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Abstract

C++ is a multi-paradigm language that enables the initiated programmer to set up efficient image
processing algorithms. This language strength comes from several aspects. C++ is high-level,
which enables developing powerful abstractions and mixing different programming styles to
ease the development. At the same time, C++ is low-level and can fully take advantage of the
hardware to deliver the best performance. It is also very portable and highly compatible which
allows algorithms to be called from high-level, fast-prototyping languages such as Python or
Matlab. One of the most fundamental aspects where C++ really shines is generic programming.
Generic programming makes it possible to develop and reuse bricks of software on objects (images)
of different natures (types) without performance loss. Nevertheless, conciliating the aspects of
genericity, efficiency, and simplicity is not trivial. Modern C++ (post-2011) has brought new
features that made the language simpler and more powerful. In this thesis, we first explore one
particular C4++20 aspect: the concepts, in order to build a concrete taxonomy of image related
types and algorithms. Second, we explore another addition to C++20, ranges (and views), and
we apply this design to image processing algorithms and image types in order to solve issues
such as how hard it is to customize/tweak image processing algorithms. Finally, we explore
possibilities regarding how we can offer a bridge between static (compile-time) generic C+-+
code and dynamic (runtime) Python code. We offer our own hybrid solution and benchmark its
performance as well as discuss what can be done in the future with JIT technologies. Considering
those three axes, we will address the issue regarding the way to conciliate generic programming,
efficiency and ease of use.

C++ est un langage de programmation multi-paradigme qui permet au développeur initié de
mettre au point des algorithmes de traitement d’images. La force de langage se base sur plusieurs
aspects. C++ est haut-niveau, cela signifie qu’il est possible de développer des abstractions
puissantes mélangeant plusieurs styles de programmation pour faciliter le développement. En
méme temps, C++ reste bas-niveau et peut pleinement tirer partie du matériel pour fournir
un maximum de performances. Il est aussi portable et trés compatible ce qui lui permet de
se brancher a d’autres langages de haut niveau pour le prototypage rapide tel que Python
ou Matlab. Un des aspects les plus fondamentaux ou le C++ brille, c’est la programmation
générique. La programmation générique rend possible le développement et la réutilisation de
briques logiciel comme des objets (images) de différentes natures (types) sans avoir de perte
au niveau performance. Néanmoins, il n’est pas trivial de concilier les aspects de généricité, de
performance et de simplicité d’utilisation. Le C4++ moderne (post-2011) amene de nouvelles
fonctionnalités qui le rendent plus simple et plus puissant. Dans cette thése, nous explorons en
premier un aspect particulier du C++20 : les concepts, dans le but de construire une taxonomie
des types relatifs au traitement d’images. Deuxiémement, nous explorons une autre fonctionnalité
ajoutée au C++20 : les ranges (et les vues). Nous appliquons ce design aux algorithmes de
traitement d’images et aux types d’image, dans le but résoudre les problémes liés, notamment,
a la difficulté qu’il existe pour customiser les algorithmes de traitement d’image. Enfin, nous
explorons les possibilités concernant la facon dont il est possible de construire un pont entre du
code C++ générique statique (compile-time) et du code Python dynamique (runtime). Nous
fournissons une solution hybride et nous mesurons ses performances. Nous discutons aussi les
pistes qui peuvent étre explorées dans le futur, notamment celles qui concernent les technologies
JIT. Etant donné ces trois axes, nous voulons résoudre le probléeme concernant la conciliation
des aspects de généricité, de performance et de simplicité d’utilisation.






Long summary

Introduction

Nowadays Computer Vision and Image Processing (IP) are omnipresent in the day-to-day life of
the people. It is present each time we pass by a CCTV camera, each time we go to the hospital
do an MRI, each time we drive our car and pass in front of a speed camera and each time we
use our computer, smartphone or tablet. It cannot be avoided it anymore. The systems using
this technology are sometimes simple and, sometimes, more complex. Also, the usage made of
this technology has many purposes such as space observation, medical imaging, quality of life
improvement, surveillance, control, autonomous system, etc. Henceforth, Image Processing has a
wide range of research and despite having a mass of previous of work already contributed to,
there are still a lot to explore.

Let us take the example of a modern smartphone application which provides facial recognition
in order to recognize people whom are featuring inside a photo. To provide an accurate result, this
application will have to do a lot of different processing through several steps. In addition, there
are a lot of variables to handle. We can list (non exhaustively) the weather, the light exposition,
the resolution, the orientation, the number of person, the localization of the person, the distinction
between humans and objects/animals, etc. All of these elements needs to be carefully handled
in order to finally recognize the person(s) inside the photo. What the application does not tell
you is the complexity of the image processing pipeline behind the scene that, most of the time,
cannot even be executed in its entirety on one’s device (smartphone, tablet, ... ). Indeed, image
processing is costly in computing resources and would not meet the time requirement desired by
the user if the entire pipeline was executed on the device. Furthermore, for the final part which
is “recognize the person on the photo”, the application needs to feed the pre-processed photo
to a neural network trained beforehand through deep learning techniques in order to give an
accurate response. There exists technologies capable of embedding neural network into mobile
phone such as MobileNets [135], but it remains limited in terms of operational capabilities. It
can detect a human being inside a photo but not give the answer about whom this human being
is for instance. That is why, accurate neural network system usually are abstracted away in
cloud technologies making them available only via Internet. When uploading his image, the user
does not imagine the amount of technologies and computing power that will be used to find who
appear on the photo.

We now understand that in order to build applications that interact with photos or videos
nowadays, we need to be able to do accurate, fast and scalable image processing on a multitude
of devices (smartphone, tablet, ...). In order to achieve this goal, image processing practitioners
needs to have two kinds of tools at their disposal. The first is the prototyping environment, a
toolbox which allow the practitioner to develop, test and improve its application logic. The
second one is the production environment which deploys the viable version of the application
that was developed by the practitioner. Both environment may not have the same needs. On
one hand, the prototyping environment usually requires to have a fast feedback loop for testing,
an availability of state-of-the-art algorithms and existing software. This way the practitioner can
easily build on top of them and be fast enough so that he does not wait a long time to get the
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results when testing many prototypes. On the other hand, the production environment must be
stable, resilient, fast and scalable.

When looking at standards in the industry nowadays, we notice that the Python programming
language is the main choice for prototyping. However, Python may not be suitable to push
a viable prototype in production with minimal changes afterwards. We find it non-ideal that
the practitioner cannot take advantages of many optimization opportunities, both in terms of
algorithm efficiency and better hardware usage, when proceeding this way. It would be much
more efficient to have basic low level building blocks that can be adapted to fit as mush use
cases as possible. This way, the practitioner can easily build on top of them when designing its
application. We distinguish two kinds of use cases. The first one is about the multiplicity of
types or algorithms the practitioner is facing. The second one is about the diversity of hardware
the practitioner may want to run his program. The goal is to have building blocks that can
be intelligent enough to take advantage of many optimization opportunities, with regard to
both input data types/algorithms and target hardware. Then the practitioner would have an
important performance improvement, by default, without specifically tweaking his application.
As such, the concept of genericity is introduced. It aims at providing a common ground about
how an image should behave when passed to basic algorithms needed for complex applications.
This way, in theory, one only needs to write the algorithm once for it to work with any given
kind of image.

In the end, it is often known that there is a rule of three about genericity, efficiency and ease
of use. The rule states that one can only have two of those items by sacrificing the third one. If
one wants to be generic and efficient, then the naive solution will be very complex to use with
lots of parameters. If one wants a solution to be generic and easy to use, then it will be not very
efficient by default. Finally, If one wants a solution to be easy to use and efficient then it will not
be very generic. To illustrate this rule, we can find examples among existing libraries. A notably
generic and efficient library in C++ is Boost |[169]: it is also notably known to be hard to use.
Components such as Boost.Graph, Boost.Fusion or Boost.Spirit are hard to use. Also, a library
which is generic and easy to use is the Json parser written by Niels Lohmann [172] it strives to
handle every use case while remaining very easy to integrate and to use in user code (syntax
really close to native Json in C++ code by providing DSL Domain Specific Language) [32] to
parse C++ constructs into JSON). However, this has a cost and the parser is slower than Json
parser optimized for speed such as simdjson [171] whose aim is to “parse gigabytes of JSON
per second”. Finally, there are plenty of example of user-friendly and efficient code which is not
generic. We can cite Scikit-image [120] and OpenCV [29] that are easy to use and efficient (lot
of handwritten SIMD/GPU code) but not generic due to the design choices.

In this thesis, we chose to work on an image processing library through continuing the work
on Pylene [140]. But only working at library level would restrict the usability of our work and
thus its impact. That is why we aim to reach prototyping users through providing a package that
can be used in dynamic language such as Python without sacrificing efficiency. In particular, we
alm to be usable in a Jupyter notebook. It is a very important goal for us to reach a usability
able to permeate into the educational side which is a strength of Python. In this library, we
demonstrate how to achieve genericity and efficiency while remaining easy to use all at the same
time. In doing so, we are endeavoring to break through the rule previously cited. The scope
of this library is limited to mathematical morphology [111} |83] and to the provision of very
versatile image types. We leverage the modern C++ language and its many new features related
to genericity and performance to break through this rule in the image processing area. Finally,
we attempt, to bring low level tools and concepts from the static world to the high level and
dynamic prototyping world for a better diffusion and ease of use, thanks to a bridge between
those two worlds.

With this philosophy in mind, this manuscript aims at presenting our thesis work related to
the C++ language applied to the Image Processing domain. It is organized as followed:



Generic Programming (genericity) We present a state-of-the-art overview about the notion
of genericity. We explain its origin, how it has evolved (especially within the C++ language),
what issues it is solving, what issues it is creating. We explain why image processing and
genericity work well together. Finally, we tour around existing facilities that allows genericity
(intrinsically restricted to compiled language) to exists in the dynamic world (with interpreted
languages such as Python).

Taxonomy for Image Processing: Image types and Algorithms We present our first
contribution in the image processing area which is a comprehensive work consisting in the
taxonomy of different images families as well of different algorithms families. We explain, among
others, the notion of concept and how it applies to the image processing domain. Also, we explain
how to extract a concept from existing code, how to leverage it to make code more efficient
and readable. Finally, we offer our take in the form of a collection of concepts related to image
processing area.

Images Views We present our second contribution which is a generalization of the concept of
View (from the C++ language, the work on ranges [143]) to images. This allows the creation
of lightweight, cheap-to-copy images. It also enables a much simpler way to design image
processing pipeline by chaining operations directly in the code in an intuitive way. Ranges are
the cement of new designs to ease the use of image into algorithms which can further extend
their generic behavior. Finally, we discuss the concept of lazy evaluation and the impacts of
views on performance.

A bridge between the static world and the dynamic world We present our third
contribution which is a way to grant access to the generic facilities of a compiled language
(such as C++) to a dynamic language (such as Python) to ease the gap crossing between the
prototyping phase and the production phase. Indeed, it is really not obvious to be able to
conciliate generic code from C++ whose genericity is resolved at compilation-time (we call this
the “static world”), and dynamic code from Python which rely on pre-compiled package binaries
(we call this the “dynamic world”), to achieve an efficient communication between the dynamic
code and the library. We also cannot ask of the user to provide and use a compiler each time he
wants to use our library from Python. We discuss what are the existing solutions that can be
considered as well as their pros. and cons. Finally, we discuss how we designed a hybrid solution
to make the bridge between the static world and the dynamic world.

Generic programming (genericity)

In natural language we say that something is generic when it can fit several purposes at once
while being decently efficient. For instance, a computer is a generic tool that allows one to write
documents, access emails, browse Internet, play video games, watch movies, read e-books etc. In
programming, we will say that a tool is generic when it can fit several purposes. For instance, the
gce compiler can compile several programming languages (C, C++, Objective-C, Objective-C++,
Fortran, Ada, D, Go, and BRIG (HSAIL)) as well as target several architectures (IA-32 (x86),
x86—-64, ARM, SPARC, etc.). Henceforth, we can say that gcc is a generic compiler. At this
point it is important to note that even though a tool is deemed generic, there is a scope on what
the tool can do and what the tool cannot do. A compiler despite supporting many languages
and architectures, will not be able to make a phone call or a coffee. As such it is important to
note that genericity is an aspect that qualifies something. We study the generic aspects related
to libraries and programming languages.

This thesis voluntary leaves out the generic aspect related to the target architecture. Indeed,
being able to write and/or generate code that is able to run on a large array of different hardware
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architecture is a field of research on its own and is not the main focus of this thesis. It is also
known as heterogeneous computing. Instead, we will focus on the aspects related to genericity at
a library level and at a programming language level.

Genericity within libraries It is described by the cardinality of how many use-cases it can
handle. Libraries always provides their own data structures, to represent and to give a meaning
to the data the user wants to process, as well as algorithms to process those data and provide
different type of results. A library will be then labeled as generic [15] when (i) its data structures
allow the user to express himself fully with no limitation and when (ii) its algorithm bank is
large enough to do anything the user would want to do with its data. In reality such a library
does not exist and there are always limitations. Studying those limitations and what reasons
motivate them is the key to understand how to surpass them in the future, by developing new
hardware and/or software support for new features enabling more genericity.

Genericity within programming languages It is described by the ability of the language
to execute the same code over a large amount of data structures [31], be they native (char,
int, ...) or user defined. It is nowadays primordial for a programming language to be able
to do so. Indeed, in a world where Information Technologies are everywhere, the amount of
code written by software developers is staggering. And with it so is the amount of bugs and
security vulnerabilities. Being able to natively have a programming language that enables to
do more by writing less mathematically results in a reduced development and maintenance
cost. Programming languages offers many ways to achieve genericity which is dependent of the
language intrinsic specificities: compiled or interpreted, native or emulated, etc.

Before delving into the specifics of what genericity implies for libraries and programming
languages, let us introduce some vocabulary for the sake of comprehension. First is the notion of
type. A type (or data type) is an attribute of data which tells the compiler or interpreter how the
programmer intends to use the data. Most programming language support basic data types (also
called primitive types) such as integer numbers, floating point numbers, boolean and characters
(ASCII, Unicode, etc.). This data attribute defines the operations that can be performed on
the data, the meaning of the data and the size of the data in memory (the data can then be
stored on the heap, stack, etc.). A data type provides a set of values from which an expression
(i.e. variable, function, etc.) may take those values. Among programming language, we can
distinguish those who are dynamically types and those that are statically typed. Statically typed
languages are those whose variables are declared holding a specific type. This variable cannot
hold data from another type in the scope it is declared. Statically typed programming languages
are Ada, C, C++, Java, Rust, Go, Scala. Dynamically types languages are those whose variables
can be reassigned with a value of different type from the one it was initially declared to hold.
The variable type is then dynamically changed to fit the new value it is holding. Dynamically
typed programming languages are PHP, Python, JavaScript, Perl.

The consequence of being able to tell which type a variable is holding at all time (statically-
typed language) is two-fold. For the developer, it is easier to reason about code and to spot
bugs. For the compiler, it is possible to generate optimized binary code specific to this data
type (vectorization, etc.). The consequence of being able to morph the type a variable can hold
at runtime is mainly to serve prototyping purpose. When tweaking a Jupyter notebook, it is
much appreciated not to be limited to a single type for each variable to be able to iterate on the
prototype much faster.

In image processing, an image Im is defined on a domain D (which contains points) by
the relation Vx € D,y = Im(x) where y is the value of the image I'm for the point x. This
definition always translates into a complex data structure when transposed into a programming
language. This data structure must be aware of the data buffer containing the image data as well
as information about the size and dimensions of the image. Furthermore, to add to the difficulty,
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the information needed to define precisely the data structure is not always known when writing
the source code. Indeed, a very simple use-case consists in reading an image from a file to load
it in memory. The file can contain an image of varying data type and the program should still
work properly. There are multiple approach to solve this issue, and we are addressing them.

Projecting the notion of genericity to Image Processing, we can deduce that we need two
important aspects in order to be generic. First, we need to decorrelate the data structures and its
topology and underlying data from the algorithms. Indeed, we want our algorithms to support
as much data structures as possible. Second, many algorithms share the same computational
shape and can be factorized together.

graph mesh

input:

output:

The same code run on all these inputs.

Figure 1: Watershed algorithm applied to three different image types ||

Genericity can have two different meanings depending on the people you ask. For instance,
some will argue that genericity is a high level aspect and will qualify a tool by “generic enough”
when it handles all of his use-cases. Others will argue that genericity is a low level aspect that
relates to the machine (code) building the tools, “generic enough” to make a lot different tools.
Neither is wrong. However, for the sake of comprehension we will use different words for each of
these cases. A tool generic enough to handle a lot of use-case will be called versatile. Finally,
for a tool whose aim is to be able to build a lot of different tools (i.e. providing a programming
framework able to handle code of any use-case) we will use generic. In this thesis, genericity will
be about code, meaning the programming framework able to handle any use-case. The fig.
illustrates the result of the same generic watershed implementation applied on an image 2D, a
graph as well as a mesh.

We present the origin of generic programming, which goes as far as 1988, year and how it
has evolved to be integrated in the Ada programming language and then the C4++ programming
language. Afterwards, it has evolved even further with the notion of concept which completes
the toolbox required to be able to fully make use of generic programming without resorting to
obscure tweaks and tools.

We explore the possibilities of achieving the notion of genericity from within a library. Indeed,
there are three techniques enabling the user to write a high level algorithm once that can run
on every type. They are the code duplication approach, the generalization approach and the
inclusion and parametric polymorphism approach .
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Finally, we present the inherent limitation of C++ templates, which is that they remain in
the static world (compile time). Genericity (in the sense C++ template) does not exist in the
final shipped binary to the user. The final user, in its dynamic world (runtime) cannot use a
generic (C++ code) tool. We discuss the different approaches possible to bridge this gap between
the static (compile-time) and dynamic (runtime) world.

We will then make extensive use of Genericity to present the first contribution of this thesis:
a taxonomy of concepts related to Image processing.

Taxonomy for Image Processing: Image types and Algorithms

In this thesis, we have pursued research into how to apply all those new generic facilities from the
C++ language into the Image processing area. This allows us to test them in a practical way on
our predilection area while remembering our past work, both success and failures in this matter.
However, birthing concepts from code is something that is done in an emerging way. Henceforth,
the first work will be to do an inventory of all existing image algorithms as well as an inventory
of all image processing algorithms (both basic and more complex) we can think of. This way,
we will notice behavior patterns emerging from similar image types or similar algorithms. We
will then be able to extract behavioral patterns from this inventory in order to produce a full
taxonomy in the form of a framework of concepts related to image processing.

We present that concepts are not designed after data structures but after algorithms. Indeed,
a concept consists in extracting a consistent behavioral pattern from a piece of code (algorithm)
and name it to give him a meaning. Through a simple but concrete example, we present in a
didactic way how to extract concepts from an image processing algorithm (gamma correction).

Image types
Image types

Images LUT

- Images writable

I tabl Contiguous =
mages writable ﬁll Cersion 2 buffer Specialized
fill version 2 in memory? algorithm

(a) Different versions of fill algo- (b) Specialization existing within a version

rithm

Figure 2: Set of algorithm versions (a) and its specialization existing within a version (b).

We then explain how, in theory, image types are related to each other. We present the set
of different image types and how algorithms exist in those sets, which introduce the notion of
version of an algorithm. An algorithm will have different versions for each image types set it
supports. We distinguish it (in fig. [2)) from an algorithm specialization, the latter being the ability
to use an opportunity (related to a property) to make an optimization and increase performances.

We then describe the notion how algorithm canvas which is the result flowing from the
taxonomy of image processing algorithms. Indeed, there are three main algorithm families: the
pixel-wise algorithms (binary threshold), the local algorithms (dilation) and the global algorithms
(Chamfer distance transform). We focus primarily on local algorithms and how they can all be
written through the same canvas of code. Indeed, for instance, the only difference between a
dilation and an erosion is the operator (max vs. min). We then discuss ways to exploit these
canvas to possibly solve heterogeneous computing issues.
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Figure 3: Image concept.

Finally, we introduce our first main contribution: a complete taxonomy related to the image
processing area. We first introduce fundamental concepts such as point, pizel, domain and image
(illustrated in fig. 3). We then motivate and introduce advanced concepts related to images
and the different way to access data (forward, backward traversing, indexing, direct access to
underlying buffer, ...). In the end, we introduce the concepts related to orbiting notions such as
structuring element, neighborhood and extension (border management) which are necessary to be
able to work with local algorithms.

We will then make use of the presented concepts to introduce the second main contribution
of this thesis: the image views.

Image views

This concept of views is not new [24] and naturally appeared in Image processing with Milena [96,
85] under the name of morpher [80, 95]. It was always useful to be able to project an image
through a prism that could extract specific information about it without the need to copy the
underlying data buffer. In modern days, the language C++ (20) also introduces this mechanism
with the ranges [184] facilities for non-owning collections. It is named views and allows the user
to access the content of a container (vector, map) through a prism. In Pylene, we decided to
align the naming system after what was decided in C++20 in order not to confuse the user.
This way, a transform view in image processing will do the same thing on an image that the
transform view in the standard range library does on a container. Views feature the following
properties: cheap to copy, non-owner (does not own any data buffer), lazy evaluation (accessing
the value of a pixel may require computations) and composition. When chained, the compiler
builds a tree of expressions (or expression template as used in many scientific computing libraries
such as Eigen [84]), thus it knows at compile-time the type of the composition and ensures a
0-overhead at evaluation.

In image processing an algorithm is naively written by taking one or several inputs’ data
(among which is the input image(s)), by performing work on this input data and then by returning
the resulting data (or an error). Let us take for example the alpha-blending example which can
be implemented in naive C++ code as followed:

void blend_inplace(const uint8_t#* imal, uint8_t* ima2, float alpha,

int width, int height, int stridel, int stride2) {
for (int y = 0; y < height; ++y) {
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const uint8_t* iptr = imal + y * stridel;
uint8_t* optr = ima2 + y * stride2;
for (int x = 0; x < width; ++x)
optr[x] = iptr[x] * alpha + optr[x] * (l-alpha);

This code has several flaws. It makes strong hypothesis about the input images: its data buffer
contiguity and its shape (2D). Let us suppose that our user now wants to restrict the algorithm
to a specific region inside the image. The maintainer would have then to provide an overload of
the algorithm with one additional input argument corresponding to the region of interest. Let
us suppose that the user now wants to support manipulate 3D images. The maintainer would
now have to provide two additional overloads with an additional stride argument (one for the
base algorithm, one for the region of interest-restricted algorithm). Let us now suppose that the
user only wants to manipulate the red color channel. Now the maintainer must support and
add additional overloads of the algorithm for each channel and/or color type. The complexity
increases manyfold for each kind of customization points the maintainer wants to offer to the
user. Of course, it is possible to prevent code duplication through clever usage of computer
engineering techniques (code factorization etc.) but the complexity would still leak through the
API anyway. That is way the other solution is to make the user able to perform those restriction
upstream from the algorithm transparently so that the downstream algorithm is easy to write,
understand and maintain. In order to achieve this, we need to raise the abstraction level around
images by one layer so that we can work at the image level. The alpha-blending algorithm would
then be written as shown in fig. {4

ima imal ima?2

Figure 4: Alpha-blending algorithm written at image level.

This way to express an algorithm is achieved by introducing views to image processing. An
image now is a view and can be restricted/projected /manipulated however the user need before
feeding it to an algorithm. Even the whole alpha blending algorithm can be rewritten in terms
of views entirely, as shown in fig. [5

auto alphablend =
[1(auto imal, auto ima2, float alpha) {
return alpha * imal + (1 - alpha) * ima2;

};

(ima1] (alpha) (ima2) (1 - alpha)

Figure 5: Alpha-blending, generic implementation with views, expression tree.

Being able to perform powerful manipulation on images before feeding them to algorithms
completely nullify the initial problem of having several overloads of the same algorithm while
maintaining and documenting all the associated optional arguments. Indeed, in order to perform
the alpha-blending transformation on the base input image, all that the user must do is:

auto imal, ima2 = /* ... */;
auto ima_blended = alphablend(imal, ima2, 0.2);
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If the user wants to restrict the region to be blended, or the color channel to work on, he just
has to write the following modification:
auto roi = /* ... */;

auto blended_roi alphablend(view::clip(imal, roi), view::clip(ima2, roi), 0.2);
auto blended_red = alphablend(view::red(imal), view::red(ima2), 0.2);

The restriction is done upstream from the algorithm and propagated downstream without
increasing the code complexity. This way, view greatly increase what the user can do by writing
less code.

Output
(Gray 8-bits)

Input Grayscale Sub-quantization
(RGB-16) Conversion (8-bits conversion)

Dilation

Figure 6: Example of a simple image processing pipeline.

We see that views are composable. One of the most important feature in a pipeline design
(generally, in software engineering) is object composition. It enables composing simple blocks
into complex ones. Those complex blocks can then be managed as if they were still simple
blocks. In fig. 6, we have 3 simple image processing operators Image — Image (the grayscale
conversion, the sub-quantization and the dilation). As shown in fig. 7, algorithm composition
would consider these 3 simple operators as a single complex operator Image — Image that could
then be used in another even more complex processing pipeline. Just like algorithms, image
views are composable, e.g. a view of the view of an image is still an image. In fig. 7, we compose
the input image with a grayscale transform view and a sub-quantization view that then feeds the
dilation algorithm.

Algorithm Composition = MyComplexOperator
Input Grayscale Sub-quantization Dilati Output
(RGB-16) Conversion (8-bits conversion) tation (Gray 8-bits)
Image Views Composition = MyComplexImage

Figure 7: Example of a simple image processing pipeline illustrating the difference between the
composition of algorithms and image views.

Also, views improve usability. The code to compose images in fig. 7 is almost as simple as:

auto input = imread(...);

auto A = transform(input, [J(rgb16 x) -> float {
return (x.r + x.g + x.b) / 3.f; }; );

auto MyComplexImage = transform(A, [](float x)
-> uint8_t { return (x / 256 + .5f); }; );

People familiar with functional programming may notice similarities with these languages
where transform (map) and filter are sequence operators. Views use the functional paradigm
and are created by functions that take a function as argument: the operator or the predicate to
apply for each pixel; we do not iterate by hand on the image pixels.

