(s) ̸= SccOf(d) and m = { 0 }
ℓ∧b1∧¬b2 if SccOf(s) ̸= SccOf(d) and m = /0

18: return (Q, /0,Σ,δ ′,q0,⊤)

Example 1 Consider the formula (GF(i1)∧GF(i2))↔ GF(o). As it is a recurrence formula,
(GF(i1)∧GF(i2)) can be associated with the deterministic Büchi automaton of Fig. 22a. When
we associate o with the colored edges and ō with the others, we then obtain the automaton of
Fig. 22b which is a valid strategy for the specification.

An additional optimization, present in Algorithm 4 is the use of strongly con-
nected components (SCCs). A transition between two different SCCs cannot be seen
infinitely often, so it does not need to enforce either b2 or ¬b2. This “don’t care” can
potential later improve the IGMM reduction, as discussed in Section 4.

Remark 1 In order to maximize the number of formulas detected by this algorithm, the
following rewriting rules can be applied:

• If a formula is of the form G(b1)∧G(b2)∧ . . .∧G(bn)∧ψ , rewrite it as G(b1 ∧
b2∧ . . .∧bn)∧ψ ,

32 Dissecting ltlsynt

0 1

i2
0

i1 ī2

i1i2
0

ī1

ī2Inf(0)

(a) Büchi automaton associated to
GF(i1)∧GF(i2)

1 0

i2o

i1 ī2ō

i1i2o

ī1ō

ī2ō

(b) Strategy obtained from the automaton of
Fig. 22a for (GF(i1)∧GF(i2))↔ GF(o)

Fig. 22: Building a direct strategy for (GF(i1)∧GF(i2))↔ GF(o)

• If a formula is of the form G(b), rewrite it as G(b)∧ (⊤↔ GF(⊤)),
• Otherwise, rewrite ψ as G(⊤)∧ψ .

We can remark that the last rule does not satisfy that b2 and its negation are both synthetiz-
able. However, ¬b2 has to be realizable in order to avoid removing an edge when working on a
non-accepting edge. In this case, the Büchi automaton associated to⊤ has only one (accepting)
edge, so this problem does not occur and the procedure is valid. The same idea can be applied
for the second rule.

Appendix A justifies the restrictions on b1 and b2, and why φ1 must have only
inputs.

7 Some Benchmarks
In this section we evaluate the impact of different options on both the runtime as well
as the quality of the result. All results presented can be recreated from the artifact
available at https://www.lrde.epita.fr/∼frenkin/fmsd22/artifact.

These benchmarks use the development version of ltlsynt that was eventually
released with version 2.11 of Spot (Duret-Lutz et al, 2022). The LTL specifications
we used as input come from the 2019 edition of SYNTCOMP.

7.1 Effect of --algo on Parity Game Size
This part focuses on the impact of the choice of the algorithm used to compute the
parity game. We compare the four different algorithms ds, sd, lar and acd described
in Fig. 8. We study the time spent by ltlsynt to execute all steps, from the formula
to the game.

The measurements are performed twice, then the minimal time is kept with a
timeout of 120 seconds.

To avoid a bias induced by numerous small benchmark instances, we only con-
sider formulas for which game construction takes more than one second for at least
one of the algorithms.

https://www.lrde.epita.fr/~frenkin/fmsd22/artifact

Dissecting ltlsynt 33

101

103

105

107

101 103 105 107

with ds

w
ith

s
d

(a) Comparison of the size of the parity games
obtained with the ds and sd configurations

10−2

10−1

100

101

102

10−2 10−1 100 101 102

with ds (s)

w
ith

s
d

(s
)

(b) Minimal total time used by ltlsynt with
ds and sd to produce a game

Fig. 23: Comparison of approaches ds and sd to build a parity game. The dots on the
red lines correspond to errors while those on the green lines to timeouts.

The machine used for the measurements features 16GB of RAM and an Intel
Core i7-3770 processor.

