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Introduction

• Project: holographic imaging of the retina in real-time

• Problem: aberrations created by cornea disturb holographic imaging

• Fast estimation and correction of aberrations are necessary
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Setup and image formation
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Fluctuation spectrum
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Holography Doppler images taken and processed by Léo Puyo from Institut Langevin
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Impact of aberrations from cornea
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Goal: aberration correction in real-time
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Astigmatism estimation by image-based optimization

Astigmatism 0°, 45° and 90°

Minimization of 

Aberrated image Corrected image Aberrated wavefront

Holography Doppler images taken and processed by Léo Puyo



Aberration measurement with digital wavefront sensor
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Principle of Shack-Hartmann wavefront sensor

Simulations

Tests on real data in progress…

• Each aberration corresponds to one degree of Zernike 
polynomial (one mode).

• M reference matrix of size nsubapertures x nmodes

• Y = MA, where Y is observation vector (nsubapertures x 1) 
and A is amplitude vector (nmodes x 1) 

• Then M is reversed to find A.



Aberration compensation with deep neural network
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U-Net

input : image
output : image

Ronneberger, et al. "U-net: 
Convolutional networks for 
biomedical image segmentation." 
International Conference on Medical
image computing and computer-
assisted intervention. Springer, 
Cham, 2015.
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Hologram rendering with a U-Net
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Training: one defocus
Reconstruction: the same amount of defocus

Results: good correction

Input: aberrated hologram Ground truthReconstructed image

Training on 28 000
Input/output

image couples

UNet



Hologram rendering with a U-Net
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Training: one average aberration 
Reconstruction: variety of aberrations close to the avg.

Results: U-Net not suitable as is to learn a diversity of aberrators

Aberrated image Aberration compensation
through deep learning

Ground truth
Time sequence of 

aberrations taken from
real eyes with 30 
different types of 

aberrations

N=30

Jessica Jarosz, Pedro Mecê, Jean-Marc Conan, Cyril Petit, Michel Paques, and Serge Meimon, "High temporal resolution aberrometry in a 50-eye population and implications for adaptive 
optics error budget," Biomed. Opt. Express 8, 2088-2105 (2017)
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Prospects
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What if the aberrator has a large number of degrees of freedom?



Cataracts compensation using deep neural networks
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N=30N=1 N=100000

Training : one random phase screen
filtered by gaussian filter (σ=0,4)

Reconstruction : variety of phase screens
« close » to the one used for training
Issue : UNET not suitable « as is » to 

learn a diversity of « aberrators »

Aberrated image Aberration compensation
through deep learning

Ground truth

Increase of # of degrees of freedom



To go further

Work on the training database:

• With a large amount of images with several types of complex objects, 

increasing the degrees of freedom to correct more and more aberrations.

• What if the object is the simplest one ? 
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Digital Gabor hologram rendering with deep learning
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Collection of random
points

Synthetic interferogram

Angular spectrum
propagation 

Synthetic magnitude hologram

For training database



Digital Gabor hologram rendering with deep learning
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With simulated images

Synthetic interferogram Synthetic magnitude hologramReconstructed hologram
with neural networks



Digital Gabor hologram rendering with deep learning
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With real data (worms)

Experimental interferogram Magnitude hologramReconstructed hologram
with neural networks

Data courtesy of Stéphanie Rind from Institut Langevin
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Digital Gabor hologram rendering with deep learning
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With real data (worms)

Experimental interferogram Magnitude hologramReconstructed hologram
with neural networks

Data courtesy of Stéphanie Rind from Institut Langevin



Aberrations
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