Furthermore, views improve re-usability. The code snippets above are simple but not very
re-usable. However, following the functional programming paradigm, it is quite easy to define
new views, because some image adaptors can be considered as high-order functions for which we
can bind some parameters, as one would do with the curry technique [17]. In fig. 8, we show how
the primitive transform can be used to create view operators summing two images, performing
the grayscale conversion and performing a sub-quantization. This basic views, which can be
reused afterwards, are then chained together to create a complex image. (These functions could
have been written in a more generic way for more re-usability, but this is not the purpose here.)
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auto operator+(Image A, Image B) {
return transform(A, B, std::plus<>());

}

auto togray = []1(Image A) { return transform(4, [](auto x)
{ return (x.r + x.g + x.b) / 3.f; };)

}

auto subquantizel6to8b = [](Image A) { return transform(A,
[1(float x) { return uint8_t(x / 256 +.5f); });

};

auto input = imread(...);
auto MyComplexImage = subquantizel6to8b(togray(A));

Figure 8: Using high-order primitive views to create custom view operators.

In addition, views are lazy computed. Because the operation is recorded within the image
view, this new image type allows fundamental image types to be mixed with algorithms. In fig.
the creation of views does not involve any computation in itself but rather delays the computation
until the expression v(p) is invoked. Because views can be composed, the evaluation can be
delayed quite far. Image adaptors are template expressions [20} 40| as they record the expression
used to generate the image as a template parameter. A view actually represents an expression
tree (fig. [5).

Also, views are efficient. With a classical design, each operation of the pipeline is implemented
on “its own”. Each operation requires memory to be allocated for the output image and also, each
operation requires that the image is fully traversed. This design is simple, flexible, composable,
but is not memory efficient nor computation efficient. With the lazy evaluation approach, the
image is traversed only once (when the dilation is applied) which has two benefits. First, there
are no intermediate images which is very memory efficient. Second, traversing the image is faster
thanks to a better memory cache usage, and performs an optimal selective traversal. Indeed,
in our example (fig. @, processing a RGB16 pixel from the dilation algorithm directly converts
it in grayscale, then sub-quantize it to 8-bits, and finally makes it available for the dilation
algorithm. It acts as if we were writing an optimal operator that would combine all these
operations. This approach is somewhat related to the kernel-fusing operations available in some
HPC specifications [150] but views-fusion is optimized by the C++ compiler only [139]. The
selective aspect intervenes when a region of interest is selected at one point in the processing
pipeline. Indeed, the entirety of the pipeline is then executed only on the region of interest, even
if this selection happens only at the very end of the processing pipeline.

Finally, views improve the productivity. All point-wise image processing algorithms can (and
should) be rewritten intuitively by using a one-liner view. The transform views is the key enabling
that point. This implies that there exist a new abstraction level available to the practitioner
when prototyping their algorithm. The time spent implementing features is reduced, thus the
feedback-loop time is reduced too. This naturally brings productivity gain to the practitioner.

A bridge between the static world and the dynamic world

In the programming world, there are three main families of programming language [38]. There are
(i) compiled programming languages, such as C, C++, Rust or Go, (ii) interpreted programming
languages, such as Python, PHP, Lisp or Javascript, and (iii) hybrid programming languages,
such as Java or C#. The latter have a fast compilation pass that compiles the source code into
an intermediate bytecode. Then, this bytecode is interpreted via an interpreter on the host
(runner) machine.

We design many solutions to solve several kinds of issues related to the bridge between the
static and the dynamic world. We present our hybrid solution that is able to make our C++
templated library (static) available from Python (dynamic). We discuss several ways of achieving
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Figure 9: Bridge from Python to C++ via Pybind11 and a type-erased C++ class.

this feat, their pros. and their cons. Also, we introduce a new abstraction layer, the value-set,
which is a standard way to manipulate an underlying image value usable when implementing
image processing algorithms. This new abstraction layer enables the user to inject code from
Python-side into already-complied C++4 routines. However, layering one abstraction layer after
another, or even calling Python code does come with performance cost. This is why we have run
a benchmark to outline the cost of our solutions. This benchmark compares the four version
of our stretch algorithm whose implementation and usage are detailed in the manuscript. The
result is shown in table [l

Dispatch type ‘ Compute Time ACompute Time
Native value-set with native C++ value-type (baseline) 0.0093s 0
Value-set with virtual dispatch with native C++ value-type 0.1213s x13
Value-set with virtual dispatch with C++ type-erased values 1.0738s x115
Injected Python value-set with native C++ value-type 21.5444s %2316

Table 1: Benchmarks of all our version of the stretch algorithm.

This benchmark shows that each time an abstraction layer is added on top of the baseline,
the user must expect a 10x slowness factor in his code performance. Also, calling Python code is
immensely slower (2300x !) than the baseline. This renews the interest there is to recompile the
templated C++ library with an additional known type than injecting it from Python for code
taking long time to execute. Being able to inject Python code ease prototyping and increase the
speed at which the user can write his code. However, the benchmark shows that this is not a
viable solution once the prototype needs to scale to a production environment.

Continuation: JIT-based solutions, pros. and cons. Our hybrid solution certainly has
advantages, but the huge disadvantage is the slowness of injecting our own types from the Python
side. There exists another solution that this thesis did not have the opportunity to study in-depth.
This solution is based on a known technology: the Just-In-Time (JIT) compilation which has
been previously illustrated in fig. (and which itself is based on the notion of generative
programming |30]). Library such as AsmJit [91] are able to emit machine code directly by making
call in C++ code. Indeed, it is a technology already used by interpreted languages such as Java
or PHP to generate on-the-fly native and optimized machine code for the section of the source
code that is considered “hot” by the interpreter. A source code is “hot” when it is executed a
lot: the end-user would gain paying the compilation time once to have this code executed faster
several times later on. When applying this strategy to our problematic, it would mean that the
user must be able to compile native machine code from the templated generic C++ code by
injected the requested type when it is used. Such an operation shift heavily the burden on the
user, and it is well-known that compiling C++ code is notably complicated and slow. In addition,
the library needs to be able to auto-generate Python binding once the C++ code is compiled,
and to handle NumPy.ndarray types in the interface. There are several solutions to reach this
point.
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Figure 10: Interpreted languages: runtime

The first solution is to basically use system call to the compilers to actually compile C++
code once the templated types are known and explicitly instantiated in the source code. This
solution requires careful code-generation design and that the user actually possess a compiler on
his computer. Furthermore, the user must resolve all the library dependencies, such as freeimage
for 1O etc. This solution was engineered in the VCSN library [108]. Indeed, each time the user
declared a new automaton in his Jupyter notebook, corresponding source code is compiled in the
background and then cached. It is a very perilous solution to implement when the final execution
environment (OS, installed software) is not well-known in advance. Nowadays, the issue may be
lesser, however, it still requires to maintain both the library and the container solution to use it
(Docker).

The second solution is to use Cython [88]. It is a transpiling infrastructure which transform a
Python source code directly into C-language source code so that it can be compiled by a standard
C compiler just by linking against the Python/C API. This remove the burden of writing the
careful code-generation routine, system-calls to the C++ compiler and removes the need to
resolve all the dependencies. This infrastructure takes care of everything for the user. Cython
even support C++ template code [176] which is mandatory for our use-case.

The third solution consists in relying on recent projects that are all relying on the LLVM infras-
tructure. We can notably note AutoWIG [141], Cppyy [130], Xeus-cling |173] and Pythran [123].
AutoWIG has in-house code based on LLVM/Clang to parse C++ code in order to generate
and compile a Swig Python binding using the Mako templating engine. AutoWIG, coupled with
Cython would permit the user to, for instance, generate C code related to a custom Python
structure. Then a simple call to AutoWIG will parse the C code and inject it into the C++ library
to generate the appropriate bindings for the user. As for Cppyy, it is based on LLVM/Cling,
a C++ interpreter, and can directly interpret C++ code from a Python string. This enables
injecting custom types easily, be they in Python code (transpiled with Cython) or C++ code
(directly interpreted by Cling). Afterwards, the infrastructure generates the appropriate binding
from the templated C++ library for the injected type. Xeus-cling is a ready-to-use Jupyter
kernel and allow the usage of C++ code directly from within a notebook. This completely
bypass the need of a Python binding in the first place and allow the user to use the library from
within the notebook as if he was using a Python library. Finally, Pythran is an ahead of time
compiler for a subset of the Python language, with a focus on scientific computing. It takes a
Python modle annotated with a few interface descriptions and turns it into a native Python
module with the same interface, but hopefully faster. Pythran takes advantages of multicore
and SIMD instructions to turns its subset of the Python language into heavily templated C++
code instantiated for particular optimized types. All those infrastructures, however, come with
a hefty cost in terms of binary size. Indeed, a C++ compiler is not small and embarking it
alongside the image processing library can easily impact greatly the final binary. Without the
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LLVM infrastructure the binary may weight around 3MB. With the LLVM infrastructure, the
binary weight at the bare minimum 50MB. Also, these solutions may not be immediately faster.
Indeed, when prototyping back and forth with a variety of types, the user may not be eager to
wait for long compilations times each time he is testing with a new iteration of his work. Despite
those facts, those solutions offers great avenue of research for the future and the author is eager
to explore them.

Conclusion

The work presented in this thesis by the author followed a very clear narrative arc. The emphasis
was first shown on presenting what is the notion of generic programming (genericity), its story
and how anyone can relate in his day-to-day life, especially when applied to image processing.
Genericity is a 4-decades years old notion that has evolved and found usage in very modern areas
of our society. Indeed, image processing is widely used to build modern applications used all
around the world. However, it was demonstrated how difficult it can be to implement solutions
relying on genericity. Indeed, there is a rule of three tying genericity, performance and ease of
use stated in introduction. In this thesis, we try to demonstrate how to break this rule in three
steps.

The first step, illustrated in Taxonomy for Image Processing, was to make an inventory
of image types and families as well as different image processing algorithms. The aim was
to produce a comprehensive taxonomy of types (pixel, image, structuring elements, ...) and
algorithms related to image processing in order to be able to write concepts (in the sense of
C++ concepts). This first step delimits the perimeter of what the author means by genericity.
From this starting point, it becomes easier to write image processing algorithms, just by relying
on those concepts. Furthermore, different concepts exist to enable algorithm implementers to
leverage properties (structuring elements’ decomposability, image’s buffer contiguous, ...) in
order to achieve maximum performance.

At this point, we are still reasoning at a low level (pixel) which generates the need to design
an abstraction layer in order to enable fast prototyping for simple operations while guarantying
very small memory footprint and near-zero performance impact. For this reason, we expand the
concept of views from the C++ standard (2020) to images and design what the notion of image
view. We also make the design choice to have cheap-to-copy image (shared data buffer) by default
in order to merge concrete image and views from the user point of view. The lazy-evaluation, that
systematically happens when using views allows performance gain when clipping larges images.
In the case where the whole image is processed, we were able to still retain very satisfactory
performance that remain stable. Also, we show through concrete use-case, such as pixel-wise
algorithm and border management how the usage of views simplify greatly how to write more
complex image processing algorithms that are efficient by default. We finally show the limitations
of this approach, with a particular focus on the speed of traversing an image, which a mandatory
use-case we must get right.

Finally, this thesis focused its attention on how it is possible to distribute this software to the
image processing community which is mainly working with Python. The last work concentrates
its efforts on finding the best way to design a static (compile-time, templated C++) — dynamic
(runtime, Python notebook) bridge to bring those notions (concepts and views) to the practitioner,
efficiently. This last work explores this dilemma and offers to address it with one hybrid solution
whose design is explained in-depth. This hybrid solution rely on a type-erased type which offers
compatibility with a NumPy.ndarray |161]. It is then able to cast itself inside an n x n dispatcher
(dimension and underlying type) into an optimized concrete templated C++ type. This solution
also explain how to write very simply the glue code enabling already-existing algorithms (in
C++) to be exposed in Python thanks to a dispatch mechanic heavily inspired from the C++
standard (std::visit, std::variant). The aim of this solution was to regroup at a single
place in the code all the supported types into the dispatchers for maintenance purpose as well as
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demanding minimal work from algorithm implementer to expose their algorithms, all this while
keeping the native performance. Indeed, no superfluous copy is performed thanks to pybind11’s
type-caster facility, and one cast is done from the type-erased type to the native one. All the
work that is done in the algorithm is performed on native optimized type. Finally, this solution
offers a way to inject custom Python types into the library for prototyping purpose, thanks to a
new abstraction layer, at the cost of heavy performance loss. The downside of this solution is
obviously the code bloat with the resulting binary size exploding exponentially with the number
of supported types multiplied by the number of algorithms multiplied by the number of additional
supported data (structuring elements, label map, etc.)

We conclude this thesis by offering new avenue of research around the Just-In-Time (JIT)
compilation area to further improve the bridge between the static and the dynamic world. The
author thinks that this avenue is worth exploring, especially with the already promising existing
tools (Xeus-cling, Cppyy, Cython, AutoWIG, Pythran) in order to solve the code bloat issue.
Indeed, we would only compile what the user need, but the entry price may be to statically link a
C++ interpreter (LLVM/cling?) into the binary which in itself would greatly bloat it. It may be
possible, however, to rely on the user’s system-wide infrastructure so that the maintenance does
not distribute a whole C++ interpreter/compiler alongside his image processing library binary.
This is still a new area of research and the author would very much want to delve into it to study
what is possible to achieve as of today with those tools for the image processing community.



Résumé long

Introduction

De nos jours, la Vision par ordinateur et le traitement d’images (PI) sont omniprésents dans la
vie quotidienne des gens. Ils sont présents a chaque fois que nous passons devant une caméra de
vidéosurveillance, & chaque fois que nous allons a ’hopital faire une IRM, a chaque fois que nous
conduisons notre voiture et passons devant un radar et a chaque fois que nous utilisons notre
ordinateur, smartphone ou tablette. Ils sont devenus incontournables. Les systemes utilisant
cette technologie sont souvent simples et parfois plus complexes. Cette technologie s’utilise dans
des domaines tres variés, tel que 'observation spatiale, 'imagerie médicale, ’amélioration de la
qualité de vie, la surveillance, le controle, les systémes autonomes, etc. Désormais, le traitement
d’images dispose d’un large éventail de sujets de recherche et malgré une masse de travaux
antérieurs déja contribués trés importante, il reste encore beaucoup a explorer.

Prenons ’exemple d’une application smartphone moderne qui propose une reconnaissance
faciale afin de reconnaitre les personnes qui figurent dans d’une photo. Pour fournir un résultat
précis, cette application devra faire beaucoup de traitements différents en plusieurs étapes. De
plus, il y a beaucoup de variables a gérer. Nous pouvons énumérer (non exhaustivement) la
météo, I’exposition lumineuse, la résolution, ’orientation, le nombre de personnes, la localisation
de la personne, la distinction entre les humains et les objets/animaux, etc. Tous ces éléments
doivent étre soigneusement gérés afin de reconnaitre enfin la ou les personne(s) figurant dans
la photo. Ce que 'application ne vous dit pas, c’est la complexité de la pipeline de traitement
d’images en coulisse qui, la plupart du temps, ne peut méme pas étre exécutée dans son intégralité
sur son appareil (smartphone, tablette, ...). En effet, le traitement d’images est coliteux en
ressources informatiques et ne répondrait pas a la contrainte de temps demandée par I'utilisateur
si l'intégralité de la pipeline était exécutée sur 'appareil. Par ailleurs, pour la derniére partie qui
est de « reconnaitre la personne sur la photo », ’application doit donner la photo pré-traitée a
un réseau de neurones formé au préalable par des techniques d’apprentissage profond afin de
donner une réponse précise. Il existe des technologies capables d’intégrer un réseau de neurones
dans un téléphone mobile, telles que MobileNets [135], mais il reste limité en termes de capacités
opérationnelles. Il peut détecter un étre humain a l'intérieur d’une photo et méme identifier
la personne, mais par exemple, ne peut pas avoir la méme capacité de distinction entre un
grand nombre des personnes que les réseaux utilisés par les réseaux sociaux. C’est pourquoi les
systemes de réseau de neurones précis sont généralement hébergés dans le cloud, ce qui ne les
rend disponibles que via Internet. Lors du téléchargement de son image, I'utilisateur n’imagine
pas la quantité de technologies et de puissance de calcul qui va étre utilisée pour reconnaitre la
personne apparaissant sur la photo.

Nous comprenons maintenant que pour créer, aujourd’hui, des applications qui interagissent
avec des photos ou des vidéos, nous devons pouvoir effectuer un traitement d’images précis, rapide
et évolutif sur une multitude d’appareils (smartphone, tablette, ...). Afin d’atteindre cet objectif,
les traiteurs d’image doivent disposer de deux types d’outils. Le premier est I’environnement de
prototypage, une boite a outils qui permet au traiteur d’image de développer, tester et améliorer
sa logique applicative. Le second est I’environnement de production qui déploie la version viable
de I’application qui a été développée par le traiteur d’image. Les deux environnements peuvent ne
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pas avoir les mémes besoins. D’une part, I’environnement de prototypage nécessite généralement
de disposer d’une boucle de rétroaction rapide pour les tests et d’'une disponibilité des algorithmes
des logiciels existants a la pointe des connaissances actuelles. De cette fagon, le traiteur d’image
peut facilement construire ses nombreux prototypes par-dessus ces briques de base (algorithmes
existants) pour obtenir des résultats rapidement dans le but de pouvoir itérer de maniére agile.
D’autre part, ’environnement de production doit, quant a lui, étre stable, résilient, rapide et
évolutif.

Lorsque 'on regarde les standards de I'industrie aujourd’hui, nous remarquons que le langage
de programmation Python est le principal choix pour le prototypage. Cependant, Python peut
ne pas convenir pour pouvoir déployer un prototype viable en production avec un minimum
changements par la suite. Nous trouvons qu’il n’est pas idéal que le traiteur d’image ne puisse pas
profiter de nombreuses opportunités d’optimisations, a la fois en termes d’efficacité algorithmique
et & la fois au niveau d’une meilleure utilisation du matériel. Il serait beaucoup plus efficace
d’avoir des briques de construction de base (bas niveau) qui pourraient étre adaptés pour convenir
a autant de cas d’utilisation que possible. De cette fagon, le traiteur d’image pourrait facilement
s’appuyer sur ces briques lors de la conception de son application. Nous distinguons deux types
de cas d’utilisation. Le premier concerne la multiplicité des types ou des algorithmes auxquels
le traiteur d’image est confronté. Le deuxieme releve de la diversité du matériel sur lequel il
peut vouloir exécuter son programme. L’objectif est de concevoir intelligemment les briques
de base qui permettent de tirer parti des nombreuses opportunités d’optimisation, tant en ce
qui concerne les types de données et d’algorithmes en entrée, que le matériel cible. Ensuite, le
traiteur d’image verrait une importante amélioration des performances, par défaut, sans devoir
ajuster spécifiquement son application. C’est ainsi que le concept de généricité est introduit. Il
vise a fournir un terrain d’entente sur la fagon dont une image doit se comporter lorsqu’elle est
transmise a des algorithmes de base nécessaires pour des applications complexes. De cette fagon,
en théorie, il suffit d’écrire 'algorithme une seule fois pour qu’il fonctionne avec n’importe quel
type d’image.

Finalement, il est admis qu’il existe une régle concernant les trois points suivants : la
généricité, Pefficacité et la facilité d’utilisation. La régle énonce que I'on ne peut avoir que deux
de ces avantages qu’en sacrifiant le troisieme. Si 'on veut étre générique et efficace, alors la
solution naive sera trés complexe a utiliser avec beaucoup de parametres. Si 'on veut qu’une
solution soit générique et facile a utiliser, alors elle ne sera pas tres efficace par défaut. Enfin,
si I’on souhaite qu’une solution soit simple d’utilisation et efficace alors elle ne sera pas tres
générique. Pour illustrer cette régle, nous pouvons trouver des exemples parmi les bibliotheques
existantes. Une bibliotheque notablement générique et efficace en C++ est Boost [169] : elle est
également notoirement connue pour étre difficile a utiliser. Les composants tels que Boost.Graph,
Boost.Fusion ou Boost.Spirit sont difficiles & utiliser. Aussi, une bibliotheque qui est générique
et facile & utiliser est le parser Json écrit par Niels Lohmann [172]. Il s’efforce de gérer chaque
cas d’utilisation tout en restant trés simple a intégrer et a utiliser coté code utilisateur (syntaxe
trés proche du Json natif en code C++ en fournissant un DSL (Domain Specific Language) [32]
pour convertir directement les structures C++ en donnée Json). Cependant, cela a un cofit et ce
parser est plus lent qu'un parser Json optimisé pour la performance tel que simdjson [171] dont le
but est de « parser des gigaoctets de JSON par seconde ». Enfin, il existe de nombreux exemples
de code convivial et efficace qui ne sont pas génériques. Nous pouvons citer Scikit-image [120] et
OpenCV [29], faciles & utiliser et efficace (beaucoup de code SIMD/GPU écrit a la main) mais
pas générique en raison des choix de conception.

Dans cette theése, nous avons choisi de poursuivre les travaux réalisés sur la bibliotheque de
traitement Pylene [140]. Cependant, travailler uniquement sur la bibliotheque C++ restreindrait
I’utilisabilité de notre travail et donc son impact. C’est pourquoi nous visons a atteindre les
utilisateurs mettant au point des prototypes en fournissant un package qui peut étre utilisé par
un langage dynamique tel que Python, sans sacrifier les performances. En particulier, nous visons
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la disponibilité d’utilisation dans un notebook Jupyter. Un objectif trés important pour nous est
d’étre utilisable en milieu éducatif, ce qui est une force de Python. Dans cette bibliotheque, nous
montrons comment étre générique et performant, tout en restant facile a utiliser. Ce faisant, nous
nous efforcons de casser la regle citée précédemment. Le périmeétre de la bibliotheque se limite a
la morphologie mathématique [111, 83| et la fourniture de types d’image versatiles. Nous tirons
parti du langage C++ moderne et de ses nombreuses nouvelles fonctionnalités liées a la généricité
et a la performance pour dépasser cette regle dans la zone de traitement d’images. Enfin, nous
tentons, d’apporter les outils et les concepts de bas niveau du monde statique (moment de la
compilation) au monde du prototypage de haut niveau et dynamique (moment de I’exécution)
pour une meilleure diffusion et facilité d’utilisation, grace un pont entre ces deux mondes.

C’est avec cette philosophie a ’esprit que ce manuscrit présente notre travail de these lié au
langage C++ appliqué au traitement d’images. Il est organisé comme suit :

Programmation générique (généricité) Nous présentons ’état de I'art sur la notion de
généricité. Nous expliquons son origine, comment il a évolué au fil du temps (en particulier dans
le langage C++), quels probléemes il résout et quels problemes il crée. Nous expliquons pourquoi
le traitement d’images et la généricité fonctionnent bien ensemble. Enfin, nous faisons le tour des
outils existants qui permettent a la généricité (intrinsequement restreinte au langage compilé)
d’exister dans le monde dynamique (avec langages interprétés tels que Python).

Taxonomie pour le traitement d’images : types d’image et algorithmes. Nous
présentons notre premiére contribution dans le domaine du traitement d’images qui consiste a
réaliser une taxonomie complete des différentes familles d’images ainsi que des différentes familles
d’algorithmes. Nous expliquons, entre autres, la notion de concept et son application au domaine
du traitement d’images. Nous expliquons comment extraire un concept d’un code existant et
comment 'exploiter pour le rendre plus efficace et plus lisible. Nous proposons enfin notre point
de vue sous la forme d’une collection de concepts liés au domaine du traitement d’images.

Les Vues d’Image Nous présentons notre deuxieme contribution qui est une généralisation
du concept de Vues (tiré du langage C++, du travail sur les ranges [143]) aux images. Cela
permet la création d’images légeres et peu cofiteuses a copier. Cela permet également d’avoir une
approche beaucoup plus simple pour concevoir une pipeline de traitement d’images en enchainant
les opérations directement dans le code de maniere intuitive. Les ranges sont le ciment d’une
nouvelle facon de designer des algorithmes pour faciliter 1'utilisation des images, ce qui améliore
donc leur aspect générique. Enfin, nous discutons du concept d’évaluation paresseuse et de
I'impact des vues sur les performances.

Un pont entre le monde statique et le monde dynamique Nous présentons notre
troisiéme contribution qui est un moyen de donner acces aux fonctionnalités génériques d’un
langage compilé (tel que C++) a un langage dynamique (tel que Python) pour faciliter le
passage entre la phase de prototypage et la phase de production. En effet, pour parvenir a une
communication efficace entre le code dynamique et le binaire de la bibliothéque statique, il faut
étre en mesure de concilier du code C++ générique dont la généricité est résolue au moment de
la compilation (ce que nous appelons le « monde statique »), et du code Python dynamique qui
s’appuie sur des packages binaires pré-compilés (ce que nous appelons le « monde dynamique »)
: et cela n’est vraiment pas évident. D’autant plus que nous ne pouvons pas non plus exiger
de l'utilisateur qu’il fournisse et utilise un compilateur a chaque fois qu’il veut utiliser notre
bibliotheque depuis Python. Nous discutons quelles sont les solutions existantes qui peuvent
étre envisagées ainsi que leurs avantages et inconvénients. Enfin, nous discutons de la maniere
dont nous avons congu et réalisé une solution hybride pour arriver a faire ce pont entre le monde
statique et le monde dynamique.
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Programmation générique (généricité)

En langage naturel, quelque chose est générique quand il peut répondre a plusieurs objectifs a
la fois, tout en étant un minimum efficace. Par exemple, un ordinateur est un outil générique
qui permet de rédiger des documents, d’accéder a des e-mails, de parcourir Internet, de jouer a
des jeux vidéo, de regarder des films, de lire des e-books etc. En programmation, un outil est
dit générique lorsqu’il peut répondre a plusieurs objectifs. Par exemple, le compilateur gce peut
compiler plusieurs langages de programmation (C, C++, Objective-C, Objective-C++, Fortran,
Ada, D, Go et BRIG (HSAIL)) que cibler plusieurs architectures (IA-32 (x86), x86-64, ARM,
SPARC, etc.). Désormais, on peut dire que gcc est un compilateur générique. A ce stade, il est
important de noter que méme si un outil est considéré comme générique, il y a une limitation
quant & ce que cet outil peut faire et ce qu’il ne peut pas faire. Un compilateur malgré la prise
en charge de nombreuses langues et architectures, ne pourra pas passer un appel téléphonique ou
faire un café. De ce fait, il est important de noter que la généricité est un aspect qui qualifie
quelque chose. Nous étudions les aspects génériques liés aux bibliotheques et aux langages de
programmation.