We first compare ds and sd in Fig. 23. For both algorithms, there are numerous
timeouts, but while it concerns 273 cases for ds, we have only 263 such cases for sd.
Furthermore, while ds leads to an error2 for 19 cases, it happens for 22 cases with
sd. However, for one case that raises an error with sd, there was a timeout for ds.

A comparison of the number of states shows us that ds produces a larger game
than sd in 51 cases. Conversely, for 43 cases sd produces a larger game. Therefore,
the results of the two algorithms are comparable.

Let us now compare processing speed. We say that an algorithm X is faster than
an algorithm Y if Y takes at least 10% longer to complete the task. Moreover, we
only consider cases for which both algorithms terminate successfully.

Based on these definitions, ds is faster for 12 cases while sd is faster for 67 cases.
Fig. 23b is clearly favorable to sd. This matches the intuition given in Section 3.1
that the determinization is more efficient if split is performed beforehand.

We can conclude that parity games produced by both approaches have similar
size on average, but there is a runtime advantage in favor of sd.

Now, let us compare sd with lar in Fig. 24. The first thing we notice is that we
have 263 timeouts and 22 errors with sd, whereas with lar 238 timeouts and 13
errors occur. In particular, we have 9 cases where there is a timeout with lar but an
error with sd and conversely 3 cases where sd has a timeout while lar gives an error.

Let us study the number of states. We see that while there are 55 cases where a
smaller machine is produced with lar, there are 53 cases where sd performs better.

2An error in this context is either insufficient memory or the acceptance condition needing more than 32 colors, the
default number of colors in Spot.

34 Dissecting ltlsynt

101

103

105

107

101 103 105 107

with sd

w
ith

l
a
r

(a) Comparison of the size of the parity games
obtained with the sd and lar configurations

10−2

10−1

100

101

102

10−2 10−1 100 101 102

with sd (s)

w
ith

l
a
r

(s
)

(b) Minimal total time used by ltlsynt with
sd and lar to produce a game

Fig. 24: Comparison of approaches sd and lar to build a parity game.

Comparing their respective runtimes is hard. Even if there exist a set of cases for
which the two algorithms give close enough results, there are also some sets of cases
for which each of the algorithms performs really faster.

In conclusion, these two algorithms are difficult to compare, both in terms of size
of the resulting machine and of run time. However, lar is able to solve 34 more cases
than sd.

The last comparison concerns lar and acd; it is shown in Fig. 25. While we
have 238 timeouts and 13 errors with lar, we have 250 timeouts and 8 errors with
acd. We have 4 cases where acd exceeds the maximum duration but lar makes an
error while the opposite never happens. If we look at the number of states, there are
83 cases where acd produces a smaller machine while there are 5 cases where lar

gives a better result. acd and lar only differ in the paritization procedure and the
ACD-transform cannot give a bigger parity automaton than the paritization procedure
of lar. The set of cases favorable to lar comes from the splitting performed on
these parity automata which depends on the coloring of the automata (this suggests
that our splitting procedure could probably be improved to better support the type of
coloration produced by the ACD-transform, or conversely that the ACD-transform
could be fine-tuned to this case).

While lar was faster in 35 cases, acd was faster in 11 cases. However, in general,
when acd is faster, it is close to lar, while we can find many cases where lar is
significantly faster than acd.

We can conclude that these algorithms give close enough results but lar is faster,
even if it produces bigger machines.

Even though each algorithm has its advantages, we will keep lar as the default
algorithm.

Dissecting ltlsynt 35

101

103

105

107

101 103 105 107

with acd

w
ith

l
a
r

(a) Comparison of the size of the parity games
obtained with the acd and lar configurations

10−2

10−1

100

101

102

10−2 10−1 100 101 102

with acd (s)

w
ith

l
a
r

(s
)

(b) Minimal total time used by ltlsynt with
acd and lar to produce a game

Fig. 25: Comparing between acd and lar the run time of the computation of a parity
game. The dots on the red lines correspond to errors while those on the green lines
correspond to timeouts.

7.1.1 Comparison of Reduction Methods

We merely remind the reader of the conclusions of a comparison previously pub-
lished (Renkin et al, 2022), restricting the cases studied to those of SYNTCOMP’19.
We benchmark our methods against MEMIN, a state-of-the-art minimization tool for
incompletely specified Mealy machines relying on a reduction to SAT (Abel and
Reineke, 2015). Fig. 26a shows that our methods are faster than MEMIN; in par-
ticular, bisimulation with output assignment is faster than our SAT-based method.
Furthermore, we can see thanks to Fig. 26 that bisimulation with output assignment
was able to give a solution close to the optimum for many cases of the SYNTCOMP
sample. This is the reason why this reduction is the default option in ltlsynt.

Fig. 26 displays a comparison of our three reductions with MEMIN. We clearly
see in Fig. 26a that our reductions are faster than this tool. Fig. 26b proves that even
if they are mere heuristics, bisimulaton and bisimulation with output assignment both
remain fairly close to an optimal solution.

7.1.2 Comparison of AIG-Encodings

As presented in Section 5, ltlsynt provides several options in order to determine
how the AIG is derived from a strategy. We will focus here on the time it takes to
generate the AIG as well as the resulting number of gates in said circuit. The number
of latches always being the same, these two metrics are the only ones of interest with
respect to SYNTCOMP.

36 Dissecting ltlsynt

10−4 10−2 100 102

time MeMin [s]

10−4

10−2

100

102

ti
m
e
m
et
h
o
d
[s
]

bisim. 2/547

bisim. w/ o.a. 8/541

SAT 98/451

(a) Total runtime for instances derived from
SYNTCOMP.

100 101 102 103 104

size SAT machine

100

101

si
ze

ra
ti
o

bisim.

bisim. w/ o.a.

(b) Size ratios for instances derived from
SYNTCOMP.

Fig. 26: Details for SYNTCOMP’19 instances

To perform these benchmarks, we pre-generated 780 non-trivial strategies3 from
the set of SYNTCOMP’19 benchmarks by using ltlsynt. To obtain said strategies,
we used approaches lar and ds. We did not seek to decompose the formulas, nor did
we try to bypass the game-theoretical framework.

Results are presented in Table 2. Remember that +ud stands for the dual encoding
option (encode the negation of a function as well as the function itself and retain the
smaller solution), +dc implies the use of do-not-cares (i.e. tries to leverage the flexi-
bility in some outputs), and +sub1 indicates that we treat variables which correspond
to latches separately from those corresponding to input variables.

• ITE construction is on average 3 to 4 times faster than the ISOP.
• ISOP construction usually generates smaller circuits than ITE.
• In some cases, ITE produces significantly smaller circuits than ISOP.
• For ITE, the options +dc and +ud have a minor positive effect on circuit size

while having a minor negative impact on encoding time.
• For ISOP, the positive effect of +dc and +ud is significantly higher, but so is the

negative effect on encoding time.

Table 3 compares the performances of various encodings. We can see that trying
ITE then ISOP is often a good strategy.

7.2 Interest of Bypassing the Game Construction
The measurements are again performed twice: the minimal result is kept, and the
maximal time allowed is 120s. A bisimulation with output assignment is performed
for both methods.

3Strategies which cannot be encoded without gates.

Dissecting ltlsynt 37

tot. time mean gmean median

ite 248 28529 102.4 66.0
ite+ud 281 28527 97.1 65.5
isop+ sub0 821 8535 81.0 60.0
isop+dc+ud + sub1 1056 7510 66.8 47.0
ite2isop 1247 6159 65.7 47.0

Table 2: Results for different encoding options presenting the cumulative time taken
to encode all strategies (tot. time, in seconds) as well as the mean, geometric mean,
and median of the number gates in the resulting AIG. ite and isop give the baseline for
each construction. ite+dc+ud and isop+dc+ud + sub1 are the options resulting
in the smallest circuits for each construction method. ite2isop corresponds to ite+
ud, isop+dc+ud+sub1. It uses the better circuit that can be obtained from the two.