Cette these laisse volontairement de c6té I'aspect générique lié a I’architecture cible. En effet,
savoir écrire et/ou générer du code capable de s’exécuter sur un large éventail d’architectures
matérielles différentes est un domaine de recherche a lui tout seul et n’est pas ’objet principal
de cette theése. Il est également connu sous le nom d’ informatique hétérogene. Au lieu de cela,
nous allons nous concentrer sur les aspects liés a la généricité au niveau de la bibliotheque et au
niveau du langage de programmation.

Généricité au sein des bibliotheéques Elle est décrite par la cardinalité du nombre de cas
d’utilisation qu’elle peut gérer. Les bibliotheques fournissent toujours leurs propres structures de
données, pour représenter et donner un sens aux données que 1'utilisateur veut traiter, ainsi que
des algorithmes pour traiter ces données et fournir différents types de résultats. Une bibliotheque
sera alors cataloguée comme générique |15] lorsque (i) ses structures de données permettent a
I'utilisateur de s’exprimer entierement, sans limitation et lorsque (ii) sa banque d’algorithmes
est suffisamment grande pour faire tout ce que l'utilisateur voudrait faire avec ses données. En
réalité, une telle bibliotheque n’existe pas et il y a toujours des limitations. Etudier ces limites
et quelles raisons les motivent est la clé pour comprendre comment les dépasser a ’avenir, en
développant le support de nouveaux matériels et/ou logiciels pour de nouvelles fonctionnalités
permettant plus de généricité.

Généricité dans les langages de programmation Elle est décrite par la capacité du langage
a exécuter le méme code sur une grande quantité de structures de données [31], qu’elles soient
natives (char, int, ...) ou définies par l'utilisateur. Il est aujourd’hui primordial qu'un langage
de programmation puisse le faire. En effet, dans un monde ou les technologies de 'information
sont omniprésentes, la quantité de code écrit par les développeurs de logiciels est faramineuse.
Et il en va de méme pour la quantité de bogues et de vulnérabilités de sécurité. Pouvoir avoir
nativement un langage de programmation qui permet de faire plus en écrivant moins se traduit
mathématiquement par un coit de développement et de maintenance réduit. Les langages
de programmation offrent de nombreuses facons d’atteindre la généricité qui dépendent des
spécificités intrinseques des langages : compilés ou interprétés, natifs ou émulés, etc.

Avant d’entrer dans les détails de ce que la généricité implique pour les bibliotheéques et les
langages de programmation, il est nécessaire d’introduire un peu de vocabulaire. Le premier
terme est la notion de type. Un type (ou type de données) est un attribut de données qui indique
au compilateur ou a l'interpréteur comment le programmeur a l'intention d’utiliser les données.
La grande majorité des langages de programmation prend en charge les types de données de base
(également appelés types primitifs) tels que les nombres entiers, les nombres a virgules flottantes,
les types booléens et les chaines de caracteres (ASCII, Unicode, etc.). Cet attribut de type définit
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les opérations qui peuvent étre effectuées sur les données, la signification des données ainsi que la
taille des données en mémoire (les données peuvent alors étre stockées sur le tas, la pile, etc.). Un
type de données fournit un ensemble de valeurs a partir desquelles une expression (c’est-a-dire
variable, fonction, etc.) peut prendre ces valeurs. Parmi les langages de programmation, nous
pouvons distinguer ceux qui sont dynamiquement typés et ceux qui sont statiquement typés.
Les langages typés statiquement sont ceux dont les variables sont déclarées contenant un type
spécifique. Cette variable ne peut contenir des données d’un autre type dans le champ o elle est
déclarée. Des langages de programmation a typage statique sont Ada, C, C++, Java, Rust, Go et
Scala. Les langages typés dynamiquement sont ceux dont les variables peuvent étre réassignées
avec une valeur de type différent de celui avec lequel elle a été initialement déclarée. Le type de
variable est ensuite modifié dynamiquement pour s’adapter a la nouvelle valeur qu’elle porte.
Des langages de programmation a typage dynamique sont PHP, Python, JavaScript et Perl.

La conséquence de pouvoir dire quel type une variable contient a tout moment (langage a
typage statique) est double. Pour le développeur, il est plus facile de raisonner sur le code et
de repérer les bugs. Pour le compilateur, il est possible de générer un code binaire optimisé
spécifiquement pour ce type de données (vectorisation, etc.). Le fait de pouvoir transformer le
type qu’une variable peut contenir au moment de ’exécution sert principalement a faciliter le
prototypage. Lors de la modification d’un notebook Jupyter, il est tres apprécié de ne pas se
limiter & un seul type pour chaque variable déclarée afin de pouvoir itérer sur le prototype plus
rapidement.

En traitement d’images, une image I'm est définie sur un domaine D (qui contient des points)
par la relation Vax € D,y = Im(x) ou y est la valeur de 'image I'm pour le point z. Cette
définition se traduit toujours par une structure de données complexe lorsqu’elle est transposée
dans un langage de programmation. Cette structure de données doit connaitre la mémoire
tampon contenant les données de 'image que des informations sur la taille et les dimensions de
I'image. De plus, ajoutant a la difficulté, les informations nécessaires pour définir précisément la
structure des données ne sont pas toujours connues lors de I’écriture du code source. En effet, un
cas d’utilisation tres simple consiste a lire une image dans un fichier pour la charger en mémoire.
Le fichier peut contenir une image de différents types de données et le programme doit toujours
fonctionner correctement. Il y a de multiples approches pour résoudre ce probleme, que nous
allons aborder.

En projetant la notion de généricité au traitement d’images, nous pouvons déduire que
nous avons besoin de deux aspects importants pour étre générique. Tout d’abord, nous devons
décorréler les structures de données de leur topologie et des données sous-jacentes des algorithmes.
En effet, nous voulons que nos algorithmes supportent autant de structures de données que
possible. Ensuite, nous pouvons factoriser ensemble de nombreux algorithmes partageant le
méme schéma calculatoire.

La généricité peut avoir deux significations différentes selon les personnes que vous interrogez.
Par exemple, certaines diront que la généricité est un aspect haut niveau et vont qualifier un outil
comme étant « suffisamment générique » lorsque celui-ci peut gérer tous ses cas d’utilisation.
D’autres soutiendront que la généricité est un aspect bas niveau et va donc concerner la machine
(code) fabriquant les outils, « suffisamment générique » pour fabriquer toutes sortes d’outils. Ni
I'un ni 'autre n’a tort. Cependant, pour des raisons de compréhension, nous utiliserons des mots
différents pour chacun de ces cas. Un outil assez générique pour gérer un grand nombre de cas
d’utilisation sera appelé versatile. Enfin, pour un outil dont le but est d’étre capable de fabriquer
un grand nombre d’outils différents (c’est-a-dire fournir un environnement de programmation
capable de gérer n’importe quel cas d’utilisation), nous utiliserons le terme générique. Dans cette
these, la généricité concernera le code, donc I'environnement de programmation capable de gérer
n’importe quel cas d’utilisation. La fig. [1] [92] illustre le résultat d’une méme implémentation
générique de l'algorithme de ligne de partage des eaux, qu’il soit appliqué sur une image 2D, un
graphe ou un maillage.
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image 2D graphe maillage

entrée:

sortie:

Le méme code tourne sur toutes ces différentes données d’entrée.

Figure 1: Algorithme de ligne de partage des eaux appliqué a trois types d’image différents ||

Nous présentons 'origine de la programmation générique, qui remonte a 'année 1988, year
et comment elle a évolué pour étre intégrée dans le langage de programmation Ada puis dans
le langage de programmation C++. Son évolution s’est poursuivie avec l'arrivée de la notion
de concept qui complétera la boite a outils nécessaire pour pouvoir pleinement utiliser la
programmation générique sans recourir a des techniques et outils obscurs.

Nous explorons les possibilités de réaliser de la programmation générique au sein d’une
bibliotheque. En effet, il y a trois techniques permettant a l'utilisateur d’écrire en une seule fois
un algorithme de haut niveau pouvant s’exécuter sur tous les types. Il s’agit des approches de
duplication de code, de généralisation et de polymorphisme d’inclusion et paramétrique .

Enfin, nous présentons la limitation inhérente aux templates C++-, a savoir qu’ils appartien-
nent au monde statique (moment de la compilation). La généricité (au sens concept C++) n’existe
pas dans le binaire final livré a l'utilisateur. L’utilisateur final, dans son monde dynamique
(moment de 'exécution) ne peut pas utiliser un outil générique (code C++). Nous discutons des
différentes approches possibles pour combler cet écart entre le monde statique (a la compilation)
et dynamique (a I'exécution).

Par la suite nous ferons un large usage de la généricité pour présenter la premiere contribution
de cette these : une taxonomie des concepts liée au traitement d’images.

Taxonomie pour le traitement d’images : types d’image et algorithmes

Dans cette theése, nous avons recherché la meilleure facon d’appliquer les nouvelles fonctionnalités
génériques du langage C++ dans le domaine du traitement d’images. Cela nous permet de les
tester de maniere pratique sur notre zone de prédilection tout en nous souvenant de nos travaux
passés, a la fois les succes et les échecs en la matiere. Cependant, faire naitre des concepts a
partir du code est un procédé qui se fait de maniere émergente. En conséquence, les premiers
travaux sont de faire un inventaire de tous les algorithmes d’images existants ainsi que de tous
les algorithmes de traitement d’images (& la fois les plus basiques comme les plus complexes)
auxquels nous pouvons penser. De cette facon, nous remarquons des modeles de comportement
émergeant de types d’image similaires ou algorithmes similaires. Nous pouvons alors extraire des
schémas comportementaux de cet inventaire afin de produire une taxonomie complete sous la
forme d’un environnement constitué de concepts liés au traitement d’images.
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Nous présentons que les concepts ne sont pas congus d’apres des structures de données, mais
d’apres des algorithmes. En effet, un concept consiste a extraire un schéma comportemental
cohérent d’un bout de code (algorithme) et & le nommer pour lui donner une signification. A
travers un exemple simple, mais concret, nous présentons de maniére didactique comment extraire
des concepts d’un algorithme de traitement d’images (correction gamma).

Types d’'image .
i 4 Types d’image

Images LUT

- Images inscriptibles
L Buffer
Images inscriptibles e Algorithmo

(a) Differentes versions de (b) Specialisation existant au sein d’une version
I’algorithm fill

Figure 2: Ensemble des versions d’algorithme (a) et de ses spécialisations existant au sein d’une
version (b).

Nous expliquons ensuite comment, en théorie, les types d’image sont reliés les uns aux autres.
Nous présentons ’ensemble de différents types d’image et comment les algorithmes existent
dans ces ensembles, ce qui introduit la notion de wversion d’un algorithme. Un algorithme aura
différentes wversions pour chaque ensemble de types d’images qu’il prend en charge. Nous le
distinguons (dans la fig. [2]) des spécialisations d’un algorithme, ces derniéres étant la possibilité
de profiter d’une opportunité (liée & une propriété) pour faire une optimisation et augmenter les
performances.

Nous décrivons ensuite la notion de canevas d’algorithme qui est le résultat découlant de
la taxonomie des algorithmes de traitement d’images. En effet, il existe trois grandes familles
d’algorithmes : les algorithmes fonctionnant pixel par pixel (par exemple, binarisation), les
algorithmes locaux (par exemple, dilatation) et les algorithmes globaux (par exemple, transformée
de distance de Chamfer). Nous nous concentrons principalement sur les algorithmes locaux et
comment ils peuvent tous étre écrits a travers le méme canevas de code. En effet, par exemple, la
seule différence entre une dilatation et une érosion est 'opérateur (max vs. min). Nous discutons
ensuite des possibilités offertes par I’exploitation de ces canevas pour possiblement résoudre des
problémes informatiques hétérogeénes.

Enfin, nous introduisons notre premiére contribution principale : une taxonomie compléte rel-
ative au domaine du traitement d’images. Nous introduisons d’abord des concepts fondamentaux
tels que point, pizel, domaine et image (illustrés dans la fig. |3). Nous motivons et introduisons
ensuite des concepts avancés liés aux images et aux différentes manieres d’accéder aux données
(parcours en avant, renversé, indexation, acces direct & la mémoire tampon sous-jacente, ... ).
Pour finir, nous introduisons les concepts liés aux notions gravitant autour du traitement d’images,
telles que les éléments structurants, les voisinages et les extensions (gestion des bordures) qui
sont nécessaires pour pouvoir travailler avec des algorithmes locaux.

Par la suite, nous utilisons les concepts présentés pour introduire la deuxieéme contribution
principale de cette theése : les vues d’image.
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Figure 3: Concept Image.

Les Vues d’Image

Cette notion de vues n’est pas nouvelle [24] et est apparue naturellement en Traitement d’images
avec Milena [96, 85] sous le nom de morpher [80, 95]. 1l était toujours utile de pouvoir projeter
une image a travers un prisme qui pourrait extraire des informations spécifiques a son sujet sans
avoir besoin de copier la mémoire tampon des données sous-jacentes. Aujourd’hui (2020), le
langage C++ (norme 20) introduit aussi ce mécanisme avec les ranges [184] pour les collections
non-propriétaires (de leur mémoire). Il est nommé vues (view) et permet a l'utilisateur d’accéder
au contenu d’une collection de données (vector, map) a travers un prisme. Dans Pylene, nous
avons décidé de nous aligner sur la nomenclature normalisée dans C++20 afin de ne pas dérouter
I'utilisateur. De cette facon, une vue transform dans le traitement d’images fait la méme chose
sur une image que ce que la vue transform fait sur un conteneur (collection) dans la bibliotheque
de ranges standard. Les wvues présentent les propriétés suivantes : copie quasi gratuite, non-
propriétaire (ne posséde aucune mémoire tampon contenant des données), évaluation paresseuse
(l'acces a la valeur d’un pixel peut nécessiter des calculs) et composable. Lorsque les vues sont
chainées, le compilateur construit un arbre d’expressions (ou expression template tel qu’utilisé
dans de nombreuses bibliotheques de calcul scientifique telles qu’Eigen [84]). Le compilateur
connait donc le type de la composition finale et s’assure qu’il n’y ait pas de surcoiit en performance
a l'exécution (0-overhead).

En traitement d’images, un algorithme s’écrit naivement en prenant une ou plusieurs données
d’entrée (parmi lesquelles figurent la/les image(s) d’entrée), en effectuant un traitement sur ces
données d’entrée puis en retournant les données résultantes (ou une erreur). Prenons par exemple
I'algorithme mélange alpha (alpha-blending) qui peut étre implémenté en C++ naif comme suit :

void blend_inplace(const uint8_t* imal, uint8_t* ima2, float alpha,
int width, int height, int stridel, int stride2) {

for (int y = 0; y < height; ++y) {

const uint8_t* iptr = imal + y * stridel;
uint8_t* optr = ima2 + y * stride2;

for (int x = 0; x < width; ++x)
optr[x] = iptr[x] * alpha + optr[x] * (i-alpha);

Ce code a plusieurs défauts. Il fait des hypotheses fortes sur les images d’entrée : la contiguité
de ses données dans sa mémoire tampon et sa forme (2D). Supposons que notre utilisateur
veuille maintenant restreindre ’algorithme a une région spécifique a l'intérieur de I'image. Le
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mainteneur devrait alors fournir une surcharge de fonction pour I’algorithme avec un argument
d’entrée supplémentaire correspondant a la région d’intérét. Supposons que l'utilisateur veuille
ensuite prendre en charge la manipulation d’images 3D. Le mainteneur devrait également fournir
deux surcharges de fonction supplémentaires avec un argument de pas supplémentaire (un pour
lalgorithme de base, un l’algorithme prenant en compte une région d’intérét). Supposons
finalement que 'utilisateur souhaite uniquement manipuler le canal de couleur rouge. Alors le
mainteneur doit le prendre en charge et ajouter des surcharges de fonctions supplémentaires pour
chaque canal et/ou type de couleurs gérés. La complexité augmente grandement pour chaque
point de customisation que le mainteneur souhaite offrir & 1'utilisateur. Bien sfir, il est possible
d’empécher la duplication de code grace a une utilisation intelligente des techniques d’ingénierie
informatique (factorisation de code, etc.) mais la complexité fuiterait toujours a travers I’API
dans une certaine mesure. C’est ainsi que ’autre solution consiste a permettre a 'utilisateur
d’effectuer ces restrictions en amont de I’algorithme de maniére transparente afin que I’algorithme
en aval soit facile a écrire, comprendre et maintenir. Pour y parvenir, nous devons augmenter le
niveau d’abstraction autour des images d’'un niveau afin que nous puissions travailler directement
au niveau de 'image. L’algorithme de mélange alpha (alpha-blending) s’écrirait alors comme
indiqué dans la fig. [4]

ima imal ima2

Figure 4: Algorithme mélange alpha (alpha-blending) écrit au niveau de 'image.

Cette facon d’exprimer un algorithme est obtenue en introduisant des vues dans le traitement
d’images. Une image est maintenant une vue et peut étre restreinte/projetée/manipulée selon les
besoins de 'utilisateur avant de la transmettre a un algorithme. Méme l’algorithme de mélange
alpha (alpha-blending) peut entiérement étre réécrit en termes de vues, comme montré dans

la fig.

auto alphablend =
[1(auto imal, auto ima2, float alpha) {
return alpha * imal + (1 - alpha) * ima2;

};

(ima1] (alpha) (ima2) (1 - alpha)

Figure 5: Mélange alpha (alpha-blending), implémentation générique avec les views, et son arbre
d’expressions.

Etre capable d’effectuer de puissantes manipulations sur les images avant de les passer aux
algorithmes annule complétement le probleme initial qui consiste & avoir plusieurs surcharges de
fonctions pour un méme algorithme tout en maintenant et en documentant tous les arguments
optionnels associés. En effet, pour effectuer la transformation de mélange alpha (alpha-blending)
sur I'image d’entrée, tout ce que 'utilisateur doit faire est :

auto imal, ima2 = /* ... */;
auto ima_blended = alphablend(imal, ima2, 0.2);

Si 'utilisateur souhaite restreindre la région a mélanger ou le canal de couleur sur lequel travailler,
il lui suffit d’écrire la modification suivante :
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auto roi = /* ... */;
auto blended_roi = alphablend(view::clip(imal, roi), view::clip(ima2, roi), 0.2);
auto blended_red = alphablend(view::red(imal), view::red(ima2), 0.2);

La restriction est faite en amont de ’algorithme et propagée en aval sans augmenter la complexité
du code. De cette fagon, les vues augmentent considérablement ce que l'utilisateur peut faire,
tout en écrivant moins de code.

Entrée Conversion Sous-quantification Dil X Sortie
(RVB-16) Niveau de gris (conversion 8-bits) Lelausy (Gris 8-bits)

Figure 6: Exemple d’une pipeline de traitement d’images simple.

Nous voyons que les vues sont composables. L’une des caractéristiques les plus importantes
dans la conception d’une pipeline (généralement, en génie logiciel) est la composition d’objets.
Elle permet de composer des blocs simples entre eux pour former des blocs complexes. Ces
blocs complexes peuvent alors étre gérés comme s’il s’agissait a nouveau de blocs simples. Dans
la fig. 6, nous avons 3 opérateurs de traitement d’image simples Image — Image (la conversion
en niveaux de gris, la sous-quantification et la dilatation). Comme indiqué dans la fig. 7, la
composition des algorithmes considérerait ces 3 opérateurs simples comme un seul opérateur
complexe Image — Image qui pourrait ensuite étre utilisé dans une pipeline de traitement
d’image encore plus complexe. Tout comme les algorithmes, les vues d’image sont composables.
Par exemple, une vue de la vue d’une image reste toujours une image. Dans la fig. 7, nous
composons 'image d’entrée avec une vue de transformation en niveaux de gris puis avec une vue
de sous-quantification qui alimente enfin I'algorithme de dilatation.

Composition d’Algorithmes = MyComplexOperator

Entrée Conversion Sous-quantification Dilatati Sortie
(RVB-16) Niveau de gris (conversion 8-bits) Hatation (Gris 8-bits)
Composition de Vues d’Image = MyComplexImage

Figure 7: Exemple d’une pipeline de traitement d’images simple illustrant la différence entre la
composition d’algorithmes et la composition de vues d’image.

Les vues améliorent également 'utilisabilité. Le code pour composer des images dans la fig. 7
est presque aussi simple que :

auto input = imread(...);

auto A = transform(input, [](rgb16 x) -> float {
return (x.r + x.g + x.b) / 3.£; }; );

auto MyComplexImage = transform(A, [](float x)
-> uint8_t { return (x / 256 + .5f); }; );

Les personnes familiarisées avec la programmation fonctionnelle peuvent remarquer des
similitudes avec ces langages ou transform (map) et filter sont des opérateurs de séquence. Les
vues utilisent le paradigme fonctionnel et sont créées par des fonctions qui prennent une fonction
en argument : 'opérateur ou le prédicat a appliquer pour chaque pixel ; nous n’itérons pas a la
main sur les pixels de I'image.

De plus, les vues améliorent la ré-utilisabilité. Les extraits de code ci-dessus sont simples,
mais peu réutilisables. Cependant, suivant le paradigme de la programmation fonctionnelle, il est
assez facile de définir de nouvelles vues, car certains adaptateurs d’image peuvent étre considérés
comme des fonctions d’ordre supérieur pour lesquelles nous pouvons lier certains parametres,
comme nous le ferions avec la technique de currying [17]. Dans la fig. 8, nous montrons comment
la primitive transform peut étre utilisée pour créer une vue additionnant deux images, une vue
effectuant la conversion en niveaux de gris et une vue effectuant une sous-quantification. Ces vues



31

auto operator+(Image A, Image B) {
return transform(A, B, std::plus<>());

}

auto togray = []1(Image A) { return transform(4, [](auto x)
{ return (x.r + x.g + x.b) / 3.f; };)

}

auto subquantizel6to8b = [](Image A) { return transform(A,
[J(float x) { return uint8_t(x / 256 +.5f); });

};

auto input = imread(...);
auto MyComplexImage = subquantizel6to8b(togray(A));

Figure 8: Utilisation de fonctions d’ordre supérieur pour créer des opérateurs de vues personnal-
isées.

de base, réutilisable par la suite sont ensuite chainées ensemble pour créer une image complexe.
(Ces fonctions auraient pu étre écrites de maniere plus générique pour plus de ré-utilisabilité,
mais ce n’est pas le but ici.)

Par ailleurs, les vues sont évaluées paresseusement. L’opération étant enregistrée dans la vue
d’image, ce nouveau type d’image permet de mélanger des types d’image fondamentaux avec
des algorithmes. Dans la fig. [§] la création de vues n’implique aucun calcul en soi, mais retarde
plutot le calcul jusqu’a ce que 'expression v(p) soit invoquée. Parce que les vues peuvent étre
composées, I’évaluation peut étre assez retardée. Les adaptateurs d’image sont des expression
template [20} 40] car ils enregistrent les expressions utilisées pour générer I'image en tant que
parametre template. Une vue représente en fait un arbre d’expressions (fig. [5)).

En outre, les vues sont efficaces. Avec un design classique, chaque opération de la pipeline
est implémentée « par elleeméme ». Chaque opération nécessite que de la mémoire lui soit
allouée pour I'image de sortie. De méme, chaque opération nécessite que I'image soit entiérement
parcourue. Ce design est simple, flexible, composable, mais n’est pas efficace ni en termes de
mémoire ni en performance de calcul. Avec I’évaluation paresseuse, I'image n’est parcourue
qu’une seule fois (lorsque la dilatation est appliquée), ce qui a deux avantages. Premiérement, il
n’y a pas d’images intermédiaires, ce qui est tres efficient en termes de mémoire. Deuxiémement,
le parcours de I'image est plus rapide grace a une meilleure utilisation du cache mémoire et une
traversée sélective optimale. En effet, dans notre exemple (fig. @, traiter un pixel RVB16 depuis
I’algorithme de dilatation le convertit directement en niveaux de gris, puis le sous-quantifie en
8 bits, pour enfin le rendre disponible dans I'algorithme de dilatation. Il agit comme si nous
écrivions un opérateur optimal qui combinerait toutes ces opérations. Cette approche est quelque
peu liée aux opérations de fusion du noyau disponibles dans certaines spécifications HPC [150],
mais la fusion de vues est uniquement optimisée par le compilateur C++ [139]. L’aspect sélectif
se manifeste lorsqu’une région d’intérét intervient dans la pipeline de traitement. En effet,
I'intégralité de la pipeline n’est alors exécutée que sur la région d’intérét, et cela méme si cette
sélection n’est faite qu’a la toute fin de la pipeline de traitement.