<(1) <(2) <(3) <(4) <(5)

(1) ite 33 210 75 3
(2) ite+ud 232 249 90 0
(3) isop+ sub0 506 429 74 45
(4) isop+dc+ud + sub1 648 590 587 0
(5) ite2isop 651 590 620 90

Table 3: The integer in the ith row and jth column corresponds to the number of
instances for which the i-th configuration features strictly less gates than the j-th
configuration. As one can see, the combination of method (1) and (3) performs the
best overall, but due to the intricate relation between the options and the resulting
circuit, in 45 cases the base configuration isop+ sub0 still performs better.

First, note that this procedure can be applied to 144 cases out of the 945 SYNT-
COMP cases. Focusing on this subset, we show a comparison of the number of states
of the strategies obtained with lar and with the bypass in Figure 27a.

We can notice that for 103 cases, the strategy yielded by the bypass has at most
10 states, while there are only 10 cases where the strategy has more than 100 states
(with a maximum of 1024).

As the bypass never results in a bigger strategy than lar, we now focus on the set
of of 51 cases where the bypass outperforms lar. This set of strategies only contains
machines with at most 16 states for the bypass method.

A relevant set of cases is composed of files named detectorX where X is an
integer and the matching formula is of the form GF(o)↔

∧
i∈[1,X]GF(ik). On these

formula, the bypass yields a strategy with X states, where each state describes which
input variables have been seen. On the other hand, lar always returns a strategy that
is twice as big.

Even if it is not our default configuration, we can also compare acd and the
bypass. There is not a single case where the bypass results in a worst strategy whereas
acd gives a bigger result in 47 cases.

We can also consider Figure 27b that compares the impact on runtime of testing
whether the bypass can be used or not. We can see that it seldom increases the runtime

38 Dissecting ltlsynt

100

101

102

103

100 101 102 103

without bypass

w
ith

by
pa

ss

(a) Number of states with and without bypass
on the set of cases that can be bypassed

10−2

10−1

100

101

102

10−2 10−1 100 101 102

without bypass (s)

w
ith

by
pa

ss
(s

)
(b) Minimal total time spent by ltlsynt

with algorithm lar and the bypass to com-
pute a strategy. Blue dots are cases that can
be bypassed, and gray dots, cases where the
bypass computation was not able to finish

Fig. 27: Comparing the computation of the strategy between lar and the bypass. The
dots on the red lines correspond to errors, and those on the green lines, to timeouts.

even if we don’t apply the construction. It is not surprising as such a decision relies
on a simple syntactical analysis.

Let us now focus on the set of cases where such a construction is possible. If
we exclude the set of cases that are trivially fast with or without the bypass, there
remain a fair amount of cases just below the diagonal. Furthermore, two cases can be
constructed with the bypass but not with lar.

We can conclude that this construction always yields a result that may be better
but is never worse than acd or lar while barely increasing the runtime.

7.3 Impact of Decomposition
We now focus on the set of 122 formula that can be decomposed. Even though there
are between 2 and 64 sub-specifications, there only remain between 2 and 10 sub-
specifications in 89% of the cases.

As we can see in Fig. 28, we found 16 cases that ltlsynt could only solve using
decomposition. However, the use of this option also leads to the appearance of 5 cases
which can no longer be solved.

If we consider only the set of cases for which the two configurations have ended,
we see that there are only 3 cases where we obtain bigger circuits with decomposition
than without. Conversely, the decomposition yields 15 smaller circuits.