Enfin, les vues améliorent la productivité. Tous les algorithmes de traitement d’images
fonctionnant pixel par pixel peuvent (et doivent) étre réécrits intuitivement en utilisant une vue
en une seule ligne. Les vues transform sont la clé permettant ce point. Cela implique qu’il existe
un nouveau niveau d’abstraction disponible pour le traiteur d’image lors du prototypage de son
algorithme. Le temps passé a la mise en ceuvre des fonctionnalités est réduit, donc le temps de
la boucle de rétroaction I'est également. Cela ameéne naturellement un gain de productivité au
traiteur d’image.
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Un pont entre le monde statique et le monde dynamique

Dans le monde de la programmation, il existe trois grandes familles de langages de programma-
tion [38] qui sont :

1. les langages de programmation compilés, tels que C, C++, Rust ou Go,
2. les langages de programmation interprétés, tels que Python, PHP, Lisp ou Javascript,
3. les langages de programmation hybrides, tels que Java ou C#.

Ces derniers ont une passe de compilation rapide qui compile le code source dans un bytecode
intermédiaire. Ensuite, ce bytecode est interprété via un interpréteur sur une machine héte.

NumPy.ndarray Cht oyl T C++ effacement de type

[mage Python | Informati¢n ndimage buffer
multicanal

Conversion

C++/Python Interface v

Type C++ concret
ndimage<T, dim>

Figure 9: Pont entre Python et C++ grace a Pybind11 et un effacement de type en C++.

Nous concevons de nombreuses solutions pour résoudre plusieurs types de problemes liés au
pont entre le monde statique et le monde dynamique. Nous présentons notre solution hybride
capable de rendre disponible notre bibliotheque générique C++ (statique) a partir de Python
(dynamique). Nous discutons a propos des différentes facons de réaliser ce pont, leurs avantages
et leurs inconvénients. Aussi, nous introduisons une nouvelle couche d’abstraction, le value-set,
qui est un moyen standard de manipuler les valeurs sous-jacentes d’une image, utilisable lors de la
mise en ceuvre d’algorithmes de traitement d’images. Cette nouvelle couche d’abstraction permet
notamment & 'utilisateur d’injecter du code c6té Python dans des routines C++ déja compilées.
Cependant, superposer les couches d’abstraction I'une apres I'autre, ou méme appeler du code
Python entraine forcément un surcotit du cé6té des performances. C’est pourquoi nous avons
réalisé un benchmark pour exposer clairement le coiit, en temps d’exécution, de nos différentes
solutions. Ce benchmark compare les quatre versions de notre algorithme d’étirement (stretch)
dont 'implémentation et I'utilisation sont détaillées dans le manuscrit. Le résultat est affiché
dans le table [1l

Type de Dispatch ‘ Compute Time ACompute Time
Value-set natif avec des types de valeurs C++ natifs (baseline) 0.0093s 0
Value-set comprenant un appel virtuel avec

des types de valeurs C++ natifs 0-1213s x13
Value-set comprenant un appel}vu"tuel avec 107385 “115

des types de valeurs C++ cachées par un effacement de type

Value-set injecté depuis Python avec Python avec

des types de valeurs C++ natifs 2154445 x2316

Table 1: Benchmark de toutes nos versions de 1’algorithme d’étirement (stretch).

Ce benchmark montre que chaque fois qu'une couche d’abstraction est ajoutée au-dessus
de la baseline, I'utilisateur doit s’attendre a un facteur 10x impactant les performances de son
code. De plus, appeler du code Python est immensément plus lent (2300x !) que la baseline.
Cela renouvelle I'intérét de recompiler la bibliotheque C++ générique avec un type paramétrique
supplémentaire connu plutét que de 'injecter depuis Python, surtout pour du code qui met
longtemps a s’exécuter. Pouvoir injecter du code Python facilite le prototypage et augmente la
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vitesse a laquelle 'utilisateur peut écrire son code. Cependant, le benchmark montre que ce n’est
pas une solution viable une fois que le prototype doit étre déployé dans un environnement de
production.

Continuité : Solutions basées sur le JIT, avantages et inconvénients Notre solution
hybride a certainement des avantages, mais son inconvénient majeur est la lenteur pour injecter
nos propres types depuis Python. Il existe une autre solution que cette these n’a pas eu 'occasion
d’approfondir. Cette solution est basée sur une technologie connue : la compilation Just-In-Time
(JIT) qui a été illustrée précédemment dans la fig. (et qui elle-méme repose sur la notion de
programmation générative [30]). Des bibliotheques telles que AsmJit [91] sont capables d’émettre
du code machine directement en effectuant un appel depuis du code C++. En effet, c’est une
technologie déja utilisée par les langages interprétés tels que Java ou PHP pour générer a la
volée du code machine natif et optimisé pour la section du code source qui est considéré comme
« chaud » par l'interpréteur. Un code source est « chaud » lorsqu’il est beaucoup exécuté :
I'utilisateur final gagnerait beaucoup a payer le temps de compilation une fois pour que ce
code soit exécuté plus rapidement plusieurs fois par la suite. Appliquer cette solution a notre
problématique signifierait que 1'utilisateur devrait étre capable de compiler du code machine
natif & partir du code C++ générique en injectant le type demandé, en tant que parameétre
template, lorsqu’il est utilisé. Une telle opération déplace une forte charge sur l'utilisateur,
la compilation (habituellement gérée par le mainteneur), et il est bien connu que compiler du
code C++ est notoirement compliqué et lent. De plus, la bibliotheque doit étre capable de
générer automatiquement 'interface la liant au Python une fois le code C++ compilé et de gérer
nativement les types NumPy.ndarray dans l'interface. Il existe plusieurs solutions pour parvenir
a cet objectif.

Interpreteur

Détection de
« code chaud »

.py, code
source Python

Résultat

Compilateur bytecode

v

.pyc, code
machine natif

Compilation du bytecode

Au moment de I'exécution

Figure 10: Langage interprété : diagramme d’exécution

La premiére solution consiste basiquement a faire des appels systeme aux compilateurs pour
réellement compiler le code C++ une fois que le/les types template sont connus et explicitement
instanciés dans le code source. Cette solution nécessite une génération minutieuse de code, et
que 'utilisateur possede un compilateur fonctionnel sur son ordinateur. De plus, I'utilisateur doit
résoudre toutes les dépendances de la bibliotheque, comme freeimage pour les entrées/sorties,
etc. Cette solution a été congue dans la bibliotheque VCSN [10§]. En effet, & chaque fois que
I'utilisateur déclare un nouvel automate dans son notebook Jupyter, le code source correspondant
est compilé en arriere-plan puis est mis en cache. C’est une solution trés périlleuse a mettre
en place lorsque l'environnement d’exécution final (OS, logiciels installés) n’est pas bien connu
a ’avance. De nos jours, le probleme peut étre moindre. Cependant, il nécessite toujours de
maintenir & la fois la bibliotheque et la solution de conteneur pour 'utiliser (par exemple Docker).
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La deuxiéme solution est d’utiliser Cython [88]. C’est une infrastructure de transpilation qui
transforme un code source Python directement dans du code source du langage C afin qu’il puisse
étre compilé par un compilateur C/C++ standard simplement en résolvant 1’édition des liens
contre ’API Python/C. Cela supprime la charge d’écrire la routine de génération minutieuse
de code, les appels systéme au compilateur C++, et cela supprime aussi le besoin de résoudre
toutes les dépendances. Cette infrastructure s’occupe de tout pour I'utilisateur. Cython prend
méme en charge les template C++ [176] qui sont obligatoires pour notre cas d’utilisation.

La troisieme solution consiste a s’appuyer sur des projets récents qui reposent tous sur
I'infrastructure LLVM. Nous pouvons notamment citer AutoWIG [141], Cppyy [130], Xeus-
cling |173] et Pythran [123]. AutoWIG a du code « maison » basé sur LLVM/Clang pour
analyser le code C++ afin de générer et compiler une interface Python via Swig a I’aide du
moteur de template Mako. AutoWIG, couplé & Cython permettrait a I'utilisateur, par exemple,
de générer du code C lié a une structure Python personnalisée. Ensuite, un simple appel a
AutoWIG analysera le code C et I'injecterait dans la bibliothéque C+4 pour générer 'interface
utilisable par I'utilisateur. En ce qui concerne Cppyy, il est basé sur LLVM/Cling, un interpréteur
C++, et peut interpréter directement du code C++ a partir d’une chaine de caractéres Python.
Cela permet d’injecter facilement des types personnalisés, qu’ils soient dans du code Python
(possiblement transpilé avec Cython) ou du code C++ (directement interprété par Cling). Ensuite,
I'infrastructure géneére 'interface utilisable a partir de la bibliotheque C++ générique pour le
type injecté demandé. Xeus-cling est un noyau Jupyter prét a 'emploi permettant 'utilisation du
code C++ directement a partir d’un notebook. Cela rend possible de contourner completement le
besoin d’avoir une interface avec Python et permet a 'utilisateur d’utiliser la bibliothéque depuis
un notebook comme s’il s’agissait une bibliotheque Python. Enfin, Pythran est un compilateur «
avancé » pour un sous-ensemble du langage Python, axé sur le calcul scientifique. Il prend un
code Python annoté avec quelques descriptions dans son interface et le transforme en un module
Python natif avec la méme interface, mais en espérant qu’il soit plus rapide. Pythran tire parti
du multicceur et des instructions SIMD pour transformer son sous-ensemble du langage Python
en code C++ fortement générique instancié pour des types optimisés bien particuliers. Toutes
ces infrastructures, cependant, ont un cofit élevé en termes de taille de binaire. En effet, un
compilateur C++ n’est pas petit et 'embarquer avec la bibliothéque de traitement d’images
peut facilement avoir un impact considérable sur la taille du binaire final. Sans I'infrastructure
LLVM, le binaire peut peser environ 3 Mo. Avec linfrastructure LLVM, le poids du binaire
devient au strict minimum 50 Mo. De plus, ces solutions peuvent ne pas étre immédiatement
plus rapides. En effet, lors de la phase de prototypage et des multiples allers-retours avec une
large variété de types, I'utilisateur peut ne pas vouloir se montrer patient a attendre les longs
temps de compilation a chaque fois qu’il teste avec une nouvelle itération de son travail. Malgré
cela, ces solutions offrent d’excellentes voies de recherche pour I’avenir et nous sommes impatient
de les explorer.

Conclusion

Le travail que nous présentons dans cette theése suit un arc narratif tres clair. L’accent a d’abord
été mis sur la présentation de la notion de programmation générique (généricité), son histoire
et comment chacun(e) peut la comprendre, notamment dans sa vie de tous les jours, et en
particulier lorsqu’elle est appliquée au traitement d’images. La généricité est une notion vieille
de quatre décennies qui a évolué et trouvé une utilisation dans des domaines modernes de notre
société. En effet, le traitement d’images est largement utilisé pour construire des applications
utilisées dans le monde entier. Cependant, il a été démontré a quel point il peut étre difficile de
mettre en ceuvre des solutions reposant sur la généricité. En effet, il existe une regle de trois
liant généricité, performance et facilité d’utilisation énoncée en introduction. Dans cette thése,
nous essayons de démontrer comment briser cette regle, et ce, en trois étapes.
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La premiere étape, illustrée dans Tazonomy for Image Processing, a consisté a faire un
inventaire des types et familles d’images ainsi que des différents algorithmes de d’images. L’objectif
a été de produire une taxonomie compléte des types (pixel, image, éléments structurants, . ..)
et algorithmes (locaux, globaux, ...) liés au traitement d’images afin de pouvoir extraire les
Concepts (au sens Concepts C++). Cette premiere étape délimite le périmetre de ce que nous
englobons dans la notion de généricité. A partir de ce point de départ, il devient plus facile
d’écrire des algorithmes de traitement d’images, juste en s’appuyant sur ces concepts. De
plus, différents concepts existent pour permettre aux développeurs d’algorithmes d’exploiter
des propriétés (décomposabilité des éléments structurants, contiguité du buffer de I'image, .. .)
afin d’atteindre des performances maximales. A ce stade, nous raisonnons encore 4 un niveau
bas (pixel) ce qui génére le besoin de designer une couche d’abstraction afin de permettre un
prototypage rapide pour des opérations simples tout en garantissant une empreinte mémoire tres
faible et proche de zéro impact sur les performances.

Pour cette raison, dans cette seconde étape, nous étendons le concept de vues du standard
C++ (2020) aux images et nous clarifions la notion de vues d’image. Nous faisons également le
choix de conception d’avoir une image légére, peu coiiteuse a copier (données partagées dans le
buffer) par défaut afin de fusionner les vues et I'image concréte selon le point de vue 'utilisateur.
L’évaluation paresseuse, qui se produit systématiquement lors de 1’utilisation des vues permet
un gain de performances lors du découpage d’images volumineuses. Dans le cas ou I'image est
traitée dans son entiereté, nous sommes tout de méme capables d’obtenir des performances tres
satisfaisantes qui restent stables. Nous montrons aussi, a travers des cas d’utilisation concrets tels
que les algorithmes fonctionnant pixel par pixel et la gestion des bordures, comment 1'utilisation
des vues simplifie grandement la fagon d’écrire des algorithmes de traitement d’images plus
complexes, et efficaces par défaut. Nous discutons enfin des limites de cette approche, avec un
accent particulier sur la vitesse de parcours d’une image, qui est un cas d’utilisation obligatoire
que nous devons maitriser.

Dans la troisiecme de cette thése, nous avons porté notre attention sur la maniére dont
il est possible de distribuer ce logiciel & la communauté des traiteurs d’image qui travaille
principalement avec Python. Cette derniére contribution concentre ses efforts sur la recherche de
la meilleure fagon de concevoir un pont statique (C++ template, temps de la compilation) —
dynamique (notebook Jupyter Python, moment de ’exécution) pour apporter efficacement ces
notions (concepts et vues) au traiteur d’image. Cette derniére contribution explore également
ce dilemme et propose de I’aborder avec une solution hybride dont le design et les motivations
sont expliqués en profondeur. Cette solution hybride s’appuie sur la technique de I'effacement de
type qui offre une compatibilité avec NumPy.ndarray [161]. Ce type (effacé) est alors capable de
se convertir au sein d’un dispatcher de cardinalité n x n (dimension et type sous-jacent) dans
un type C++ template concret et optimisé. Cette solution explique aussi comment écrire tres
simplement le code « glue » permettant d’exposer en Python des algorithmes déja existants (en
C++) grace a une mécanique de dispatch fortement inspirée du standard C++ (std: :visit,
std::variant). Le but de cette solution est de regrouper en un seul endroit dans le code tous
les types supportés dans les dispatchers pour faciliter la maintenance et n’avoir qu’un travail
minimal demandé a la personne qui implémente les algorithmes pour les exposer au Python, tout
cela en gardant des performances natives. En effet, aucune copie superflue n’est effectuée grace a
pybind11 et son type-caster : une seule conversion est effectuée depuis le type effacé vers le type
natif. Tout le travail qui est fait dans ’algorithme est effectué sur le type natif optimisé. Enfin,
cette solution offre un moyen d’injecter des types Python personnalisés dans la bibliotheque C++
générique a des fins de prototypage, grace a une nouvelle couche d’abstraction, mais au prix de
lourdes pertes de performance. L’inconvénient de cette solution est évidemment le « gonflement
» du binaire dont la taille s’accroit avec la cardinalité des types paramétriques (nombre de types
pris en charge multiplié par le nombre d’algorithmes multiplié par le nombre d’autres données
supportées (éléments structurants, label map, etc.)).
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Nous concluons cette thése en proposant de nouvelles pistes de recherche autour du domaine
de la compilation Just-In-Time (JIT) pour améliorer encore le pont entre le monde statique
et le monde dynamique. Nous pensons que cette piste mérite d’étre explorée, surtout avec les
outils déja existants tres prometteurs (Xeus-cling, Cppyy, Cython, AutoWIG, Pythran) afin de
résoudre le probléeme d’accroissement de la taille du binaire. En effet, nous ne devrions compiler
que ce dont l'utilisateur a besoin, mais le prix d’entrée peut étre d’embarquer statiquement un
interpréteur C++ (LLVM/cling 7) dans son binaire, ce qui en soi entrainerait une augmentation
forfaitaire non négligeable de la taille du binaire. Il peut étre possible, cependant, de s’appuyer
sur 'infrastructure systéme de 'utilisateur pour que le mainteneur ne soit pas obligé de distribuer
un interpréteur /compilateur C++ en méme temps que le binaire de sa bibliotheque de traitement
d’images. Il s’agit encore d’'un domaine de recherche nouveau et nous souhaiterions vivement
I’approfondir pour étudier ce qu’il est possible de réaliser des aujourd’hui avec ces outils pour la
communauté du traitement d’images.
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Chapter 1

Introduction

Outline

OWADAYS Computer Vision and Image Processing (IP) are omnipresent in the day-to-day

life of the people. It is present each time we pass by a CCTV camera, each time we go to

the hospital do an MRI, each time we drive our car and pass in front of a speed camera and each

time we use our computer, smartphone or tablet. It cannot be avoided anymore. The systems

using this technology are sometimes simple and, sometimes, more complex. Also, the usage made

of this technology serves many purposes such as space observation, medical imaging, quality of

life improvement, surveillance, control, autonomous system, etc. Henceforth, Image Processing

has a wide range of research and, despite having a mass of previous of work already contributed
to, there are still a lot to explore.

Let us take the example of a modern smartphone application which provides facial recognition
in order to recognize people whom are featuring inside a photo. To provide an accurate result,
this application will have to do a lot of different processing through several steps. In addition,
there are a lot of variables to handle. We can list (non exhaustively) the weather, the light
exposition, the resolution, the orientation, the number of person, the localization of the person,
the distinction between humans and objects or animals, etc. All of these elements needs to
be carefully handled in order to finally recognize the person(s) inside the photo. What the
application does not tell you is the complexity of the image processing pipeline behind the scene
that, most of the time, cannot even be executed in its entirety on one’s device (smartphone,
tablet, ...). Indeed, image processing is costly in computing resources and would not meet
the time requirement desired by the user if the entire pipeline was executed on the device.
Furthermore, for the final part which is “recognize the person on the photo”, the application
needs to feed the pre-processed photo to a neural network trained beforehand through deep
learning techniques in order to give an accurate response. There exists technologies capable of
embedding neural network into mobile phone such as MobileNets [135], but it remains limited
in terms of operational capabilities. It can, for instance, detect a human being inside a photo
but not give the answer about whom this human being is. That is why, accurate neural network
system usually are abstracted away in cloud technologies making them available only via Internet.
When uploading his image, the user does not imagine the amount of technologies and computing
power that will be used to find who appears on the photo.

We now understand that, to build applications that interact with photos or videos nowadays,
we need to be able to do accurate, fast and scalable image processing on a multitude of devices
(smartphone, tablet, ...). In order to achieve this goal, image processing practitioners need to
have two kinds of tools at their disposal. The first one is the prototyping environment that is
a toolbox which allow the practitioner to develop, test and improve its application logic. The
second one is the production environment which deploys the viable version of the application
that was developed by the practitioner. Both environments may not have the same needs. On
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one hand, the prototyping environment usually requires a fast feedback loop for testing, an
availability of state-of-the-art algorithms and existing software. This way the practitioner can
easily build on top of them and be fast enough so that he does not wait a long time to get the
results when testing many prototypes. On the other hand, the production environment must be
stable, resilient, fast and scalable.

When looking at standards in the industry nowadays, we notice that the Python programming
language is the main choice for prototyping. However, Python may not be suitable to push a
viable prototype in production with minimal changes afterwards. We find it non-ideal that the
practitioner cannot take advantages of many optimization opportunities, both in terms of better
algorithm efficiency and better hardware usage, when proceeding this way. It would be much
more efficient to have basic low level building blocks that can be adapted to fit as mush use
cases as possible. This way, the practitioner can easily build on top of them when designing his
application. We distinguish two kinds of use cases. The first one is about the multiplicity of
types or algorithms the practitioner is facing. The second one is about the diversity of hardware
the practitioner may want to run his program on. The goal is to have building blocks that can
be intelligent enough to take advantage of many optimization opportunities, with regard to
both input data types/algorithms and target hardware. Then the practitioner would have an
important performance improvement, by default, without specifically tweaking his application.
As such, the concept of genericity is introduced. It aims at providing a common ground about
how an image should behave when passed to basic algorithms needed for complex applications.
This way, in theory, one only needs to write the algorithm once for it to work with any given
kind of image.

Different data types and algorithms

In Image Processing, there exists a multitude of image types whose characteristics can be vastly
different from one another. This large specter is also resulting from the large domain of application
of image processing. For instance, when considering photography we have 2D image whose values
can vary from 8 bits grayscale to multiple band 32-bits color scheme storing information about
the non-visible specter of human eye. If we consider another domain of application, such as
medical imaging, we can now consider sequence of images such as sequence of 3D image for an
MRI for instance. More broadly there are two orthogonal constituents of an image: its topology
(or structure) and its values. However, there are two more aspects to consider here. Firstly,
image processing provide plenty of algorithms that can or cannot operate over specific data types.
There are also different kind of algorithms. Some will extract information, (e.g. histogram)
others will transform the image point-wise (e.g. thresholding), and some other will even combine
several images to render a different kind of information (e.g. background subtraction). There
are many simple algorithms and also many complex algorithms out there. Secondly, there are
orbiting data around image types and algorithms that are also very diverse and necessary for
their functioning. Indeed, a dilation algorithm will need an additional piece of information: the
dilation disc. A thresholding algorithm is given a threshold. A convolution filter requires a
convolution matrix to operate. That is why, when considering both image types and algorithms,
we need a 3D-chart (illustrated in fig. to enumerate all possibilities, where one axis is the
image topology, one axis is the color scheme and one axis enumerate the additional data that
can be associated to an image.
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Figure 1.1: Illustration of the specter of the multitude of possibilities in the image processing
world.

Different user profiles and their use cases

The end user He is a non-programmer user who wants to occasionally use image processing
software through Ul-rich interface, such as Adobe Photoshop [167] or The GIMP [156]. His skills
are non-relevant as the end user is using the software to get work done even though he does not
fully understand the underlying principles. For instance, the end user will want to correct the
brightness of an image, or remove some impurities from a face or a landscape. The end user
does not want to build an application but wants to save time. His needs mainly revolve around
a clean and intuitive software Ul as well as a well as support for mainstream image types and
operation a photograph needs to do.

The practitioner He is what we become after we first approach the image processing area. A
practitioner is the end user of image processing libraries. His skills mainly revolve around applied
mathematics for image processing, prototyping and algorithms. A practitioner aims at leveraging
the features the libraries can offer him to build his application. For instance, a practitioner can
be a researcher in medical imaging, an engineer building a facial recognition application, a data
scientist labeling his image sets, etc. The needs of practitioners mainly revolve around a fast
feedback loop. The development environment must be easy to set up and access. This way a
practitioner can judge quickly whether one library answers his needs. The documentation of
the library must be exhaustive and didactic with working examples. When prototyping, the
library must provide a fast feedback loop, as in a Python notebook for instance. Finally, the
library must be easy to integrate in a standard ecosystem, such as being able to work with
NumPy.ndarray [75, 69, 161] natively without imposing its own types. To sum up, practitioner’s
programmatic skills do not need to be high as his main goal since to focus on algorithms and
mathematics formulas.

The contributor He is an advanced user of a library who is very comfortable with its inner
working, philosophy, aims, strengths and potential shortcomings. As such, he is able to add
new specific features to the library and fix some shortcomings or bugs. Usually a contributor is
able to add a feature needed by practitioner to finish his application. Furthermore, he can then
contribute back this features to the main project via pull requests if it is relevant. This way, a
maintainer will assess the pull request and review it. The two main points of a contributor are
his deep knowledge of a library and his ability to write code in the same language as the source
code of the library. Also, a contributor must have knowledge of programming best practices



50 CHAPTER 1. INTRODUCTION

such as writing unit tests which are mandatory when adding a feature to an existing library.
To facilitate contribution, a library must provide clear contribution guidelines, must be easy to
bootstrap and must compile without having heavy requirements or dependencies. The best case
would be that the library is handled by standard packages managers such as the system’s apt,
Python’s pip or Conan.

The maintainer He is usually the creator, founder of the library or someone that took over
the project when the founder stepped back. Also, when a library grows, it is not rare that regular
contributors end up being maintainer as well to help the project. The maintainer is in charge of
keeping alive the project by fulfilling several duties, such as upgrading and releasing new features
according to the user (practitioner) needs and the library philosophy. Also, a library may not
evolve as fast as the user requests it because of lack of time from maintainers. A lot of open
source projects are maintained by volunteers and lack of time is usually the main aspect slowing
development progress. The maintainer is also in charge of reviewing all the contributors pull
requests. He must check if they are relevant and completed enough, (for instance, presence of
tests and documentation) to be integrated in the project. Indeed, merging a pull requests equals
to accepting to take care of this code in the future too. It means that further upgrade, bug fix,
refactoring of the project will consider this new code too. If the maintainer is not able to take
care of this code then it should probably not be integrated in the project in the first place. All
living projects and libraries have their maintainers. A maintainer is someone very familiar with
the inner working and architectural of the project. He is also someone that has some history in
the project to understand why some decisions or choices were made at some point in the past,
and what the philosophy of the project is. It is important to be able to refuse a contribution
that would go contrary to the philosophy of the project, even a very interesting one. Finally, the
typical profile of a maintainer is a senior developer that is used to the standard workflow in open
source (forks, branches, merge/pull requests and continuous integration).

Different tools

Before stating the topic of the thesis, it is important to enumerate the different kind of tools the
market currently has to offer to know where we will be positioning ourselves.

Graphic editors They are what neophyte thinks about when they imagine what image
processing is. Those are tools that allow a non-expert user to apply a wide array of operation on
an image with an intuitive GUI, in a way the user does not have to understand the underlying
logic behind each and every operation he is applying. Such tools are usually large complex
software such as The GIMP [156] or Photoshop [167]. Their aim is to be usable by end users
while supporting a large set of popular image format and operations.

Command line utilities They are binaries that perform one or more operation, invocable
from a console interface or from a shell script through a command line interface (CLI). This
CLI usually offers several options to pass data and/or information to the programs in order
to perform an action. The information can be, for instance, the input image path, the output
image path and the name of a mathematical morphology [111, |83] algorithm to apply. Usually,
command line utilities come as projects, such as ImageMagick [174], GraphicsMagick [160] or
MegaWave [94, 58].

Visual programming environment They are software that allow the user to graphically and
intuitively link one or several image processing operations while interactively displaying the result.
The processing can easily be modified, and the results are updated accordingly. Those pieces of
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software are usually aimed at engineer or researchers doing prototyping work not exclusive to
image processing. Mathcad [154] is a good example of such a software.

Integrated environment They are feature-rich platforms for scientists oriented toward
prototyping. Those platforms provide a fully functional programming language and a graphical
interface allowing the user to run commands and scripts as well as viewing results and data (image,
matrices, etc.). The most well-known integrated environment are Matlab [163], Scilab [165],
Octave [170], Mathematica [166] and Jupyter [129] notebooks.

Package for dynamic language It has known a surge in development these last few years
and a multitude of libraries has been brought to dynamic languages this way. For instance, let us
consider the Python programming language. There are two main package providers: PyPi [175]
and Conda [158]. Both allow to install packages to enable the user to program his prototypes
in Python very quickly. In image processing, there are packages such as SciPy [45], NumPy,
Scikit-image [120], Pillow [168] as well as binding for OpenCV [29].

Programming libraries They are the most common tool available out there. They are a
collection of routines, functions and structures providing features through a documentation
and binaries. Furthermore, they require the user to be proficient with a certain programming
language and also to be able to integrate a library into his project. For image processing we
have: IPP [60], ITK |110], Boost.GIL [63], Vigra [37], GrAL [62], DGTal [125], OpenCV [29],
Clmg [105], Video++ [115], Generic Graphic Library [36] Milena [96| |80, |85] and Olena [191, (92,
95, [118].

Domain Specific Languages (DSL) [32] They are tools developed when a library developer
deem he is unable to express the concepts and abstraction layers he wants to express through
publishing a library. In this case, the barrier is often the programming language itself and so the
developer thinks that another layer of abstraction above the programming language would be a
good thing. It leads to the genesis of new programming languages in some cases, like Halide [112]
and SYCL [147, |146] but can also be a case of having the current programming language be
“upgraded” to include another subset of features that are not natively included. This is often the
case in C++ where we have in-language DSL like Eigen [84], Blaze [97, 98], Blitz++ [40} 26]
or Armadillo [131]. They leverage a possibility of the C++ programming language (expression
templates [20]) to achieve it.

Topic of this thesis

In the end, it is often known that there is a rule of three about genericity, efficiency and ease of
use. The rule states that one can only have two of those items by sacrificing the third one. If
one wants to be generic and efficient, then the naive solution will be very complex to use with
lots of parameters. If one wants a solution to be generic and easy to use, then it will be not very
efficient by default. If one wants a solution to be easy to use and efficient then it will not be
very generic. To illustrate this rule, we can find examples among existing libraries. A notably
generic and efficient library in C++ is Boost [169]: it is also notably known to be hard to use.
Components such as Boost.Graph, Boost.Fusion or Boost.Spirit are hard to use. Also, a library
which is generic and easy to use is the Json parser written by Niels Lohmann [172]. It strives to
handle every use case while remaining very easy to integrate and to use in user code (syntax
really close to native Json in C++ code by providing DSL to parse C++ constructs into JSON).
However, this has a cost and the parser is slower than Json parser optimized for speed such as
simdjson [171] whose aim is to “parse gigabytes of JSON per second”. Finally, there are plenty of
example of user-friendly and efficient code which is not generic. We can cite Scikit-image [120]
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and OpenCV [29] that are easy to use and efficient (lot of handwritten SIMD/GPU code) but
not generic due to the design choices.

In this thesis, we chose to work on an image processing library through continuing the work
on Pylene [140]. But only working at library level would restrict the usability of our work and
thus its impact. That is why we aim to reach prototyping users (practitioners) through providing
a package that can be used in dynamic language, such as Python, without sacrificing efficiency.
In particular, we aim to be usable in a Jupyter notebook. It is a very important goal for us to
reach a usability able to permeate into the educational side, which is a strength of Python. In
this library, we demonstrate how to achieve genericity and efficiency while remaining easy to
use, all at the same time. In doing so, we are endeavoring to break through the rule of three
presented previously. The scope of this library is limited to mathematical morphology [111] [83]
and to the provision of very versatile image types. We leverage the modern C++ language and
its many new features related to genericity and performance to break through this rule in the
image processing area. Finally, we attempt, to bring low level tools and concepts from the static
world to the high level and dynamic prototyping world for a better diffusion and ease of use,
thanks to a bridge between those two worlds.

With this philosophy in mind, this manuscript aims at presenting our thesis work related to
the C++ language applied to the Image Processing domain. It is organized as followed:

Generic Programming (genericity) E] This chapter presents a state-of-the-art overview
about the notion of genericity. We explain its origin, how it has evolved (especially within the
C++ language), what issues it is solving and what issues it is creating. We explain why image
processing and genericity work well together. Finally, we tour around existing facilities that
allows genericity (intrinsically restricted to compiled language) to exists in the dynamic world
(with interpreted languages such as Python).

Taxonomy for Image Processing: Image types and Algorithms This chapter presents
our first contribution in the image processing area which is a comprehensive work consisting
in the taxonomy of different image types families as well as different algorithms families. This
chapter explains, among others, the notion of concept and how it applies to the image processing
domain. We explain how to extract a concept from existing code and how to leverage it to make
code more efficient and readable. We finally offer our take in the form of a collection of concepts
related to image processing area.

Images Views This chapter presents our second contribution which is a generalization of
the concept of View (from the C++ language, related to ranges [143]) to images. This allows
the creation of lightweight, cheap-to-copy images. It also enables us to design image processing
pipeline a much simpler way; simply by chaining operations directly in the code in an intuitive
way. Ranges are the cement of new designs to ease the use of image into algorithms which can
further extend their generic behavior. Finally, we discuss the concept of lazy evaluation and the
impacts of views on performance.

A bridge between the static world and the dynamic world This chapter presents our
third contribution which is a way to grant access to the generic facilities of a compiled language
(such as C++) to a dynamic language (such as Python) to ease the gap crossing between the
prototyping phase and the production phase. Indeed, it is really not obvious to be able to
conciliate generic code from C++ whose genericity is resolved at compilation-time (we call it the
“static world”), and dynamic code from Python which rely on pre-compiled package binaries (we
call it the “dynamic world”), to achieve an efficient communication between the dynamic code
and the library. We also cannot ask of the user to provide and use a compiler each time he wants
to use our library from Python. In this chapter, we discuss what are the existing solutions that
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can be considered as well as their pros. and cons. We then discuss how we designed a hybrid
solution to build the bridge between the static world and the dynamic world.
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INTRODUCTION



Chapter 2

Generic programming (genericity)

N natural language we say that something is generic when it can fit several purposes at once
while remaining decently efficient. For instance, a computer is a generic tool that allows to
write documents, access emails, browse Internet, play video games, watch movies, read e-books etc.
In programming, we say that a tool is generic when it can fit several purposes. For instance, the
gce compiler can compile several programming languages (C, C++, Objective-C, Objective-C++,
Fortran, Ada, D, Go, and BRIG (HSAIL)) as well as target several architectures (IA-32 (x86),
x86-64, ARM, SPARC, etc.). Henceforth, we can say that gcc is a generic compiler. At this
point it is important to note that, even though a tool is deemed generic, there is a scope on what
the tool can do and what the tool cannot do. A compiler, despite supporting many languages
and architectures, will not be able to make a phone call or a coffee. As such it is important
to note that genericity is an aspect that qualifies something. We will now studies the generic
aspects related to libraries and programming languages.

This thesis voluntary leaves out the generic aspect related to the target architecture. Indeed,
being able to write and/or generate code that is able to run on a large array of different hardware
architectures is a field of research on its own and is not the main focus of this thesis. It is also
known as heterogeneous computing. This field saw the birth of its own standards (SYCL [147,
146]) and libraries solving different problems, such as Halide [112], which provides its own
DSL (Domain Specific Language) to write code that will run on GPUs. In pure C++ there
exists several high performance math library for linear algebra, dense and sparse arithmetic
which are optimized to produced very optimized code (vectorized instruction support, parallel
execution etc.). The most popular libraries are Eigen [84], Blaze (98, (99} |97], Blitz++ 40, |26]
and Armadillo [131} 132} 145] leveraging ezpression templates [20] to achieve their goal. Also,
we note that Eigen is compatible with GPU source code [177] and can be used inside Cuda
kernels. A Cuda extension for Blaze was released recently [152] and allow its use in GPU code as
well. Armadillo uses BLAS [46] as underlying linear algebra routines, which enables one to link
against the GPU-accelerated NVBLAS (NVidia) [178] or ACML-GPU (AMD) [107] as drop-in
replacement for BLAS to offload the work on GPU. All those libraries have set performance
as their main goal. They try to provide generic ways to solve issues related to parallelism
and/or vectorization while making use of expression templates for lazy computing (which will be
seen in section . They do not aim to be able to handle as many input types as possible,
however, the lazy-computing techniques is used to generate new types on-the-fly. Henceforth,
those libraries still need to embed generic facilities to handle their own internal set of types. This
thesis addresses genericity at the input level rather than the target architecture level, henceforth,
we will not address this topic here.

History Genericity takes its root in Aug. 1978 when Backus publishes his paper about functional
programming [2]. Backus thinks that there exists five computation forms with which one can
build up all the rest of the computational infrastructure. Every piece of software, for Backus, is
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built from those five functional forms. Furthermore, the initial work of Backus does not use the
possibility offered by mutations in his five computational forms. These forms will lead to the birth
of the functional programming paradigm (notably famous for its value immutability). Stepanov,
a mathematician, thinks that those forms are theorems. He also thinks that there is an infinite
number of theorem (as in mathematics) and that reducing their number to five for software
programming is reductive. He publishes in 1987 7] that one cannot ignore the mutability of
states if one wants to achieve maximum efficiency. Stepanov reasons about software programming
by drawing a parallel with algebraic structures. Indeed, let us consider the classical parallel
computation model (map-reduce [77]). In this model, being able to reorder computation is a
prerequisite in order to have a reduction that works. Reordering computation can be reworded as
the associative property of an algebraic structure; the monoid [148] which is a triplet consisting
of a data structure, an associative binary operation and a neutral element. Stepanov thinks
that we extract those data structures and those laws or properties from software program the
same way as we discover theorems and axioms in mathematics. The software would then be
defined on top of algebraic structures, and it’s the software programmer’s job to discover the
data structures and the laws that compose them.

This reflection leads to the publication of “Generic programming” [8] in which the term
Generic Programming first appears. “By generic programming, we mean the definition of
algorithms and data structures at an abstract or generic level, thereby accomplishing many
related programming tasks simultaneously. The central notion is that of generic algorithms, which
are parametrized procedural schemata [5] that are completely independent of the underlying
data representation and are derived from concrete, efficient algorithms.”. This article [8] leads to
the genesis of the book The Ada Generic Library linear list processing packages [9] where was
published the first work about a generic library consisting of algorithms and data structures.
Then Stepanov and Lee wrote the first version of the Standard Template Library [19] in 1995
which is a carefully crafted library made of basic algorithms to manipulate algebraic structures
(data structures) that is still an authority up to this day. This standard template library was
then incorporated alongside the C++ language for the release of the first ISO standard of the
language in 1998 |25]. That same year is published “Fundamentals of Generic Programming” [31].
This is the first place where the term concept appears as “a set of axioms satisfied by a data type
and a set of operations on it.” This term is designed to include the complexity of an operation
as part of an axiom in software programming. Also, it is introduced to replace the previously
used mathematical terms that could not carry the notion of complexity. It is also the first place
where the notion of regular type appears: “Since we wish to extend semantics as well as syntax
from built-in types to user types, we introduce the idea of regular type, which matches the
built-in type semantics, thereby making our user-defined types behave like built-in types as well.”
Efforts were made by Gregor et al. in [67, [66] in 2006 to introduce them into C++11 [90], but
it ultimately failed, and the feature was pulled off of the C++ standard [186]. This had major
consequences on the language. Indeed, the standard body did not publish a standard for 13
years, which is a long period in the information technologies area, leading to adoption of more
recent, more maintained/evolving languages by the industry. The standard body then decided
to review its publication process and has set a 3 years deadline in between each new standard
release. Features must be ready in due date before being merged into the new standard version
or else they are delayed to the next standard version (3 years later). The standard body decided
that it will not wait for a feature to be ready to publish its next release.

Before publishing Elements of Programming [82], Stepanov presented his view of Generic
programming to Backus. Backus “always knew that at some points he needed to figure out
mutation into functional programming and we can view generic programming as functional
programming with a well-defined way to handle mutation.” Unfortunately Backus passed away
before being able to write the forewords of Elements of Programming book [144]. The term
generic programming never appears in this book because Stepanov thought he lost control over
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it. In practice, it has evolved into metaprogramming, effectively associated to C++ template
metaprogramming instead of being associated with the underlying mathematics, algebraic
structures, data structures and algorithms. This book introduces the require clause on algorithms
in order to achieve constrained genericity.

In order to pursue the introduction of concepts into the C++ language, a workshop was held
in 2012 and its summary was published in “Design of Concept Libraries for C+4" [104]. It is
referred to as the Palo Alto report, and it summarizes what design the committee wanted for
concepts and what problem(s) it would solve |103]. Indeed, Elements of Programming argues that
just having constrained template was already incredibly useful, and the STL could be described
in terms of require clauses (as in requiring a behavior). This subset becomes known as “concepts
light” and was enriched to become later what would be standardized in C++20.

Stepanov then published From mathematics to generic programming [119] that traces the
history of algorithms and ties the history of mathematics with the history of generic programming.
Indeed, Stepanov already gave a lecture in 2003 [55] where he traces, in particular, the history of
the algorithm of ged/gem for 2500 years and explains how successive generation of mathematicians
improved it always by looking for more generic ways to solve the same problem. In essence,
the book presents generic programming as an extension of the evolution of mathematical
algorithms over time. In this book, Stepanov also reclaims the term of generic programming
and differentiates it from template metaprogramming once and for all. Stepanov also states
that “Generic programming is about abstracting and classifying algorithms and data structures.
It gets its inspiration from Knuth [117] and not from type theory. Its goal is the incremental
construction of systematic catalogs of useful, efficient and abstract algorithms and data structures.
Such an undertaking is still a dream.”

Stepanov thought of STL as a starting point to a very large library of data structures and
algorithms, written in a generic form, that would all work together nicely. STL is intended to be
an example of how industry should move forward and work on building a large library of this
form. Hopefully, this is the direction the C++ standard committee is going toward.

Genericity within libraries It is described by the cardinality of how many use-cases it can
handle. Libraries always provides their own data structures, to represent and to give a meaning
to the data the user wants to process, as well as algorithms to process those data and provide
different type of results. A library will be then labeled as generic [15] when (i) its data structures
allow the user to express himself fully with no limitation and when (ii) its algorithm bank is
large enough to do anything the user would want to do with its data. In reality such a library
does not exist and there are always limitations. Studying those limitations and what justify
them is the key to understand how to surpass them in the future, by developing new hardware
and/or software support for new features allowing more genericity.

Genericity within programming languages It is described by the ability of the language
to execute the same code over a large amount of data structures [31], be they native (char,
int, ...) or user defined. It is nowadays primordial for a programming language to be able
to do so. Indeed, in a world where Information Technologies are everywhere, the amount of
code written by software developers is staggering. And with it so is the amount of bugs and
security vulnerabilities. Being able to natively have a programming language that allows to do
more by writing less mathematically results in a reduced development and maintenance cost.
Programming languages offer many ways to achieve genericity which is dependent to the language
intrinsic specificities: compiled or interpreted, native or emulated, etc.

Before delving into the specifics of what genericity implies for libraries and programming
languages, let us introduce some vocabulary for the sake of comprehension. First is the notion
of type. A type (or data type) is an attribute of data which tells the compiler or interpreter
how the programmer intends to use the data. Most programming language support basic data
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types (also called primitive types) such as integer numbers, floating point numbers, boolean and
character strings (ASCII, Unicode, etc.). This data attribute defines the operations that can
be performed on the data, the meaning of the data and the size of the data in memory (the
data can then be stored on the heap, stack, etc.). A data type provides a set of values from
which an expression (i.e. variable, function, etc.) may take those values. Among programming
language, we can distinguish those which are dynamically typed and those that are statically
typed. Statically typed languages are those whose variables are declared holding a specific type.
This variable cannot hold data from another type in the scope it is declared. Statically typed
programming languages are Ada, C, C++, Java, Rust, Go, Scala. Dynamically types languages
are those whose variables can be reassigned with a value of different type from the one it was
initially declared to hold. The variable type is then dynamically changed to fit the new value it
is holding. Dynamically typed programming languages are PHP, Python, JavaScript, Perl.

The consequence of being able to tell which type a variable is holding at all time (statically-
typed language) is two-fold. For the developer, it is easier to reason about code and to spot
bugs. For the compiler, it is possible to generate optimized binary code specific to this data type
(vectorization, etc.). The consequence of being able to morph the types a variable can hold at
runtime is mainly to serve prototyping purpose. When prototyping in a Jupyter notebook, it
is much appreciated not to be limited to a single type for each variable so that we are able to
iterate on the prototype much faster.

In image processing, an image Im is defined on a domain D (which contains points) by
the relation Vx € D,y = Im(x) where y is the value of the image I'm for the point x. This
definition always translates into a complex data structure when transposed into a programming
language. This data structure must be aware of the data buffer containing the image data as well
as information about the size and dimensions of the image. Furthermore, to add to the difficulty,
the information needed to define precisely the data structure is not always known when writing
the source code. Indeed, a very simple use-case consists in reading an image from a file to load
it in memory. The file can contain an image of varying data type and the program should still
work properly. There are multiple approach to solve this issue, and we will address them in the
following section [2.T] and section

2.1 Genericity within libraries

Projecting the notion of genericity to Image Processing, we can deduce that we need two important
aspects in order to be generic. First, we need to decorrelate the data structures from its topology,
and the underlying data from the algorithms. Indeed, we want our algorithms to support as
much data structures as possible. Second, many algorithms share the same computational shape
and can be factorized together.

Genericity can have two different meanings depending on the people you ask. For instance,
some will argue that genericity is high level and qualifies a tool which is “generic enough” to
handle all of his use-cases. Others will argue that genericity is about how a machine (code) is
able to make tools, meaning “generic enough” to make a lot of different other tools. Neither
is wrong. However, for the sake of comprehension we will use different words for each of these
cases. A tool generic enough to handle a lot of use-case will be called versatile. Finally, for a
tool whose aim is to provide a programming framework to handle the code of any use-case, we
will use generic. In this thesis, genericity will be about code. The fig. [1] illustrates this result of
the same generic watershed implementation applied on a 2D image, a graph and a mesh.

In image processing, there are three main axes around which genericity is revolving. The first
axis is about the data type: gray level or RGB color (8-bits, 10-bits), decimal (double) and so on.
The second axis, is about the structure of the image: a contiguous buffer (2D or 3D), a graph,
a look-up table and so on. Finally, the third axis is about additional data that can be fed to
image processing algorithms: structuring element (disc, ball, square, cube), labels (classification),



2.1. GENERICITY WITHIN LIBRARIES 59

image 2D graph mesh

input:

output:

The same code run on all these inputs.

Figure 2.1: Watershed algorithm applied to three different image types [118].

maps, border information and so on. In the end, an image is just a point within this space of
possibilities, illustrated in fig. 2.2. Nowadays, it is not reasonable to have specific code for every
existing possibility within this space. It is all the more true when one wants efficiency.

SE

SE Possible uses of the dila-
tion with a square SE.
Square
Square + o - -
‘amond
Ball ranh
Diamond + 2D-buffer 3D-buffer grap:
16-bits int A&+ __:_,:'__Structurc
Ball + /
double
- Image 8-bits RGB A+
16-bits 24-bits double
gray 2D RGB 2D gray 3D Values
(a) (b)

Figure 2.2: The space of possible implementation of the dilation(image, se) routine.
The image axis shown in (a) is in-fact multidimensional and should be considered 2D as in (b).

Genericity is not new and was first introduced in 1988 by Musser et al. [8]. The main point
is to dissociate data structures and algorithms. The more your data structures and algorithms
are tied together, the less you are generic and fail to handle multiple data structures in the same
algorithm. Further work has been made about genericity in [15, 31]. Those works highlight the
notion of abstraction able to turn an algorithm tied to a data structure into a generic algorithm.
Notably in [82], Stepanov digs further and introduce the notion of Concepts, which are static
requirements about the behavior of a type, by showing how to design a generic library and
its algorithms. He highlights the importance of having the algorithms driving the behavior
requirements, and not the type. These works are very suitable to be applied in the area of Image
processing where we typically have a lot of algorithms (also called operators) that are required
to work over a lot of different data structures (also called image types).
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The authors explain in [155] how to capitalize on those works to turn a image processing
algorithm tied to a data structure into a generic algorithm. We also explain how concepts can ease
the implementation of generic algorithms. This approach is implemented in a library |140] which
allows us to provide a proof of concept over the feasibility of having generic image processing
operators running on multiple image types with near-native performance. Let us first explain
briefly how we have achieved this.

2.1.1 Different approaches to obtain genericity

First, let us consider the morphological dilation that takes two inputs: an image and a flat
structuring element (SE). The set of some possible inputs is depicted in fig. . Without
genericity, with s the number of image type, v the number of value type and k the number of
structuring elements, one would have to write s * v % k different dilation routine.

There are several ways to reach a high level of genericity. First are the code duplication and
the generalization approaches. Finally, there is a way that consists in using expert, domain
specific tools specifically engineered for this purpose and build upon them: those tools usually
make heavy usage of inclusion & parametric polymorphism, also known resp. as object oriented
programming and template metaprogramming in C++, to provide the basic bricks to the user.

Code duplication approach It consists in writing and optimizing the algorithm for a
particular type in mind. But, each time a new type is introduced, all the algorithms must be
rewritten for this specific type. Additionally, each time a new algorithm is introduced, it must
support all the existing types and thus be written multiple times. This approach does not scale
well when the complexity of algorithms grows, and the number of data types increases. Neither
does it allow the implementer to easily make use of optimization opportunities offered by having
different data types sharing a property. This often translates into heavy switch/case statement
in the code as show in fig. that illustrate how the fill algorithm needs to dispatch according
to the input data type.

// image types parametrized by their
// underlying value type
template <ValueType V> struct image2d<V> { /* ... */ };
template <ValueType V> struct image_lut<V> {/* ... */};
Y/
void fill(any_image img, any_value v)
{

switch((img.structure_kind, img.value_kind))

{

case (BUFFER2D, UINTS):

£ill_img2d_uint8( (image2d<uint8>) img,
(uint8) any_value );

0w N O R W N

=
N = O ©

V2
case (LUT, RGBS8):
£ill_lut_rgb8( (image_lut<rgb8>) img,
(rgb8) any_value );

e e e
0 N O Uk W
-
-«

Figure 2.3: Fill algorithm skeleton with a switch/case dispatcher to ensure completeness.

In addition, it is important to note that the completeness aspect is only illustrated with
regard to the data structure types here. Indeed, the data structures are all already generic for
their underlying data type (named ValueType in the code). When one write image2d<uint8>
(1.10), it means 2D-image whose pizels’ have a single channel 8-bits value. This approach enables
one to write an algorithm at maximum efficiency for a particular data type, however one can
easily miss optimization opportunities if not knowledgeable enough too. This approach is best
for early prototypes and trying to find common behaviors pattern among algorithms, or common
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properties across different data types. No IP library has chosen this approach due to the obvious
maintenance issue induced.

Generalization approach It consists in finding a common denominator to all the image
types. Once designed, this common denominator, also called super-type, can store information
about all the supported image types by the library. This super-type enables the library developer
to write all the algorithms only once: for the super-type. The processing pipeline will then
consist in three steps. First convert the input image type into the super-type, second process the
super-type into the algorithm pipeline requested by the user, finally convert back the resulting
image into the specific image type the user is expecting. This approach offers the advantage of
being maintainable. Adding a new image type is just a matter of providing the two conversions
facilities: to and from the super-type. Adding an algorithm is also just a matter of writing it once
for the super-type. This mechanism is shown in fig. 2.4, However, one must keep in mind that the
conversion can be costly. Also, processing the super-type may induce a significant performance
trade-off while processing the original type would have been much faster. Furthermore, it is
not always possible to find this common denominator when enumerating through some esoteric
data types. Finally, the provided interface (from the super-type) may allow the image to be
used incorrectly, such as a 2D image being processed into video (3D + t) algorithm. Widely
used libraries such as OpenCV [29] or Scikit-image [120] use this technique to handle as many
image types as possible. Another library making use of this generalization technique in its
implementation is Clmg [105]. Clmg generalize its data type to a 4D image type templated by
its underlying data type.

struct image4D { // generalized super-type
// generalized underlying value-type
// every wvalue is converted to this one
using value_type = std::array<double, 4>;
/xo %/
s
// specific types w/ conversion routines
struct image2D { image4D to(); void from(image4D); 1};
struct image3D { image4D to(); void from(image4D); };
/.
void fill(image4D img, const std::array<double, 4>& v) {
for(auto p : img.pixels())
p.val(Q) = v;
}

Figure 2.4: Fill algorithm for a generalized super-type.