This option results in considerable processing speed improvements. Even if 6
cases end up being slower, these are all solved in less than 0.06s anyway. On the other
hand, the computation is significantly faster in 43 cases. The most egregious case is

Dissecting ltlsynt 39

100

101

102

103

100 101 102 103

without decomposition

w
ith

de
co

m
po

si
tio

n

(a) Number of AND gates + 1 with and with-
out decomposition

10−1

100

101

102

10−1 100 101 102

without decomposition (s)

w
ith

de
co

m
po

si
tio

n
(s

)
(b) Minimal time spent by ltlsynt to get an
AIG circuit with and without decomposition

Fig. 28: Comparing the computation of the AIG circuit with and without the decom-
position on the set of formulas that can be decomposed. The dots on the red lines
correspond to errors, and those on the green lines, to timeouts.

narylatch10: the activation of the decomposition reduces the processing time from
64.72s to 0.03s.

We can conclude that, while decomposing a formula may in rare cases prevent us
from solving a case in its allotted time, this optimization nonetheless yields, when it
is applicable, significant processing speed and size improvements.

8 Conclusion
We have presented the architecture of ltlsynt, a tool for synthesizing AIG circuits
from LTL formulas. While our approach follows a straightforward automata-theoretic
construction, we have described several unique improvements to it.

In particular, we have shown that we can bypass the standard construction for
some specific classes of formulas. We have discussed and evaluated various ways to
encode Mealy machines as AIG circuits. We have detailed how Spot translates LTL
formulas to DELA, largely generalizing the approach of the delag tool.

Finally, we have provided numerous benchmarks to compare our various options
and approaches as well as justify our default choices.

References
Abel A, Reineke J (2015) MeMin: SAT-based exact minimization of incompletely

specified Mealy machines. In: Proceedings for the 34th International Conference
on Computer-Aided Design (ICCAD’15). IEEE Press, pp 94–101, https://doi.org/
10.1109/ICCAD.2015.7372555

https://doi.org/10.1109/ICCAD.2015.7372555
https://doi.org/10.1109/ICCAD.2015.7372555

40 Dissecting ltlsynt

Babiak T, Badie T, Duret-Lutz A, et al (2013) Compositional approach to suspension
and other improvements to LTL translation. In: Proceedings of the 20th Inter-
national SPIN Symposium on Model Checking of Software (SPIN’13), Lecture
Notes in Computer Science, vol 7976. Springer, pp 81–98, https://doi.org/10.1007/
978-3-642-39176-7 6

Babiak T, Blahoudek F, Duret-Lutz A, et al (2015) The Hanoi Omega-Automata
Format. In: Proceedings of the 27th Conference on Computer Aided Verification
(CAV’15), Lecture Notes in Computer Science, vol 8172. Springer, pp 442–445,
https://doi.org/10.1007/978-3-319-21690-4 31, see also http://adl.github.io/hoaf/.

Biere A (2007) The aiger and-inverter graph (aig) format version 20070427

Brayton R, Mishchenko A (2010) Abc: An academic industrial-strength verifica-
tion tool. In: Proceedings of the 22nd Conference on Computer Aided Verification
(CAV’10). Springer, pp 24–40, https://doi.org/10.1007/978-3-642-14295-6 5

Bryant RE (1986) Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35(8):677–691

Casares A, Colcombet T, Fijalkow N (2021) Optimal transformations of games
and automata using Muller conditions. In: Bansal N, Merelli E, Worrell J (eds)
Proceedings of the 48th International Colloquium on Automata, Languages,
and Programming (ICALP’21), Leibniz International Proceedings in Informatics
(LIPIcs), vol 198. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, pp 123:1–123:14, https://doi.org/10.4230/LIPIcs.ICALP.2021.123

Casares A, Duret-Lutz A, Meyer KJ, et al (2022) Practical applications of the Alter-
nating Cycle Decomposition. In: Proceedings of the 28th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pp 99–117,
https://doi.org/10.1007/978-3-030-99527-0 6

Černá I, Pelánek R (2003) Relating hierarchy of temporal properties to model check-
ing. In: Rovan B, Vojtáǎ P (eds) Proceedings of the 28th International Symposium
on Mathematical Foundations of Computer Science (MFCS’03), Lecture Notes
in Computer Science, vol 2747. Springer-Verlag, Bratislava, Slovak Republic, pp
318–327