Inclusion & Parametric polymorphism approaches They consist in extracting behavior
patterns from algorithms to group them into logical brick called concepts (for static parametric
polymorphism), or interface (for dynamic inclusion polymorphism). Each algorithm will require
a set of behavior pattern that the inputs need to satisfy. In C++, this technique is achieved
either by using inclusion polymorphism, or by using parametric polymorphism [72], as shown
in fig. In [155], we leverage a new C++20 feature (the concept) to show how it is possible to
turn an algorithm, specific to an image type, into a more abstract, generic one that does not
induce any performance loss. These approaches, especially applied to image processing, will be
seen more in-depth in chapter [3]

Multiple libraries exist and leverage these approaches to try to achieve a high genericity
degree as well as high performance by offering varied abstract facilities over image types and
underlying data types. Those are ITK [110, 51|, Boost.GIL [63], Vigra [37], Higra [153], GrAL [62],
DGTal [125], Milena [96| 80, [85], Olena [191}, 34} |92, 95| 118] and Pylena [140]. Most of them
have been written in complex C++ whose details remain visible from the user standpoint and
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< abstract class>
AnyNDImage

+ get_iterator() const :
+ get_pizel(p :
+ set_pizel(p :

any_-tterator
any_point) : std::any
any-point, v : std::any)

T

image2d-uint8

get_iterator() const :
get_pixel(p :
set_pixel(p :

any_iterator
any_point) : std::any
any_point, v : std::any)

void f£ill(AnyNDImage& in,
std::any val)
{
for (any_point p :
in.get_iterator())
in.set_pixel(p, val);

()

GENERIC PROGRAMMING (GENERICITY)

<K concept>
Image

typedef iterator
typedef value_type
typedef point_type

get_iterator() const : iterator
get_pixel (p : point_type) : value_type
set_pixel (p : point_type, v : value_type)

5

Il

image2d

using iterator = iterator2d<T>
using value_type = T
using point_type = point2d

get_iterator() const : iterator2d<T>
get_pixel (p : point2d) : T
set_pixel (p : point2d, v : T)

template <class InImage>
void £ill(InImage& in,
InImage: :value_type val)
{
for (auto p :
in.get_iterator())
in.set_pixel(p, val);

(d)

Figure 2.5: Dynamic, object-oriented polymorphism (a) vs. static, parametric polymorphism (b).

thus are often difficult and complex to use. It is also harder to debug because errors in highly
templated code shows up very deep in compiler error trace.

The table comparing all the pros. and cons. from the aforementioned approaches is presented
in table We can see in this table that Generic Programming in C+4-20 check all the boxes
that we are interested in.

2.1.2 Unjustified limitations

The image processing community operates mostly with either Python or Matlab [48]. As such
this subsection will focus on those two technologies. Python offers access to two major libraries
for image processing: OpenCV and Scikit-image. Matlab has built-in support as well as toolboxes
for more advanced features. When we intersect Scikit-image and Matlab, we can notice that both
are very similar both in terms of feature and interface. As such, it is possible to regroup them
both here for the sake of comprehension. As stated above, when considering a generic library,
one must consider the three axes: underlying data type, domain structure and additional data.
Let us compare how the mentioned library behave along those axes with a simple algorithm such
as the morphological dilation.

Limitations regarding feasibility

Data type Dilating a grayscale or a binary image works fine as intended with all the libraries.
However, there is no trivial way of dilating an RGB colored image [71, |61] as this operation is
not defined for colored images. Indeed, the algorithm is able to work if a supremum function is
provided. Such functions have multiple possible implementation and selecting the correct one
is not trivial. However, provided a supremum function, the dilation algorithm should normally
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Table 2.1: Genericity approaches: .pros & cons.

Paradigm TC! CS? E3 One IA* EA®
Code Duplication X/ X X
Code Generalization X r~ & v X
Inclusion Polymorphism ~ v X v v
Parametric Polymorphism:
with C++11 =~ / v A
with C++17 o/ 7 v ~
with C++20 v /7 v v

L' TC: type checking.

2 CS: code simplicity.

3 B: efficiency.

4 One IA: one implementation per algorithm.

4 EA: explicit abstractions / constrained genericity.

work. Despite that fact, Scikit-image does not allow to dilate a colored RGB image and raises an
error: it is required to convert it into a grayscale the image beforehand.

OpenCV arbitrarily decides that the colored dilation consists in dilating each channel of the
colored image separately from one another. It is effectively selecting a partial marginal order
relation under the hood. This arbitrary choice may cause false colors to appear in the resulting
image (which most of the time is not what the user wants). Furthermore, it is not possible to
provide a supremum function to the dilation algorithm to customize the behavior which is a
server drawback.

Domain structure To perform a dilation, it is required to have a structuring element whose
shape matches the structure of the domain of the image. For instance, dilating a 2D-image
requires using a structuring element whose shape may be a disc or a rectangle. To dilate a 3D-
image, one would need to use a structuring element whose shape is a ball or a cube. Scikit-image
supports 3D-images as well as structuring element whose shapes are compatible (ball, rectangle
and octahedron). This naturally leads to having a support for the dilation of 3D-images. On the
other hand, OpenCV, as a library, does support 3D-images whereas its dilation algorithm does
not. The algorithm exits with an error. Worse, when passing a wrong structuring element (a
rectangle) to the dilation algorithm, alongside a 3D-image, the algorithm works and produce
a result which is false: it is similar to the application of the 2D-structuring element on each
2D-slice of the 3D-image.

Limitations regarding optimizations

Each library has its own strategies to optimize its routines when implementing them.

Scikit-image It will check whether the structuring element is separable (only for rectangle
shapes) so that it can dispatch on an optimized multi-pass 1D routine for each part separated,
which linearizes the execution time and greatly improve performance for large structuring element.

Also, Scikit-image relies on SciPy internals which does not abstract the underlying data type
for the algorithm implementer. As such, each algorithm must provide a switch/case dispatch for
every supported type (floating points, 8-bits channel, 16-bits channel, RGB, etc.), and it must
provide it in the middle of the algorithm implementation. If one type is not natively supported,
an error occurs and the program halts. Henceforth, handling a new supported data type will
requires to review every single already written algorithm.
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On the other hand, SciPy provides an abstraction layer over the dimensional aspect of the
image by providing a tool named point iterator. This tool allows one to iterate over every point
of the image, without being aware of the number of its dimension, and make the translation from
the abstract iterator to the actual offset in the data buffer of the image. The implementer can
then only worry about handling the underlying data type to provide a generic algorithm. This
approach, sadly, is fully dynamic (that is, runtime) and does not allow the compiler to provide
native optimization such as vectorization out of the box.

OpenCV & Matlab In OpenCV as well as in Matlab, the choice was made to systematically
attempt to decompose big rectangular structuring elements into smaller 3 * 3 structuring elements.
This is not as effective as using multi-pass 1D algorithm but still allows for relatively stable
performance.

Also, OpenCV let the implementer handle the cases he wants to support by himself. For
instance, the dilation algorithm is written with a dispatch on the data type before the actual
call to the algorithm. This enables compiler optimizations such as vectorization because all the
required information is known at the right time. It also enables offloading the computation into
GPU kernels when feasible. However, the downside is that few algorithms are written in a way
to handle multidimensional images. Most are written to only handle specific subsets. As such,
conversion from one subset to another may be unavoidable when writing an algorithm pipeline
for a more complex application. For instance, it is currently not possible to dilate a 3D image
with a 3D ball (as stated above).

Another point to note with OpenCV is the requirement to do temporary copies (to extract
data or to have working copy for in-place computation) when writing an algorithm. For instance,
it is currently not possible to write a dilation algorithm operating only on the green channel
of an RGB image. One must first extract the green channel into a single channel temporary
image, blur that image, to finally put the result back into the original image. Generally, in-place
computation is poorly handled in OpenCV.

Performance discussion When comparing performance of the simple dilation between Matlab
and OpenCV, which is done in [102], shows that Matlab is very oriented toward prototyping and
not toward production. The performance gap between the two libraries shows that performance
may not a major concern for MATLAB in this case. Opposite to this, OpenCV and Scikit-image
both have a C/C++ core to provide fast basic algorithms such as the dilation and erosion
mathematical morphology.

As such, when comparing the performance of OpenCV, Scikit-image and Pylene in fig. we
can notice some interesting facts. Both Scikit-image and Pylene have a very stable execution time
even though the size of the structuring element grows by power of two. This corroborates the
fact that the author did see code taking advantage of the structuring element’s properties, such
as the decomposability /separability. OpenCV has very good performance for a square because it
has specific handwritten code for both vectorization and GPU offloading when possible: even
if OpenCV decomposed its square into smaller sub square (and not periodic lines), it remains
steady fast.

In the case of a structuring element shaped as a disc (also in fig. [2.6), we can observe that the
execution time raises exponentially for both Scikit-image and OpenCV whereas Pylene remains
regular and steady fast. These results show that Pylene’s attempt to decompose each structuring
element into periodic lines when possible may be slightly slower for smaller structuring elements
whereas it is much more stable and faster when the structuring element start to be of a certain
size.
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Figure 2.6: Benchmark: dilation of a 2D image (3128 x 3128 ~10Mpix) with a 2D square and a
2D disc.

Limitations regarding static types in a dynamic world

Being statically typed (at language level) has its advantages (performance, optimization) but
also has sever drawbacks, especially when interfacing with dynamic languages such as Python.
Indeed, being statically typed in a dynamic world disqualify the library from being able to select,
for instance, a new, custom structuring element, when performing a dilation. As a matter of fact,
all the supported structuring elements must be listed in advance and code must be compiled
for each supported type. This induces a strong inertia when the practitioner wants to try out
new things not yet supported by the library. This also defeats the initial purpose of being
generic. Indeed, one would expect a generic library to work with any type and not just a specified
set of pre-compiled types. Being able to break through this limit is addressed more in-depth
in chapter 5.

2.1.3 Summary

To conclude, a generic algorithm will not be faster after it is first written, but will provide
acceptable performance for most cases. However, a generic algorithm provide opportunities for
the implementer to take advantage of some properties from input types in order to be faster.
The main advantage is that once those optimization opportunities are written once, they are
available for every input types (that match the property). Genericity enables code dispatching
very easily based on type properties which may induce almost no runtime overhead, depending
on which generic strategy was chosen in the library.

2.2 Genericity within programming languages

Genericity is a more than 45 years old notion. It was first introduced alongside the CLU language
in 1974 by Barbara Liskov and her students [14]. The language offered many features such as data
encapsulation, iterators and especially parametrized modules. A module in CLU is represented by
a cluster. A cluster is a programming unit grouping a data structure and its related operations. In
modern programming, we would call it a class where the data structure s to the member variables
and the operations correspond to the member functions (or methods). In CLU, the clusters can
be parametrized which is a way to introduce the notion of parametric polymorphism. Indeed,
clusters offer the ability to define a generic data structure and its functions whose behavior will
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not change whatever type the cluster is parametrized with. At first, type-safety was enforced
at runtime in CLU. Later, where clauses were introduced to specify specific requirements over
cluster type parameters. This had the consequence of allowing only the operations required in the
where clause to be used in the cluster implementation code. This enables proper compile-type
checks, type-safety and the compilation into a simple native and optimized code by the compiler.
The following CLU code illustrates how to create a cluster (or class) named wvector, declaring a
set of member functions and requiring a specific behavior (operator = and <) from its underlying
stored elements:

vector = cluster mT: typem is
create, size, contains, sort, remove, push_back
where

T has equal: (T, T) return (bool)
T has less: prototype(T, T) return (bool)

When implementing the member functions declared for vector, the only valid operations that
can be performed on a value of type T are equal (= for comparison) and less (< for ordering).
In CLU the actual instantiation of the parameter (here T) is done at runtime. Indeed, each type
is represented by a descriptor, even a parametrized type parameter. At runtime, a concrete type
is used to instantiate the cluster. To achieve this, the placeholder type descriptor is replaced by
the one of the actual concrete type at this moment. The instantiation can then be considered
dynamic which differs from the C++4 compilation model where the template instantiation is
considered static (i.e. done at compile-time). The pros. and cons. of this approach are discussed
in [1] which essentially summarize to the resulting (static) binary code size exploding due to
combinatorial explosion combined with optimized code generation versus small, flexible and
slower binary (dynamic instantiation).

Later on came the Ada programming language whose conception work started in 1977 and
whose first version was released in 1980. It was first standardized in 1983 [3] in the United States
by the American National Standards Institute (ANSI) before being Internationally standardized
by the International Organization for Standardization (ISO) in 1987 [6]. From this point on, the
Ada language released a new version in 1995 [18] 43|, then the standard committee published
an Amendment in 2007 [73] which is often referred as Ada 2005. Finally, a new version of the
language was published in 2012 [100, |128]. What interests us in the Ada language is the fact
that the language features generics since it was first designed in 1977-1980, which is ten years
before Musser and Stepanov published their first work about genericity in 1988 [§]. Also, it
took ten more years for the fist Standard Template Library (STL) to be standardized in the
C++ programming language in C++98 [25] afterwards. Finally, it took almost ten more years
for an STL to land into the Ada programming language in the 2007 Amendment for the Ada
programming language standard (also named Ada 2005).

In the Ada programming language, it is possible to mark a package or a procedure as generic
with the generic keyword. The developer then lists the parametrized parameter the package
and/or the function requires to be implemented. The following code demonstrates how this
feature works by implementing a function replacing the first argument by a new value and
returning its previous value (also known as exchange).
generic

type T is private;
function exchange (x : in out T; v : in T) return T is

tmp : T;
begin

tmp := Xx;

b4 = v;

return tmp;
end exchange;

In Ada, generic packages and routines (procedures, functions) must be instantiated explicitly:
the compiler cannot infer the parametrized type at compile-time from the context of use (whereas
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a C++ compiler can). Thus, the following three lines must be written explicitly for the compiler
to generate the binary code of the function above:
function int_exchange is new exchange (Integer);

function float_exchange is new exchange (Float);
function str_exchange is new exchange (String);

In Ada, this model enables the possibility of sharing a generic across several compilation
units since its compilation is independent of its use whereas in C++, until C+420 the sharing
model consists in copy-pasting the whole source code (and transitive recursive dependencies)
each time a generic (a template) code is compiled. C+420 (standardized in 2020, 22 years after
C++98) brings a solution to this issue by standardizing C++ modules. However, this feature is
out of scope of this study and will not be discussed in this thesis.

Also, Ada support syntactics constraints on parameters similar to the CLU language. It is
translated into a with clause listing the constraints on the parameter(s). The following code
shows how to implement such a constrained generic function by using the mathematical maximum
operator as an example:

generic
type T is private;
with function "<" (x, y: T) return Boolean is <>;
function maximum (x, y : in T) return T is
tmp : T;
begin
if x < y then
return x;
else
return y;
end if;
end maximum;

Let us not forget to instantiate the constrained generic function for integers:

function int_maximum is new maximum (Integer);

This idea of constrained generic is 45 years old (the genesis was in CLU) and has only
made his way very recently (2020) in the C++ programming language under the feature named
concepts.

Now that we have introduced the origin of generic programming, let us focus on the C++
programming language and how generic programming has evolved in C++ for the last 30 years,
and how it will evolve in the future.

2.2.1 Genericity in pre C++411

Before C++11 [90] came out in 2011, the genericity facilities offered by the C++ programming
language were already Turing-complete [56]. However, it was lacking some key features the
language now have, which made writing generic code a real challenge at that time. For instance,
in ¢+498 [25] (released in 1998), when writing code with a variable number of type parameters
(nowadays designated as variadic templates) one had to write the generic code for each and every
number of type parameter supported. This meant that to implement std: :tuple, one had to
copy the implementation for every number of type supported by std: :tuple. This limitation
defeated the very first principle and motivation of generic programming which is to write less
code. To compensate, library implementers used tricks with macros not to have to rewrite code,
which made the initial code even harder to understand for outsiders.

Functions on types (or metafunctions, or traits)

The very first feature every developer writing metaprogramming C++ code has used is called
type-traits. Those traits are a way to mutate a type depending on the way a template declared
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on a data structure is resolved. Indeed, in C++ the instantiation of a template depends on
the context, which means the compiler is required to build a set of possible way to resolve a
template instantiation in order to determine the best match to resolve this instantiation. This
mechanism is well known and documented in the C++ standard, it can then be used (and
abused) to do a great number of things. Among all the traits that exist (a lot of them have
been standardized in C++11, 2011, in the header <type_traits>), some in particular are used
in every codebase: remove_const, remove_volatile and remove_reference. Let us see how
they are implemented:

template<class T> struct remove_const { using type = T; };
template<class T> struct remove_const<const T> { using type = T; 1};
template<class T> struct remove_volatile { using type = T; };
template<class T> struct remove_volatile<volatile T> { using type = T; };
template<class T> struct remove_reference { using type = T; };
template<class T> struct remove_reference<T &> { using type = T; };
template<class T> struct remove_reference<T &&> { using type = T; };

For remove_const, first is defined the structure whose underlying alias type points to
the passed template parameter T. Then we define a template specialization whose matching
parameters are all T parameters that are const. The defined underlying alias type for this
specialization then is T without the qualifying const. This way, there are two possibilities
when calling this trait: either the passed type parameter is not const which means it will be
forwarded as-is to the underlying alias type, or the passed type parameter is const which means
the underlying alias type will be defined by dropping the const-qualifier off of the passed
parameter type. For instance:

using T1
using T2

remove_const<double>::type // T1 is double
remove_const<const double>::type // T2 is double too, const-qualifier is dropped

This language construct is very useful when developing generic libraries because it allows
performing “functions” on types, and even chaining them. It is also possible to perform checks
to extract information about those types. We can easily write an is_const metafunction if we
need it.

In image processing in particular, the usage of traits in the generic library Milena was very
useful to achieve standard ways to compute very useful types from other complex type. From
the image processing definition of an image type, we can already see a number of traits that a
generic library wants to provide. Indeed, it is useful to be able to extract the type of the domain
(box2d, box3d, etc.), the type of the point (point2d, point3d, ...), the underlying value type
(uint8, rgh8, etc.) and so on. We can also already see emerging consistency issues between those
types. Indeed, a box3d domain should not accept access via a point2D. It shall instead require a
point3d. All those issues will be addressed later in the chapter [3l However, we can already give
here minimal working example as to how type traits are useful in a generic image processing
library. First let us define some minimal data structures:

struct point2d {int x, y; };
struct rgb8 { uint8_t r, g, b; };

struct box2d {
using value_type = point2D;

VA

}

struct image2d {
using domain_type = box2d;
using point_type = point2d;
using value_type = rgb8;
V2

};

Now we want to implement traits to extract type information from those structures. Here
is how we do it in a generic library:
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template <class T> struct domain_value_type { using type = typename T::value_type; };
template <class T> struct image_point_type { using type = typename T::point_type; 1;
template <class T> struct image_value_type { using type = typename T::value_type; };
template <class T> struct image_domain_type { using type = typename T::domain_type; };

These traits extract information about types in a generic way and can be used in any algorithm
taking an image as a template parameter. For instance, here is how an image processing algorithm
(trivially extracting the max value) would be written:

template <class Ima>
typename image_value_type<Ima>::type // usage of trait
min_value(const Ima& ima) {
using value_t = typename image_value_type<Ima>::type; // usage of trait
auto min = std::numeric_limits<value_t>::max();
for(auto v : ima.values()) {
auto min = std::min(min, v);
}
return min;

}

SFINAE: Substitution-Failure-Is-Not-An-Error

Another feature related to metaprogramming allowed the developer to design generic libraries:
the SFINAE [49] (substitution-failure-is-not-an-error) technique that leads to the popularization
of the usage of the std: :enable_if metaprogramming construct. The SFINAE technique relies
on a feature of the C++ programming language. Indeed, when standardizing how the compiler
should resolve and select function overloads, in a templated context, the standard committee
chose to have the following behavior: “when substituting the explicitly specified or deduced type
for the template parameter fails, the specialization (function overload candidate) is discarded
from the overload set (of matching functions) instead of causing an error”.

This feature allows writing code that seems to be ill-formed, for instance in a function, trying
to access a class member type, variable or function that does not exist. However, because it
happens in a templated context during the instantiation resolution, when the compiler tries to
instantiate a function template with a parametrized type, the compiler will just discard the
function from the overload resolution set at call-site instead of halting with a hard error. An
error can occur only when the compiler tried all the overload it knows in the overload set and
still could not find an overload that was not ill-formed. If this happens, the compiler will then
proceed to list all the overloads it tried, to list all the template substitution combinations it tried
and finally to list why it failed. This mechanism is the very reason of the unpopularity of this
technique as it leads to situation where the compiler can output several Mos of error message
for one single source file. Error messages become incomprehensible very fast and programs are
hard to debug because everything happens at compile-time. But still, it was the only technique
available to perform any kind of detections on types at compile-time, or to require any behavioral
constraints on them.

For instance, here is some real-world example extracted from generic image processing
code that allows implementing the fill algorithm in two very different ways depending on how
behaves the input image type. First we need to write the detector which is a structure whose
templated context will be ill-formed during template instantiation. This detector will inherit
either std: :true_type or false_type depending on whether the detection is successful or not:

// Step 1 write detector
template <class Ima, class = void>
struct is_image_with_lut : std::false_type {};

template <class Ima>
struct is_image_with_lut<Ima,

typename Ima::lut_type // constraint over the existence of the lut_type field
> : std::true_type {};
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Now let us introduce a new image type for the sake of this example:

struct image2d_lut : image2d {
using lut_type = std::array<uint8_t, 256>;
using value_type = uint8_t:
lut_type& get_lut();
}
template <class Ima>
struct image_lut_type {
using type = typename Ima::lut_type;
}

The next step is to implement the enable_if facility. This is included in the C++ STL

starting from C++11 and onward:

template<bool B, class = void>
struct enable_if {};

template<class T>

struct enable_if<true, T> {
using type = T;

};

Now we are all set to use all those constructs to dispatch our algorithms from the call-site

depending on our input image type:

// Overload #1 : with lut
template <class Ima,
void £ill(Ima& ima, typename image_value_type<Ima>::type val,
typename enable_if<is_image_with_lut<Ima>::type::value, void*>::type = 0)

{ // Image with lut

using lut_t = typename image_lut_type<Ima>::type;

using value_t = typename image_value_type<Ima>::type;

lut_t& lut = ima.get_lut();

for(value_t& v : lut)

v = val;

}

// Overload #2 : without lut
template <class Ima,
void fill(Ima& ima, typename image_value_type<Ima>::type val,
typename enable_if<not is_image_with_lut<Ima>::type::value, void*>::type = 0)

{ // Image without lut

using value_t = typename image_value_type<Ima>::type;

for(value_t& v : ima.values())

v = val;

Finally, let us give some call-site example to finish illustrating our point:

image2d_lut imail;
image2d ima2;

fill(imal, 0); // will dispatch over overload #1
£ill(ima2, 255); // will dispatch over overload #2

Here, no hard error occurs. Both overloads are dispatched according to the constraint built with
the SFINAE construct. Now we can talk about constrained genericity in C++. If we had an
algorithm returning a value instead of performing an in-place computation, we would have been
able to write the code with the SFINAE construct in the return-type instead of having it in the

function parameters. However, that is not the case here.

CRTP: Curiously Recurring Template Pattern

Another feature that precedes C++11 and was available in C+498 and C++403 is
the curiously recurring template pattern (CRTP) introduced in 1996 by Coplien . This
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programming technique allows a base class (in its specific code) to be aware of its derived class
at compile type. We made extensive use of this pattern in the past to design a new paradigm,
SCOOP [53, (65, |78}, 92] which combined multiple inheritance (via CRTP) and concept checking
(via Boost.Concept [39, [70]) to implement a solution to provide a library with constrained
genericity in C++ for the image processing area. The Scoop paradigm relied on the fact that
multiple (especially diamond) inheritance did not pose much of an issue as long as there was
no member variable involved. This way, one could consider a class hierarchy as a hierarchy
of constraints indstead. Using CRTP, it was possible to find back, inside constraining classes,
what was the concrete leaf class of the hierarchy in order to check whether its implementation
satisfied the constraints or not. For instance, let us assume that we have a concrete class image2d
inheriting from a constraining class Image. Let us now see how one would use the SCOOP
paradigm to implement it. First we need to implement the satellite constraints around the image
type, which are related to the underlying point and domain of the image.
template <class P>

struct Point { // concept checking class
int (P::#m_ptrl) const = & P::dim;

};

struct point2d : Point<point2d> { // CRTP
int x, y;
int dim() const { return 2; }

};

template <class D>

struct Domain { // concept checking class
using value_type = typename D::value_type;
sy

};

struct box2d : Domain<box2d> { // CRTP
using value_type = point2d;
/e

};

For the sake of brevity, we are omitting the implementation of domain ’s member functions
related to iterating over all the points of the domain. With those concepts defined, we can now
dig into how we would implement an image class with the SCOOP paradigm.

template <class I>

struct Image { // concept checking class
using value_type = typename I::value_type;
using point_type = Point<typename I::point_type>;
using domain_type = Domain<typename I::domain_type>;

const domain_type& (I::*m_ptrl)() const = & I::domain;
/.
};

struct image2d : Image<image2d> { // CRTP
using value_type = uint8_t;
using point_type = point2d;
using domain_type = box2d;

// ... ctors ...

const domain_type& domain() const {
return m_dom;
}
private:
domain_type m_dom;

};

Each time a leaf class in the hierarchy inherits from a base class, the concepts are checked.
The syntax is not really intuitive, especially writing the function pointers to check that their
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prototype corresponds to certain behavior, but it was all that was available at that time. To
be completely exhaustive, the library implementing this paradigm, Milena, featured another
powerful tool which enabled one to require only concept class into input data for algorithms.
Inside the algorithm it was then possible to get back the concrete class and use it as if it was
originally passed as an argument. To do so, it was needed to add a member field to the concept
class named exact_t that kept track of the leaf class into the concept checking class.

template <class I>
class Image {

sy

using exact_t = I;

};

Then a simple cast routine would do the trick inside the algorithm:

#define EXACT(Ima) \
typename Ima::exzact_t

template <class Ima> // mutable routine
EXACT(Ima)& exact(Ima& ima) { return static_cast<EXACT(Ima)&>(ima); }

template <class Ima> // const routine
const EXACT(Ima)& exact(const Ima& ima) { return static_cast<const EXACT(Ima)&>(ima); }

This way, an image processing algorithms, the implementer would only need to write minimal
code for it to work out of the box:

template <class I>
void f£ill(Image<I>& ima, typename image_value_type<Ima>::type val) {
EXACT(Ima)& ima_ = exact(ima);

// use the concrete underlying image ima_ and val

}

This constrained genericity would be totally transparent as shown with the following code
that just works out of the box, thanks to the SCOOP paradigm and its inheritance strategy to
constrain classes.

image2d ima = /* ... */;

uint8_t val = 0;
fill(ima, val);

By extension, this work on Milena was integrated in the image processing platform Olena [191]
95]. This platform centralizes the work that was done around this field of research for a long
time [35} 133} |47, |57]. More details can be found about SCOOP, and notably how it enables
property based programming (augmentation of types via properties) in the work of Levillain [92,
80, [85, 86}, 93, 192, (101} |118].

Those approaches have the advantage of being really flexible and to be able to perform the
constrained genericity that we wanted to have, be it to constrain an implementation or to dispatch
to the correct overloaded algorithms depending on specific properties. The disadvantages come
in the form of an increased complexity of the design hierarchy of implemented types as they must
inherit concepts via CRTP and conform to specific constrains. Also, all the implementation is
visible as all the code is generic (template) and thus all the implementation details are leaked to
the user code. For an image processing library which can use several dependencies (for instance,
a library that read images from disc from multiple image formats), this is a huge drawback.

With the release of new C++ standards in 2011 [90], then 2014 [116] and 2017 [136] where
template metaprogramming facilities were greatly improved, it was necessary to review once
more this design in order to improve it to achieve genericity, performance and ease of use. This
is the birth of a new library, Pylene [140]. In the end, it was C++20 [90] that marked the shift
wanted by Stepanov [8) |15, 31, [82] and Stroustrup [16, 27, (185, 76] for years with the arrival of
concepts, and all its new possibilities brought to the programmer.
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2.2.2 Genericity in post C++11 (C++20 and Concepts)

template <Image Ima, ValueType Val>
requires same<Ima::value_type, V>
void fill(Ima ima, Val val) {
for(Val v : ima)
v = val;

o G W N =

Figure 2.7: Fill algorithm, generic implementation.

Most of the algorithms are generic by nature. What limits their genericity is the way they are
implemented. This statement is justified by the work achieved in the Standard Template Library
(STL) [31] in C++, whose algorithms are implemented and designed in a way where they work
with all the built-in collections (linked list, vector, etc.). Let us take the example of the algorithm
fill(Collection c, Value v) which set the same value for all the element of a collection
(see fig. . There are three main requirements here that are not related to the underlying type
of Collection. First, we check (1.2 fig. that we are actually filling the collection with the
correct type of value. Indeed, it would not make sense, for instance, to assign an RGB triplet
color into a pixel from a grayscale image. Secondly, we need to be able to iterate over all the of
collection’s elements (1.4 fig. . Finally, we need to be able to write a value into the collection
(L5 fig. . This requires the collection not to be read-only, or the collection’s values not to
be yielded on-the-fly. This allows us to deduce what is called a concept: a breakdown of all the
requirement about the behavior of our collection. When writing down what a concept should
require, one should always respect this rule: “It is not the types that define the concepts: it is the
algorithms”. Concepts in C++ are not new and there have been a long work to introduce them
that goes back from 2003 [186), (185, 190] to finally appear in the 2020 standard [192] (referred as
C++420 [90]). This allows us, as of today, to write code leveraging this facility.

Conceptification

C++ is a multi-paradigm language that enables the developer to write code that can be object
oriented, procedural, functional and generic. However, there were limitations that were mostly
due to the backward compatibility constraint as well as the zero-cost abstraction principle. In
particular the generic programming paradigm is provided by the template metaprogramming
machinery which can be rather obscure and error-prone. Furthermore, when the code is incorrect,
due to the nature of templates (and the way they are specified) it is extremely difficult for a
compiler to provide a clear and useful error message. To solve this issue, a new facility named
concepts was brought to the language. It enables the developer to constraint types: we say that
the type models the concept(s). For instance, to compare two images, a function compare would
restrict its input image types to the ones whose value type provides the comparison operator ==.
In spite of the history behind the concept checking facilities being very turbulent [186, 185, |190],
it finally landed in the last standard [192] (C++20).

The C++ Standard Template Library (STL) is a collection of algorithms and data structures
that allow the developer to code with generic facilities. For instance, there is a standard way to
reduce a collection of elements: std::accumulate that is agnostic to the underlying collection
type. The collection just needs to provide a facility so that it can work. This facility is called
iterator. All STL algorithms behave this way: the type is a template parameter, so it can be
anything. What is important is how this type behaves. Some collection requires you to define
a hash functions (std: :map), some requires you to set an order on your elements (std::set)
etc. This emphasis the power of genericity. The most important point to remember here (and
explained very early in 1988 [8]) is the answer to: “ What is a generic algorithm?”. The answer
is: “An algorithm is generic when it is expressed in the most abstract way possible”. Later, in his



74 CHAPTER 2. GENERIC PROGRAMMING (GENERICITY)

book [82], Stepanov explained the design decision behind those algorithms as well as an important
notion born in the early 2000s: the concepts. The most important point about concepts is that
it constrains the behavior. Henceforth: “It is not the types that define the concepts: it is the
algorithms”. The Image Processing and Computer Vision fields are facing this issue because
there are a lot of algorithms, a lot of different kinds of images and a lot of different kinds of
requirements/properties for those algorithms to work. In fact, when analyzing the algorithms,
you can always extract those requirements in the form of one or several concepts. This section is
a preface to the image taxonomy which will be seen more in-depth in chapter

Image processing algorithms, similarly, are generic by nature [10l [35] |47, 85, [118]. When
writing an image processing algorithm, there is always a way to express it with a high level of
abstraction. For instance, it is possible to write a morphological dilation in a way that does not
care about the underlying value type, the domain nor the structuring element specificities. The
most abstract way to write a dilation is shown in fig. 2.8

1 template <Image I, WritableImage O,

2 StructuringElement SE>

3 void dilation(I input, O output, SE se) {

4 assert (input.domain() == output.domain());
5 for(auto pnt : input.points()) {

6 output (p) = input(p)

7 for (nx : se(p))

8 output (p) = max(input(nx), output(p))
9 }

0

1 }

Figure 2.8: Dilation algorithm, generic implementation.

This implementation introduces three concepts at line 1: Image, WritableImage and Struc-
turingElement. Following the behavior of each one of them into the algorithm, we can deduce a
list of requirements for each one of them.

Image It is the most basic representation of what an image should be. An image should
(a) provide a way to access its domain (1.3 fig. [2.8) and (b) a way to iterate over its points
(1.4 fig. [2.8]). This then enables us later to (c) access the value returned by the image at this

point (L5 fig. [2.8]). Up to this point, the value is only accessed in read-only. We can write the
following two concepts:

template <typename I>
concept Image = requires {

typename I::point_range; // needed for a
typename I::point_type; // needed for b
typename I::value_type; // needed for b
} && ForwardRange<I::point_range> // needed for a

&& requires (I ima, I::point_type pnt) {
{ ima.points() } -> I::point_range; // a
{ ima(pnt) } -> I::value_type; // b
};

In reality, more boilerplate code is needed to ensure, for instance, that there is no type mismatch
between the image’s point_type and the point_range’s value type. For the sake of brevity this
boilerplate code is omitted here.

WritableImage It is a more specific concept based on the previous Image concept. It requires
that the image’s value can be (d) accessed to be modified: the user should be able to write into

the image’s value accessed by a specific point (1.6 fig. . We can then write the following two
concepts:

template <typename WI>
concept WritableImage = Image<WI>
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&& requires (WI wima, I::point_type pnt,
I::value_type val) {

{ wima(pnt) = val }; // d

};

StructuringElement It is an additional input to the image defining the window around each
point that will be considered during the dilation (also called the neighborhood). A structuring
element should just provide a list of point when it is input with one (e). From this behavior we
can deduce the following concept:

template <typename SE, typename I>

concept StructuringElement = Image<I>

&& requires (SE se,I::point_type pnt) {

{ se(pnt) } -> I::point_range; // e
}

This new notion of concept is very important because it decorrelates the requirements on
behavior required inside algorithms from the way the data structures are designed. This is a
way to always wrap a specific data structure so that it can behave properly into an algorithm,
without needing to rewrite that algorithm.

Simplifying code

The main advantage brought by using modern C++ as the implementation language for an image
processing library is the possibility to leverage what is called metaprogramming. Metaprogram-
ming is a way to tell the compiler to make decision about which type and which code it generates.
These decisions are made at compile-time and are then absent from the resulting binary: only
the fast and optimized code remains. This brings a new distinction between the static world
(what is decided at compile-time) and the dynamic world (what is decided at runtime). The
more is decided at compile-time the smaller, faster the binary will be because there is less work
to do at runtime. By following this principle, one can think of some properties that are known
ahead of time (at compilation) when writing an image processing algorithm. For instance, when
considering the example of the dilation whose code is shown in fig. 2.8, we can see that the
decomposability property of the structuring element is linked to the type. This means that when
the structuring element’s type is a disc, or a square, the compiler will know at compile-time that
it is decomposable. To tell the compiler to take advantage of a property at compile-time, C++
has a language construct named if-constexpr. The resulting code then becomes:

template <Image Img, StructuringElement SE>
auto dilate(Img img, SE se) {
if constexpr (se.is_decomposable()) {
lst_small_se = se.decompose();
for (auto small_se : lst_small_se)
img = dilate(img, small_se) // Recursive call
return img;
} else if (is_pediodic_line(se))
return fast_dilateld(img, se) // Van Herk's algorithm;
else
return dilate_normal(img, se) // Classic algorithm;

}

There are other ways to achieve the same result with different language constructs in C++.
There are two “legacy” language constructs which are tag dispatching (or overload) and SFINAE.
With the release of C++17 came a new language construct presented above: if-consterpr. Finally,
with C++420, it will be possible to use concepts to achieve the same result. In comparison, to
achieve the same result as above with tag dispatching, the following code is needed:

struct SE_decomp {};
struct SE_no_decomp {};
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template <Image Img, StructuringElement SE>
auto dilate(Img img, SE se) {
// either SE_decompo or SE_no_decomp
return dilate_(img, se, typename SE::decomposable());

}

auto dilate_(Img img, SE se, SE_decomp) {
1st_small_se = se.decompose();
for (auto small_se : lst_small_se)
// Recursive call
img = dilate(img, small_se, SE_no_decomp)
return img;
}
auto dilate_(Img img, SE se, SE_no_decomp) {
if (is_pediodic_line(se))
return fast_dilateld(img, se) // Van Herk's algorithm;
else
return dilate_normal(img, se) // Classic algorithm;

To achieve the same result with SFINAE, one would need to write the following code:

// SFINAE helper

template <typename SE, typename = void>

struct is_decomposable : std::false_type {};

template <typename SE>

struct is_decomposable<SE,
// Check wether the type provides the decompose() method
std: :void_t<decltype(std: :declval<SE>() .decompose())>

> : std::true_type {};

template <typename SE>

constexpr bool is_decomposable_v =

is_decomposable<SE>: :value;

template <Image Img, StructuringElement SE,
typename = std::enable_if_t<is_decomposable_v<SE>>>
auto dilate(Img img, SE se) {
1st_small_se = se.decompose();
for (auto small_se : lst_small_se)
img = dilate(img, small_se) // Recursive call
return img;

}

template <Image Img, StructuringElement SE,
typename = std::enable_if_t<not is_decomposable_v<SE>>>
auto dilate(Img img, SE se) {
if (is_pediodic_line(se))
return fast_dilateld(img, se) // Van Herk's algorithm;
else
return dilate_normal(img, se) // Classic algorithm;

Comparing those two last ways of writing static code to the first one results in an obvious
conclusion: the if-constexpr facility is much more readable and maintainable than the two legacy
ways of doing it. Finally, there is still another way to handle the issue, and it is with C++20’s
concepts. The following code demonstrates how to leverage this language construct:

template <typename SE>
concept SE_decomposable = requires (SE se) {
se.decompose(); // this method must exzist

};

template <typename Img, typename SE>
auto dilate(Img img, SE se) {
if (is_pediodic_line(se))
return fast_dilateld(img, se) // Van Herk's algorithm;
else
return dilate_normal(img, se) // Classic algorithm;

}

template <typename Img, typename SE>
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requires SE_decomposable<SE>
auto dilate(Img img, SE se) {
lst_small_se = se.decompose();
for (auto small_se : lst_small_se)
img = dilate(img, small_se) // Recursive call
return img;

}

A best-match mechanic [64] operates under the hood to select the function overload whose
concept is the most specialized when possible. The best-match is very interesting to us as it
removes completely the need to have mutually exclusive conditions which were required with the
SFINAE technique and could result in explosive complexity with the growing number of and/or
clauses in constraints. The best-match mechanic works on top of another widely used machinery
in C++: the function overload set. For a specific function call, all the function overloads will be
considered in the overload set. Then, to select the correct one, they will be sorted according to
the best-match procedure. Finally, if there is still two overloads that have the same priority, the
compiler will raise a hard error stating that there is an ambiguity it cannot solve on its own.
As a matter of fact, adding one more function to the overload set is enough to have it selected
when it matches without modifying the already existing functions. We could have added, in our
example, an overload for structuring element whose shape is a periodic line, assuming that this
is a property we can detect at compile-time.

2.3 C++ templates in a dynamic world

There are three main categories of programming languages. First are the compiled programming
languages which require to feed the source code to a program (a compiler) that will output a
binary. This binary will then produce the desired output once the user execute it. Some well
known languages of this category are C, C++, Ada, Fortran. Second there are the interpreted
programming languages which require to feed the source code to a program (an interpreter)
that will directly produce the output as if a binary was executed. Some well known languages
of this category are Javascript, Python, Matlab, Common Lisp. There is also a third, hybrid
category that tries to combine the best of both world. This last one is discussed more in-depth
in section [5.1.1] Both categories have advantages and drawbacks.

Compiled languages They are still widely spread and used as of today. They present a
working pipeline which is very classic. First the programmer will write code, then the compiler
will build a binary optimized for the target architecture and finally the programmer can execute
his binary to produce a result. Usually the compilation step is slow whereas executing the binary
is fast. There is no additional step when it comes to the binary execution. This, however, has
the effect of having a poor portability. Indeed, my binary optimized to use fast and recent
SIMD AVX-512 instructions will not work on an old x86 machine that does not support those
CPU instructions. When distributing our program, multiple binaries must be produced for each
supported CPU architectures. Furthermore, usually compiled languages have very poor support
of dynamic language features such as reflection, code evaluation or dynamic typing. It tends
to improve with time, but solutions are limited to compile-time information or need to ship a
JIT-compiler into the final binary (such as cling [106] for C++) to generate new binary on-the-fly
to be executed right after. This has two drawbacks: slowness when compilation is needed and
increase of the binary size.

Interpreted languages They are also widely used, especially in the research area where a fast
feedback loop between prototyping and getting results is needed. The compilation time is very
fast and allows a program to be almost instantly executed. In fact, the compilation can be done
just ahead of program execution not to compile unnecessary code. However, the execution time
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will generally be slow. To the user it is invisible because both compilation step and execution
step are blurred together. Furthermore, most of the time a same interpreted program is executed
once. Then the programmer will modify it and continue its prototyping process. The real
advantage of an interpreted language is the portability. As it is the responsibility of the client
to install the correct language interpreter (for the correct version) before running the program
from the source code, as long as an interpreter can be installed on a machine, the program can
then be run. This also drastically slow distributed package for programs as only source code
must be distributed instead of compiled binary. However, the source code is leaked with all the
security implication this can have. Finally, interpreted language usually have better memory
management (built-in garbage collectors), are easier to debug, have very rich support of dynamic
typing, dynamic scoping, reflections facilities, on-the-fly evaluation from the source code or even
more like modifying the Abstract Syntax Tree (AST) resulting from the first compilation pass
on source code by the interpreter. This last one is implemented in Common Lisp in the name
of macros. There are more to say about interpreted languages, especially about those that are
compiled into bytecode and tend to get the best of both worlds without the drawbacks, but this
thesis will not discuss this matter any further.

The main point to understand here is that our main interest is set on C++, a compiled
language with slow compilation time and very fast execution time. In C++ there are template
metaprogramming to achieve genericity, but templates do not generate any binary code. Why?
Because when the compiler meet a templated type or a templated routine, it does not know
which type it will be instantiated with when it is used. Therefore, it can not compute information
like type size, alignment, can not choose the right assembly instruction, for instance to compute
an addition or a division (fixed vs. floating point arithmetic). This is why the compiler does
not generate any binary code when it first meets templated code. The code is generated only
when it is used with a concrete and known type. This is a huge problem. Now, if a library
implementer wants to distribute his generic library, he must distribute source code and have the
user to compile it. For a language like C++, with no standard dependency management, it can
be a massive showstopper. Furthermore, it may not be reasonable for the user to have a C++
compiling infrastructure when the target machines are embedded devices with limited storage
space. Indeed, C++ intermediary compilation artifacts tend to use a lot of disk space before
they are linked into a smaller final binary. What solution do we have then?

SWILENA [21,191] It is a Python bindings wrapper using Swig for the Olena C++ generic
library. This wrapper enumerates all the common use cases and implement a binding for each of
them. The compiler then generates binary code from the templated generic code for each use
case enumerated in the wrapper. This way, we give to the dynamic world (Python) access to
generic code (C++ template). However, it remains limited to the supported types. Each time a
new combination of type needs to be supported from Python, it needs to be explicitly declared
and compiled in the wrapper. Other image processing libraries, such as VIGRA [37], chose this
solution.

VCSN [108] It is a novel solution that essentially takes the same base as SWILENA but
goes beyond the boundary to implement a handmade facility that does system compiler calls to
compile and link needed code on-the-fly when the binding does not exist. It then leverages the
code hot loading feature of dynamic libraries to plug new dynamic libraries (.dll on Windows
and .so on Linux) into the wrapper to provide the user with the requested bindings.

Cython [88] It attempts to solve the issue of the Python inherent language slowness due
to its interpreted nature by providing a facility able to transpile a Python program into a C
program so that a genuine C compiler (with extensions) is able to compile it and to link it against
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the Python/C API in order to achieve an important performance gain at the cost of near zero
knowledge of the complex Python/C API for the user. This novel solution essentially bypasses
the work of a JIT compiler (that would be used by a programming language using bytecode such
as Java or C#) and just offloads it onto a well known, proven and robust software: the machine’s
C compiler.

AutoWIG [141], Cppyy [130] and Xeus-cling [173] are all solutions aiming to automati-
cally generate Python bindings on-the-fly using different solutions. AutoWIG has in-house code
based on LLVM/Clang to parse C++ code in order to generate and compile a Swig Python
binding using the Mako templating engine. Cppyy will generate Python bindings but can
also directly interpret C++ code from Python code thanks to being base on LLVM/Cling, a
Clang-base C++ interpreter. Finally, Xeus-cling is a Jupyter [129] kernel allowing to directly
interpret C++ into a Jupyter notebook. Like Cppyy, it is based on LLVM/Cling. Those three
projects are very promising and improve greatly the scope of possibilities for the future.

2.4 Summary

In this chapter we present the origin of generic programming, which goes as far as 1978 [1]
and how it has evolved to be integrated in the Ada programming language and then the C++
programming language. Afterwards, it has evolved even further with the notion of concept which
completes the toolbox required to be able to fully make use of generic programming without
resorting to obscure tweaks and tools in C+—+.

This chapter explores the possibilities of achieving the notion of genericity from within a
library. Indeed, there are three techniques enabling the user to write a high level algorithm
once that can run on every type. They are the code duplication approach, the generalization
approach and the inclusion and parametric polymorphism approach. We present in table the
result of the comparison of these approaches with regard to the features that we are interested in.
We also discuss the limitations linked to the usage of those approaches by comparing OpenCV,
Scikit-Image and Pylene, which make use of the four techniques at different level to achieve
different goals. Furthermore, we have identified limitations related to the underlying data type,
the structure of the domain, the optimizations and discuss the performances through a concrete
benchmark presented in fig. [2.6]

This chapter also explores how the notion of genericity is achieved within programming
languages. We retrace how CLU and then Ada implemented it and then how C++ permitted
the expression of require-clauses (concept) as soon as C++498, even though it was limited at
that time. We explore how template metaprogramming techniques have been developed and
have evolved, alongside the C++ programming language itself, to finally reach a point in 2020
(C++420) where it is possible to write concepts in C++.

Finally, this chapter presents the inherent limitation of C++ templates: they must remain in
the static world (compile-time). Genericity (in the sense C++ template) does not exist in the
final shipped binary to the user. The final user, in its dynamic world (runtime), cannot use a
generic (C++ code) tool. We discuss the different approaches possible to bridge this gap between
the static (compile-time) and dynamic (runtime) world.

The next chapter will make extensive use of genericity to present the first contribution of
this thesis: a taxonomy of concepts related to Image processing.
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Chapter 3

Taxonomy for Image Processing:
Image types and algorithms

N this thesis, we have researches how to apply all those new generic facilities from the C++
language into the Image processing area. This enables us to test them in a practical way
on our predilection area while remembering our past work, both success and failures in this
matter. However, as we saw in the previous Chapter (Generic programming (genericity)), birthing
concepts from code is something that is done in an emerging way. Henceforth, the first work
will be to do an inventory of all existing image algorithms as well as an inventory of all image
processing algorithms (both basic and more complex) we can think of. This way, we will notice
behavior patterns emerging from similar image types or similar algorithms. We will then be able
to extract behavioral patterns from this inventory in order to produce a full taxonomy in the form
of a framework of concepts related to image processing. This chapter is structured as followed.
First we will study how to extract behavioral pattern from a simple algorithm in order to refine
it into one or multiple concepts. Second we will study the theory set behind image types, their
conjunctions, disjunctions. We will also produce an inventory of image processing algorithms
limited to mathematical morphologies that we will leverage for the final step. Third, we will
study the intrinsic genericity of algorithms to produce canvas taking advantage of properties
(linked to the types). Finally, we will study behavioral patterns, related to the pre-established
inventory of algorithms, in the form of a taxonomy engraved into a framework of concepts related
to image processing.

3.1 Rewriting an algorithm to extract a concept

3.1.1 Gamma correction

Let us take the gamma correction algorithm as an example. The naive way to write this algorithm
can be:

template <class Image>
void gamma_correction(Image& ima, double gamma)
{

const auto gamma_corr = 1.f / gamma;

for (int x = 0; x < ima.width(); ++x)
for (int y = 0; y < ima.height(); ++y)
{
ima(x, y).r
ima(x, y).g
ima(x, y).b
}

256.f * std::pow(ima(x, y).r / 256.f, gamma_corr);
256.f * std::pow(ima(x, y).g / 256.f, gamma_corr);
256.f * std::pow(ima(x, y).b / 256.f, gamma_corr);

83
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This algorithm here performs the transformation correctly, but also makes a lot of hypotheses.
Firstly, we suppose that we can write in the image via the = operator (1.9-11): it may not be
true if the image is sourced from a generator function. Secondly, we suppose that we have a 2D
image via the double loop (1.6-7). Finally, we suppose we are operating on 8-bits range (0-255)
RGB via >.r?, >.g’, >.b’> (1.9-11). All those three hypotheses are unjustified. Intrinsically, all
we want to say is “For each value of ima, apply a gamma correction on it”. Let us proceed to
make this algorithm the most generic possible by lifting those unjustified constraints one by one.

Lifting RGB constraint: First, we get rid of the 8-bits color range (0-255) RGB format
requirement. The double loop become:

using value_t = typename Image::value_type;

const auto gamma_corr = 1.f / gamma;
const auto max_val = std::numeric_limits<value_t>::max();

for(int x = 0; x < ima.width(); ++x)
for(int y = 0; y < ima.height(); ++y)
ima(x, y) = max_val * std::pow(ima(x, y) / max_val, gamma_corr);

By lifting this constraint, we now require the type Image to define a nested type

Image: :value_type (returned by ima(x, y)) on which std::numeric_limits and std::pow
are defined. This way the compiler will is able to check the types at compile-time and emit
warning and /or errors in case it detects incompatibilities. We are also able to detect it beforehand
using a static_assert for instance.

Lifting bi-dimensional constraint: Here we need to introduce a new abstraction layer, the
pizel. A pizel is simply a couple (point,value). The double loop then becomes:

for (auto&Z pix : ima.pixels())
val = max_val * std::pow(pix.value() / max_val, gamma_corr);

This led to us requiring that the type Image requires to provide a method Image: :pixels() that
returns something we can iterate on with a range-for loop: this something is a Range of Pizxels.
This Range is required to behave like an iterable: it is an abstraction that provides a way to
browse all the elements one by one. The Pizel is required to provide a method Pixel: :value()
that returns a Value which is Regular (see section . Here, we use auto&& instead of auto&
to allow the existence of proxy iterator (think of vector<bool>). Indeed, we may be iterating
over a lazy-computed view (cf. chapter {4)).

Lifting writability constraint: Finally, the most subtle one is the requirement about the
writability of the image. This requirement can be expressed directly via the new C++20 syntax
for concepts. All we need to do is changing the template declaration by:

template <WritableImage Image>

In practice the C++ keyword const is not enough to express the constness or the mutability of
an image. Indeed, we can have an image whose pixel values are returned by computing cos(z + y)
(for a 2D point). Such an image type can be instantiated as non-const in C++ but the values
will not be mutable: this type will not model the Writablelmage concept.

Final version

template <WritableImage Image>
void gamma_correction(Image& ima, double gamma)
{

using value_t = typename Image::value_type;
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const auto gamma_corr = 1 / gamma;
const auto max_val = numeric_limits<value_t>::max();

for (auto&& pix : ima.pixels())
pix.value() = std::pow((max_val * pix.value()) / max_val, gamma_corr);
}
When re-writing a lot of algorithms this way: lifting constraints by requiring behavior instead,
we are able to deduce what our concepts need to be. The real question for a concept is: “what
behavior should be required?”