Dax C, Eisinger J, Klaedtke F (2007) Mechanizing the powerset construction for
restricted classes of ω-automata. In: Namjoshi KS, Yoneda T, Higashino T, et al
(eds) Proceedings of the 5th International Symposium on Automated Technology
for Verification and Analysis (ATVA’07), Lecture Notes in Computer Science, vol
4762. Springer, https://doi.org/10.1007/978-3-540-75596-8 17

van Dijk T (2018) Oink: An implementation and evaluation of modern parity game
solvers. In: Proceedings of the 24th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’18), Springer, pp

https://doi.org/10.1007/978-3-642-39176-7_6
https://doi.org/10.1007/978-3-642-39176-7_6
https://doi.org/10.1007/978-3-319-21690-4_31
http://adl.github.io/hoaf/
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.1007/978-3-030-99527-0_6
https://doi.org/10.1007/978-3-540-75596-8_17

Dissecting ltlsynt 41

291–308, https://doi.org/10.1007/978-3-319-89960-2 16

Duret-Lutz A (2014) LTL translation improvements in Spot 1.0. International Jour-
nal on Critical Computer-Based Systems 5(1/2):31–54. https://doi.org/10.1504/
IJCCBS.2014.059594

Duret-Lutz A, Renault E, Colange M, et al (2022) From Spot 2.0 to Spot 2.10: What’s
new? In: Proceedings of the 34th International Conference on Computer Aided
Verification (CAV’22), Lecture Notes in Computer Science, vol 13372. Springer,
pp 174–187, https://doi.org/10.1007/978-3-031-13188-2 9

Emerson EA, Lei CL (1987) Modalities for model checking: Branching time logic
strikes back. Science of Computer Programming 8(3):275–306. https://doi.org/10.
1016/0167-6423(87)90036-0

Esparza J, Křetı́nský J, Sickert S (2018) One theorem to rule them all: A unified trans-
lation of LTL into ω-automata. In: Dawar A, Grädel E (eds) Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’18).
ACM, pp 384–393, https://doi.org/10.1145/3209108.3209161

Etessami K, Holzmann GJ (2000) Optimizing Büchi automata. In: Palamidessi C
(ed) Proceedings of the 11th International Conference on Concurrency Theory
(Concur’00), Lecture Notes in Computer Science, vol 1877. Springer-Verlag,
Pennsylvania, USA, pp 153–167

Finkbeiner B, Geier G, Passing N (2021) Specification decomposition for reac-
tive synthesis. In: Proceedings for the 13th NASA Formal Methods Symposium
(NFM’21), Lecture Notes in Computer Science, vol 12673. Springer, pp 113–130,
https://doi.org/https://doi.org/10.1007/978-3-030-76384-8 8

Jacobs S, Bloem R, Brenguier R, et al (2017) The first reactive synthesis competition
(syntcomp 2014). International journal on software tools for technology transfer
19(3):367–390

Jacobs S, Bloem R, Colange M, et al (2019) The 5th reactive synthesis competition
(SYNTCOMP 2018): Benchmarks, participants & results. CoRR abs/1904.07736

Jurdziński M (2000) Small progress measures for solving parity games. In: Proceed-
ings of the 17th Symposium on Theoretical Aspects of Computer Science (STACS
2000), Lecture Notes in Computer Science, vol 1770. Springer-Verlag, pp 290–301

Kupferman O, Rosenberg A (2010) The blowup in translating LTL to determinis-
tic automata. In: Revised Selected and Invited Papers for the 6th International
Workshop, on Model Checking and Artificial Intelligence (MoChArt’10), Lecture
Notes in Computer Science, vol 6572. Springer, pp 85–94, https://doi.org/10.1007/
978-3-642-20674-0 6, URL https://doi.org/10.1007/978-3-642-20674-0 6

https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1504/IJCCBS.2014.059594
https://doi.org/10.1504/IJCCBS.2014.059594
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1016/0167-6423(87)90036-0
https://doi.org/10.1016/0167-6423(87)90036-0
https://doi.org/10.1145/3209108.3209161
https://doi.org/https://doi.org/10.1007/978-3-030-76384-8_8
https://doi.org/10.1007/978-3-642-20674-0_6
https://doi.org/10.1007/978-3-642-20674-0_6
https://doi.org/10.1007/978-3-642-20674-0_6

42 Dissecting ltlsynt

Löding C (2001) Efficient minimization of deterministic weak ω-automata. Informa-
tion Processing Letters 79(3):105–109. https://doi.org/10.1016/S0020-0190(00)
00183-6

Major J, Blahoudek F, Strejcek J, et al (2019) ltl3tela: LTL to small deter-
ministic or nondeterministic Emerson-Lei automata. In: Proceedings of the 17th
International Symposium on Automated Technology for Verification and Analysis
(ATVA’19), Lecture Notes in Computer Science, vol 11781. Springer, pp 357–365,
https://doi.org/10.1007/978-3-030-31784-3 21

Manna Z, Pnueli A (1990) A hierarchy of temporal properties. In: Proceedings of the
sixth annual ACM Symposium on Principles of distributed computing (PODC’90).
ACM, New York, NY, USA, pp 377–410

Minato S (1992) Fast generation of irredundant sum-of-products forms from binary
decision diagrams. In: Proceedings of the third Synthesis and Simulation and
Meeting International Interchange workshop (SASIMI’92), Kobe, Japan, pp 64–73

Mishchenko A, Chatterjee S, Brayton R (2006) Dag-aware aig rewriting a fresh
look at combinational logic synthesis. In: Proceedings of the 43rd Annual Design
Automation Conference. Association for Computing Machinery, New York, NY,
USA, DAC ’06, p 532–535, https://doi.org/10.1145/1146909.1147048, URL https:
//doi.org/10.1145/1146909.1147048

Müller D, Sickert S (2017) LTL to deterministic Emerson-Lei automata. In: Bouyer
P, Orlandini A, Pietro PS (eds) Proceedings of the Eighth International Symposium
on Games, Automata, Logics and Formal Verification (GandALF’17), pp 180–194,
https://doi.org/10.4204/EPTCS.256.13

Pfleeger CP (1973) State reduction in incompletely specified finite-state machines.
IEEE Transactions on Computers C-22(12):1099–1102. https://doi.org/10.1016/j.
compeleceng.2006.06.001

Redziejowski R (2012) An improved construction of deterministic omega-automaton
using derivatives. Fundamenta Informaticae 119(3-4):393–406. https://doi.org/10.
3233/FI-2012-744

Renkin F, Duret-Lutz A, Pommellet A (2020) Practical “paritizing” of Emerson-
Lei automata. In: Proceedings of the 18th International Symposium on Auto-
mated Technology for Verification and Analysis (ATVA’20), Lecture Notes in
Computer Science, vol 12302. Springer, pp 127–143, https://doi.org/10.1007/
978-3-030-59152-6 7

Renkin F, Schlehuber-Caissier P, Duret-Lutz A, et al (2022) Effective reductions of
Mealy machines. In: Proceedings of the 42nd International Conference on For-
mal Techniques for Distributed Objects, Components, and Systems (FORTE’22),
Lecture Notes in Computer Science, vol 13273. Springer, pp 170–187

https://doi.org/10.1016/S0020-0190(00)00183-6
https://doi.org/10.1016/S0020-0190(00)00183-6
https://doi.org/10.1007/978-3-030-31784-3_21
https://doi.org/10.1145/1146909.1147048
https://doi.org/10.1145/1146909.1147048
https://doi.org/10.1145/1146909.1147048
https://doi.org/10.4204/EPTCS.256.13
https://doi.org/10.1016/j.compeleceng.2006.06.001
https://doi.org/10.1016/j.compeleceng.2006.06.001
https://doi.org/10.3233/FI-2012-744
https://doi.org/10.3233/FI-2012-744
https://doi.org/10.1007/978-3-030-59152-6_7
https://doi.org/10.1007/978-3-030-59152-6_7

Dissecting ltlsynt 43

0 1

ī∨ ō
0

io
ī∨ ō
0

io Inf(0)

(a) Büchi automaton associated with
GF((i∧ ō)∨ ī)

0 1

īo

ioō
īoioō

(b) Strategy yielded by the automaton
of Figure 29a for the formula G((i∧
ō)∨ ī)↔ GF(o)

Fig. 29: Building a wrong direct strategy for the formula G((i∧ ō)∨ ī)↔ GF(o)

Safra S, Vardi MY (1989) On ω-automata and temporal logic. In: Proceedings of the
twenty-first annual ACM Symposium on Theory of Computing (STOC’89). ACM,
pp 127–137, https://doi.org/10.1145/73007.73019

Zielonka W (1998) Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theoretical Computer Science 200(1):135–183. https:
//doi.org/10.1016/S0304-3975(98)00009-7

A Explanation of Restrictions of the Direct Construction
In this appendix, we explain why some restrictions have to be applied to the sub-
formulas. Note that these restrictions sometimes allow us to create a direct strategy,
but as our procedure is based on syntactical analysis, we may not be able to find all
such cases.

A.1 Why We Don’t Have an Output in φ1

Consider the formula G((i ∧ ō) ∨ ī) ↔ GF(ō). A possible corresponding Büchi
automaton is shown in Figure 29. Our procedure would assign ō to the edge that goes
from 1 to 0 and result in an automaton where the states have no outgoing edge labeled
by i. Thus, it is not an actual strategy.

A.2 Why b2 and ¬b2 Must Be Realizable
We now explain why b2 and its negation have to be realizable. Let us consider an
example where b2 is unrealizable (without loss of generality thanks to symmetry):
the formula GF(i)↔ GF(ī∧o) where o is an output proposition.

The translation of GF(i) results in a Büchi automaton with two states shown in
Figure 30a. The procedure will assign ī∧ o to the edges colored with 0 and the
condition associated to these edges is now ⊥; these edges are therefore removed. We
end up with a “strategy” described in Figure 30b featuring two states labeled with
ī∧ ō; it is not input-complete, thus it is not an actual strategy.

https://doi.org/10.1145/73007.73019
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

44 Dissecting ltlsynt

0 1

ī

i
0

īi
0

Inf(0)

(a) Büchi automaton associated with
GF(i)

0 1

ī∧ ō

i∧ ī∧ ō
ī∧ ōi∧ ī∧ ō

(b) Strategy yielded by the automa-
ton of Figure 30a for the formula
(GF(i))↔ GF(ī∧o)

Fig. 30: Building a wrong direct strategy for the formula (GF(i)∧GF(ī))↔GF(ī∧o)

	Introduction
	Concepts
	Valuations and Cubes
	Linear-Time Temporal Logic
	Emerson-Lei Automata
	Operations on Deterministic TELA
	Parity Games
	Mealy Machines
	The LTL Reactive Synthesis Problem

	Translating LTL Formulas into Games
	Different Approaches
	From LTL to Deterministic TELA
	Splitting Automata

	Simplifying Winning Strategies using Generalized Mealy Machines
	SAT-Based Minimization of IGMM
	Bisimulation-based Reductions
	Bisimulation Reduction
	Bisimulation Reduction with Output Assignment

	Encoding Generalized Mealy Machines as And-Inverter Graphs
	Encoding Using Boolean Functions
	If-Then-Else Encoding
	Irredundant-Sum-Of-Products Encoding
	Other Improvements to the Encoding

	Bypassing the Game Theoretical Framework
	Some Benchmarks
	Effect of –algo on Parity Game Size
	Comparison of Reduction Methods
	Comparison of AIG-Encodings

	Interest of Bypassing the Game Construction
	Impact of Decomposition

	Conclusion
	Explanation of Restrictions of the Direct Construction
	Why We Don't Have an Output in 1
	Why b2 and b2 Must Be Realizable