3.1.2 Dilation algorithm

To show the versatility of this approach, we will now attempt to deduce the requirements
necessary to write a classical dilate algorithm. First let us start with a naive implementation:

template <class InputImage, class OutputImage>
void dilate(const InputImage& input_ima, OutputImage& output_ima)
{
assert (input_ima.height() == output_ima.height()
&& input_ima.width() == output_ima.width());

for (int x = 2; x < input_ima.width() - 2; ++x)
for (int y = 2; y < input_ima.height() - 2; ++y)

{
output_ima(x, y) = input_ima(x, y)
for (dnt i = x - 2; i <= x + 2; ++i)
for (dnt j =y - 2; j <=y + 2; ++j)
output_ima(x, y) = std::max(output_ima(x, y), input_ima(i, j));
}

}

Here we are falling into the same pitfall as for the gamma correction example: there are a lot
of unjustified hypotheses. We suppose that we have a 2D image (1.7-8), that we can write in
the output_image (1.10, 13). We also require that the input image does not handle borders, (cf.
loop index arithmetic 1.7-8, 11-12). Additionally, the structuring element is restricted to a 5 x 5
window (1.11-12) whereas we may need to dilate via, for instance, a 11 x 15 window, or a disc.
Finally, the algorithm does not leverage any potential properties such as the decomposability
(1.11-12) to improve its efficiency. Those hypotheses are, once again, unjustified. Intrinsically,
all we want to say is “For each value of input_ima, take the maximum of the X x X window
around and then write it in output_ima”.

To lift those constraints, we need a way to know which kind of structuring element matches
a specific algorithm. Thus, we will pass it as a parameter. Additionally, we are going to lift the
first two constraints the same way we did for gamma correction:

template <Image InputImage, WritableImage OutputImage, StructuringElement SE>
void dilate(const InputImage& input_ima, OutputImage& output_ima, const SE& se)

{

assert(input_ima.size() == output_ima.size());

for(auto&& [ipix, opix] : zip(input_ima.pixels(), output_ima.pixels())

{
opix.value() = ipix.value();
for (const auto& nx : se(ipix))
opix.value() = std::max(nx.value(), opix.value());
}
}

We now do not require anything except that the structuring element returns the neighbors of
a pixel. The returned value must be an iterable. In addition, this code uses the zip utility
which allows us to iterate over two ranges at the same time. Finally, this way of writing
the algorithm allows us to delegate the issue about the border handling to the neighborhood
machinery. Henceforth, we will not address this specific point right now. This is seen in-depth
later in section [4.4
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3.1.3 Concept definition

The more algorithms we analyze to extract their requirements, the clearer the concepts become.
They are slowly appearing. Let us now attempt to formalize them. The formalization of the
concept Image from the information and requirements we have now is shown in table for the
required type definitions and in table for the required valid expressions.

Let Ima be a type that models the concept Image. Let WIma be a type that models the concept

WritableImage. Then WIma inherits all types defined for Image. Let SE be a type that models the concept

StructuringElement. Let DSE be a type that models the concept Decomposable. Then DSE inherits all types
defined for StructuringElement. Let Piz be a type that models the concept Pizel. Then we can define:

Definition Description Requirement
. type of the range to iterate over | models the concept
Ima::const_pixel_range .
Imace all the constant pixels ForwardRange
& Ima::pixel_type type of a pixel models the concept Pixel
Ima::value_type type of a value models the concept Regular
Writable WIma: :pixel range type of the range to iterate over | models the concept
Image “P -rang all the non-constant pixels ForwardRange

Table 3.1: Concepts formalization: definitions

Let cima be an instance of const Ima. Let wima be an instance of WIma. Then all the valid expressions
defined for Image are valid for WIma. Let cse be an instance of const SE. Let cdse be an instance of
const DSE. Then all the valid expressions defined for StructuringElement are valid for const DSE Let cpiz
be an instance of const Pix. Then we have the following valid expressions:

Expression Return Type Description
. . . . returns a range of constant pixels
Image cima.pixels() Ima::const_pixel_range to iterate over it
Writabl t f pixel
ritable wima.pixels() WIma::pixel_range re }1rns @ range. Ot prxess
Image to iterate over it
Structuring . . returns a range of the neighboring
Element cse (cpix) WIna::pixel_range pixels to iterate over it
; -
Decomposable | cdse.decompose() | implementation defined returns a range o struct}lnng
elements to iterate over it

Table 3.2: Concepts formalization: expressions

The concept Image does not provide a facility to write inside it. To do so, we have refined a
second concept named WritableImage that provides the necessary facilities to write inside it. We
say “ WritableImage refines Image”.

The sub-concept ForwardRange can be seen as a requirement on the underlying type. We
need to be able to browse all the pixels in a forward way. This concept will not be detailed
here as it is very similar to the standard library concept of the same name [193], [195]. Also, in
practice, the concepts described here are incomplete. We would need to analyze several other
algorithms to deduce all the requirements so that our concepts are the most complete possible.
One thing important to note here is that to define a simple Image concept, there are already
a large amount of prerequisites: Regular, Pixel and ForwardRange. Those concepts are basic
but are also tightly linked to the concepts in the STL [194]. We refer to the STL concepts as
fundamental concepts. Fundamentals concepts are the basic building blocks on which we work to
build our own concepts. We show the C++20 code implementing those concepts in fig.
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template <class Ima>

concept Image = requires { template <class WIma>
typename Ima::value_type; concept WritableImage = requires Image<WIma>
typename Ima::pixel_type; && requires {
typename Ima::const_pixel_range; typename WIma::pixel_range;
} && Regular<Ima::value_type> } && ForwardRange<WIma::pixel_range>
&& ForwardRange<Ima::const_pixel_range> &% ForwardRange<WIma::pixel_range,
&& requires(const Ima& cima) { WIma::pixel_type>
{ cima.pixels() } && requires(WIma& wima) {
-> Ima::const_pixel_range; { wima.pixels() } -> WIma::pixel_range;
}; }
template <class I> template <class DSE, class Pix>
using pixel_t = typename I::pixel_type; concept Decomposable =
template <class SE, class Pix> StructuringElement<DSE, Pix>
concept StructuringElement = Pixel<Pix> && requires(const DSE& cdse) {
&& requires(const SE& cse, { cdse.decompose() }
const pixel_t<Ima> cpix){ => /*impl. defined#*/;
{ se(cpix) } -> Ima::const_pixel_range; };
};

Figure 3.1: Concepts in C++420 codes

3.2 Image types viewed as Sets: version, specialization & inven-
tory

Achieving true genericity in a satisfactory way is a complex problem that has components at
different levels. The first goal is to natively support as many sets of image type as possible.
Natively means that there is no need for a conversion from one type to a super-type under the
hood. The second step is to support an abstraction layer above the underlying data type for
each pixel. Indeed, the structure of an image is decorrelated from the underlying data type. The
third step is to write image processing algorithms for each set of image type. The fourth step is
that the performance trade-off shall be negligible if not null. The final step is to provide a high
degree of friendliness to the end user. Ease of use must always be considered, as notation (as in
writing code) is a tool of thought [74]. Indeed, “By relieving the brain of all unnecessary work, a
good notation sets it free to concentrate on more advanced problems, and in effect increases the
mental power of the race.” [13].

After considering the available options to achieve our goal, the parametric polymorphism
approach is the way to go. This enables the implementer to design image types and algorithms
with behavior in mind. To illustrate this statement, let us consider the set of supported set of
image types shown in fig. We usually refer to different image families as subtype. Indeed, an
image with a LUT is subtype of the (global) Image type. This notion of sub-typing is important
because it may be abstracted behind an interface. A user can manipulate an image type without
knowing its specific subtype. This induces that the sub-typing facility may be handled internally
in the library with dynamic dispatching code (with runtime overhead). Each image processing
library has its own way of handling sub-typing. More generally, the model used to handle it
is previously described in section 2.1.1} Indeed, subtypes are handled the same way as their
super-type with the fact that they have additional properties the algorithms can leverage.

There really are two distinct ways of implementing a basic image algorithm such as £ill.
For the set of images type whose values are encoded into each pixel, one must traverse the image
and set each pixel’s color to the new one. However, for the set of images type whose data type is
encoded in a look-up table, one only has to traverse the look-up table to set each color to the
new one. This translates into two distinct algorithms shown in fig. [3.2l We can represent the
diagram outlining that those two algorithms are two distinct versions in fig. [3.5]

More generally, we consider that the set of image type is formed of several subsets of image
types. In the example there are two subsets: images whose pixels are writable and images whose
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fill(I,v): Vpe D, I(p) =v fill(I,v): Yie I.LLUT,i =v
(a) Writable image fill algo- (b) Image LUT fill algorithm
rithm

Figure 3.2: Comparison of implementation of the £i11 algorithm for two families of image type.

values are ordered in a look-up table. For each one of these subsets, if there is a way to implement
an algorithm then we have a version of this algorithm.

Sometimes, it is possible to take advantage of a property on a particular image set that may
be correlated to an external data to write the algorithm in a more efficient way. When those
properties are linked to the types, it is called an algorithm specialization [68]. For instance, when
considering a dilation algorithm, if the structuring element (typically the disc) is decomposable
then we can branch on an algorithm taking advantage of this opportunity: decompose the disc
into small vectors (radial decomposition [12] or periodic line decomposition [23]) and apply each
one of them on the image through multiple passes. The speed-up comparing to a single pass
with a large disc is really significant (illustrated in fig. 3.3). The code in fig. 3.4 illustrate how
an algorithm can be written to take advantage of the structuring element’s decomposability
property. The algorithm will first decompose the structuring element into smaller 1D periodic
lines. It will then recursively call itself with those lines to do the multi-pass and thanks to known
optimizations on periodic lines [11], it will be much faster. The dispatch diagram outlining the
different specialization of the dilation algorithm used is show alongside in fig. 3.4.

dilation (1000x1000) image, 100 iterations

10y — pylena
Pylena Decomp

103 4

102 4

Time (s)

101 4

100 4

T T T T T T
0 20 40 60 80 100 120
SE radius size

Figure 3.3: Benchmark: dilation of a 2D image (1000 x 1000) with a 2D disc (decomposable vs.
non decomposable).

The fig. 3.5 shows how an algorithm specialization may exist in a set of algorithms version.
There exists a specialization of algorithms when the data buffer is known to have the following
property: its memory is contiguous. This implies that, for example, an algorithm like £i11 can
be implemented using low level and fast primitives such as memset to increase its efficiency.

Making a full inventory of image types is not possible as there are many families of image
types, each family may intersect with each other, images may have some particular properties
at some points, those properties may appear across several families of image types. We can
nonetheless cite a few to illustrate our points. There exists image types whose values are cubical
complexes [52] or layered as hexagonal or triangular grid instead of square grids (such as meshes),
that are represented as graphs [81], etc. All of those interleaves with different research areas
(computer vision for meshes, topological classification for complex cells [164, 41], graph theory
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template <Image Img, StructuringElement SE>
auto dilate(Img img, SE se) {
if (se.is_decomposable()) {
1st_small_se = se.decompose();
for (auto small_se : lst_small_se)
img = dilate(img, small_se) // Recursive call
return img;
} else if (is_pediodic_line(se))
return fast_dilateld(img, se) // Van Herk's algorithm;
else
return dilate_normal(img, se) // Classic algorithm;

Image types

Dilation algorithm

Specialization 2:
decomposable
algorithm

Specialization 1:
normal algorithm

Specialization 3: 1D
periodic line’s
algorithm (Van

Herk’s)

Figure 3.4: Dilate algorithm (left) with decomposable structuring element and its specialization
diagram (right).

Image types
Image types

Images LUT

- Images writable

. . Contiguous
Images writable Specialized
(a) Different versions of fill algo- (b) Specialization existing within a version

rithm

Figure 3.5: Set of algorithm version (a) and its specialization existing within a version (b).
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and hierarchy for image graphs [113, 121}, |153]). Finally, this image type inventory does not
help when it comes to designing an image processing library. Instead, what helps is making an
inventory of image processing algorithms as well as what properties those algorithms can leverage
to speed up their execution.

Therefore, making the inventory of image processing algorithms (limited to mathematical
morphology) outlines three main families of image processing algorithms. The first one regroups
the pixel-wise algorithms. Those algorithms are the basic pixel-wise transformation. They are
the base of any image processing toolkit. Indeed, being able to extract the green or red color
channel of an image is mandatory. Thresholding as well as the previously seen gamma correction
belongs to this family. The second one regroups the local algorithms. Those algorithms perform
transformations by considering all the neighboring pixels around a given pixel. Those algorithms
need additional data in the form of an image’s extension (to define border’s behavior) and a
structuring element (disc, rectangle around the considered pixel). Such algorithms are widely
used in mathematical morphology. Dilation, erosion, closing, opening, gradient, rank filter are
all local algorithms, as well as stencil-type algorithms such as union-find, max-tree or skeletonize.
Finally, the third family regroups the global image processing algorithms. This set contains
algorithms where computing the current pixel requires to knowledge about what was previously
computed for the previous pixels. Chamfer distance transform, labeling, watershed, hierarchy
structures related algorithms belongs to this category.

3.3 Generic aspect of algorithm: canvas

Genericity is always referred to with this sentence “write once, work for every type, run every-
where”. However, very quickly we learned that the run aspect can be a combination of:

« as fast as possible on a single CPU unit;

« as fast as possible by using many CPU units;

« as fast as possible by using many GPU units;

o as fast as possible by using many computers (cloud) and their CPU/GPU units.

How do we decide what is the most efficient way to do? There is no simple answer to this
question, but we can start by studying the computational shape of algorithms with two goals
in mind: (i) find what can be parallelized/distributed and (ii) find one or several algorithms’
abstraction. Indeed, in image processing there are a lot of common patterns when one looks at
algorithms implementations, the most famous being for all pizels of an image, do something to
each pizel. But there are other more high-level similarities that we can leverage to have more
generic algorithm. Let us first study the different programmatic models there are commonly
used to process images.

The pipeline This old and proven model is especially useful to do pre-processing and post-
processing routines. It is a very robust way of structuring a workflow. It consists in an imbrication
of different operators (algorithms) taking as input one or several images, maybe additional data
(such as labels, adjacency map, etc.) in order to process the data int a “left-to-right” order. The
result will show at the end of the pipeline and the optimization opportunities are located inside
the smaller operators and in the form of correctly managing data (no unnecessary data copy,
locality, etc.)

Kernels and tiling This programmatic model is engineered to leverage the massive resources
available on GPU. This is the trendy way of the last decade. It consists in breaking the original
image into small tiles, and then to feed those tiles into a massively multicore GPU (via CUDA,
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Halide [112]). Processing will happen concurrently on those core, but it is costly to swap contents
inside those GPU from the RAM memory. It’s then preferred to design pipeline for those tiles so
that the work directly happens on each core to minimize the number of back and forth copies
from the RAM.

Cloud computing It is a huge deal in image processing these last years as well, especially used
in Deep learning applications. Deep neural networks are usually executed on cluster of computer
through network (cloud) and thus are leveraging combinations of successive MapReduce |77 under
the hood. Deep learning frameworks (such as Tensorflow/Keras [124, 122, |134], PyTorch [151],
etc.) take care of offloading work locally (CPU multithreading, GPU kernels and tiling) while
cloud provider infrastructures (such as Azure, AWS) dispatch the top level tasks on their clusters.

In every case there is a notion of pipeline where the user pipe algorithms into each others in
order to achieve a result. Those algorithms can leverage all the heterogeneous resources (cloud,
GPU, CPU) available to map the input data. Algorithms will then finally aggregate the results
(reduce) to output them into another algorithm, or save them, or display them. It is important to
dissociate the route the data will go through and the processing pipeline logic. Both have their
own specificities. In this thesis, we make a parallel, at small scale, between processing pipeline
logic and image processing algorithms. First let us study two basic algorithms: dilation and
erosion. The Python code for those algorithms is naively given in fig. [3.6]

def dilate(img, se, out): def erode(img, se, out):

for pnt in img.points(): for pnt in img.points():
out(pnt) = img(pnt) out(pnt) = img(pnt)
for nx in se(pnt): for nx in se(pnt):
out (pnt) = max(out(pnt), img(nx)) out (pnt) = min(out(pnt), img(nx))
(a) Dilation (b) Erosion

Figure 3.6: Dilate and Erode algorithms.

The algorithms are almost written the same way. The only change is the operation min and
mazx when selecting the value to keep. As such, we can easily see a way to factorize code by
passing the supremum operator as a function parameter. The algorithms can then be rewritten as
shown in fig. In this last example, we have one piece of code which is in charge of abstracting
the way an image is traversed: we name it the canvas. We also have other pieces of code which
carry the logic of the operations, calling the canvas and providing the logic to apply from within
the canvas. This way of decomposing the code offers the opportunity of writing more specific
heterogeneous logic for the traversing code so that the other parts of the code that carry the
high-level logic remains unaware and unburdened of possible implementation details.

def local_op(img, se, op, out):
for pnt in img.points():
out(pnt) = img(pnt)
for nx in se(pnt):
out (pnt) = op(out(pnt), img(nx))

(a) Local algorithm with custom operator

def dilate(img, se, out): def erode(img, se, out):
local_op(img, se, max, out) local_op(img, se, min, out)
(b) Dilation (delegated) (c) Erosion (delegated)

Figure 3.7: New Dilate and Erode algorithms.

3.3.1 Taxonomy and canvas

This approach is very much compatible with the inventory of the algorithms we did in the
previous section [3.2] Indeed, for the point-wise family of algorithms, it is hardly an issue as they
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can all be written in terms of views (cf. chapter 4)). For the second family that consists in all
the local algorithm, they can be abstracted behind an algorithm canvas where the user provides
the task to perform for each point of the algorithm. For instance, a single pass local algorithm
will always have shape given in fig. [3.8] Finally, for the third family which consists in all the
algorithm that propagate their computation while traversing the image. There is no trivial way
to provide an algorithmic canvas as each algorithm has its own way to propagate changes curing
its computation.

def local_canvas(img, out, se):
# do something before outer loop
for pnt in img.points():
# do something before inner loop
for nx in se(pnt):
# do something inner loop
# do something after inner loop
# do something after outer loop

0w N O ke W N

Figure 3.8: Local algorithm canvas.

The canvas at fig. [3.8 can be customized to do a specific job, especially at the lines 2, 4, 6, 7
and 8. The user would then provide callbacks and the canvas would perform the tasks. This is
especially useful when knowing that the canvas can handle the border management (the user
would only need to provide a handling strategy like mirroring the image or filling the border with
a value). The canvas can also take advantage of optimization opportunities (such as decomposing
a structuring element) that the user would probably forget, or not know, when first writing his
local algorithm. Another advantage is the opportunity to do more complex optimization such as
parallelizing the execution or offloading part of the calculation on a GPU. More generally, all
optimization done through heterogeneous computing would be available by default even if the
user is not a field expert.

Despite all these advantages, one big disadvantage is the readability of the algorithm user-side.
For instance, the dilation algorithm leveraging the local canvas is rewritten in fig.

def dilate(img, out, se):
do_nothing = lambda *args, **kwargs: None

def before_inner_loop(img, out, pnt):
out(pnt) = img(pnt)

def inner_loop(ipix, opix, nx):
out (pnt) = max(out(pnt), img(nx))

local_canvas(img, out, se,
before_outer_loop = do_nothing,
before_inner_loop before_inner_loop,
inner_loop inner_loop,
after_inner_loop do_nothing,
after_outer_loop do_nothing

Figure 3.9: Dilation using the local algorithm canvas.

This way of thinking algorithms is far less readable than the classic way. The user does
not see the loops happening, and it can become very messy when several passes are happening
(closing, opening, hit or miss, etc.)

3.3.2 Heterogeneous computing: a partial solution, canvas

One of the key aspect driving genericity is performance. We still have the following mantra:
“write once, work for every type, run everywhere”. However, when considering the run aspect,
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there is a lot to do. Indeed, nowadays, leveraging the available resources to their maximum is
long-standing issue. There are many ongoing works on the subject, such as SyCL [147, |146] which
is a standard for heterogeneous computing model edited by Kronos. This standard currently has
four implementations: Codeplay’s ComputeCpp [180], Intel’s LLVM/clang implementation [181],
triSYCL [183] led by Xilinx and hipSYCL [157] led by Heidelberg University. There also exists
smaller libraries such as Boost.SIMD [114] or even VCL [109] to ease writing SIMD code. After
taking some distance to study the subject, we can infer that there are three main aspects to
consider when optimizing performance.

The first one, the most important one is the algorithm to use in accordance with the set of
data. This aspect is covered by the C++ language and its built-in genericity tool: template
metaprogramming. Indeed, we can select the most suitable algorithm for a particular set of data.

The second one is the ability for the code to be understood by the compiler so that it can be
further optimized during the generation of the binary. Indeed, when compiling for the native
architecture of a recent processor, the compiler can use the most recent assembly instructions to
use wide vectorized registries (AVX512). The use of an up-to-date compiler infrastructure also
brings the help much needed.

Finally, the third aspect is not as trivial as the first two ones. It consists in studying the
structure of an algorithm to allow distributed computation. It also consists in studying the
different architectures to select the most efficient algorithm for each particular architecture.
Sometimes algorithm are friendly to their distribution on several processing units that compute a
part of the result concurrently. This is what we call parallelism. There exists several ways to take
advantage of parallelism. First there is the use of several CPU units on the host computer. Then
there is the use of GPU units working in combination with the CPU units to take advantage of the
massive amount of core a graphic card can provide. Finally, there is the use of cloud computing
which consists in using several “virtual” computers, each of them offering CPU and GPU units
available to compute a result. However, each time we introduce a new layer of abstraction, there
is a cost to orchestrate the computation, send the input data and retrieve the results. Therefore,
it is very important to study case by case what is needed. Some solutions exist to abstract away
completely the hardware through a DSL E| such as Halide [112]: the DSL compiler’s job will be
to try very hard to make the most out of both the available (or targeted) code and hardware.
Those solutions are not satisfactory for us as we want to avoid using a DSL to remain at code
level (core language only). We are not developing a compiler: we are working with it.

There is one true issue when studying parallel algorithms: it is whether they can be parallelized
or not. Not all algorithms can be parallelized. Some just intrinsically cannot, typically, algorithms
that immediately need the result of the previous iteration to compute the next iteration. There
may exist specific ways to re-arrange a specific algorithm, for instance, taking advantage of some
algebraic property, in order to rewrite it in a parallelizable way, but it is not trivial (it is done
on a per-algorithm basis), and not generic. As such, it is out of the scope of this thesis. What
interests us are the algorithms whose structure is an accumulation over a data type that can be
defined as a monoid. We assert that every algorithm that can be rewritten as an accumulation
over a monoid can be parallelized and/or distributed. This model, that consists in distributing
computation like an accumulation over a monoid data structure, is also call the “map-reduce”.
This model has two steps: the distribution (map) and then the accumulation (reduce).

The map step dispatches computation on subunits with small set of data. The reduce step
retrieves and accumulate all the results’ data as soon as they are ready.

The accumulation algorithm has this shape:

template <class In, class T, class Op>
auto accumulate(In input, T init, Op op)
{

for(auto e : input)

{

'Domain Specific Language
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init = op(init, e);
}
return init;

}

The loop line 4 can be split into several calculation units which are going to be distributed,
and then accumulated later once the units have finished their computation.

The issue left here is the monoid. What exactly is a monoid here? A monoid is a data
structure which operates over a set of values, finite or infinite. This data structure must provide
a binary operation which is closed and associative. Finally, this data structure must also provide
a neutral element (aka the identity). Some trivial monoids comes to mind:

e boolean. For binary operation “and”, identity is “true” whereas for binary operation “or”,
identity is “false”.

o integer. For binary operation — and +, identity is 0 whereas for binary operation * and /,
identity is 1.

e string. For concatenation, identity is empty string.
o optional value (also known as monadic structure in Haskell programming language).

There are many more monoids, less trivial but very handy, such as the unsigned integer /max/0
set and the signed integer/min/global max set.

This theory is extremely beneficial to image processing as the most commonly used algorithms,
the local algorithms, can all be written in the form of an accumulation over the pixels of an
image. The fact that finding an identity for the operation processed by the algorithm is often
quite trivial led us to the idea of canvas. A canvas is a standard way to write an iteration over an
image which abstracts the underlying data structure. A canvas is a tool for the user to provide
its computation model based on events such as: “entering inner loop” or “exiting inner loop”.
The user can then provide its operations as if he was writing his algorithm himself (restricted to
the accumulation model). As the maintainer of the library provides the canvas of execution, he
can know also make change to take advantage of it. For instance, computing a CUDA kernel at
one point and dispatching it on GPU units is totally within scope and remains transparent for
the user of the library. Although there is a caveat: rewriting our algorithm in an accumulation
shape and chunking it in fragments to feed to the canvas is definitely not intuitive. Indeed, we
require our user to change his way of thinking from the procedural paradigm to the event-driven
paradigm. This approach is not new and is used in other libraries such as Boost.Graph [44] for
similar purposes. Dean talks about this recurring monoid pattern more in-depth in his talk [148].

In image processing, we quickly identify local algorithms. They reason about a group of pixel
around a given of coordinate. All those algorithms can be abstracted behind an accumulation of
some sort, and they all have the same morphology. Thus leading to the following abstraction:

template <class In, class Out, class SE, class T, class Op>
auto local_accumulate(In input, Out output, SE se, T init, Op op)

{
auto zipped_imgs = ranges::view::zip(input.pixels(), output.pixels())
/7 (1)
for(auto&& rows : ranges::rows(zipped_imgs))
for(auto [px_in, px_out] : rows)
{
auto v = op(init, px_in.val()); // (2)
for(auto nb : se(px_in))
v = op(v, nb.val()); // (3)
px_out.val() = v; 7/ (4)
}
/7 (5)
¥

From this code we can deduce some very useful and easy monoids by the following triplets:
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type = boolean, operator = and, neutral = true) is a binary erosion
type = boolean, operator = or,neutral = false) is a binary dilation

type = unsigned integer, operator = max, neutral = 0) is a dilation
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= signed integer, operator = min,neutral = globalmazx) is an erosion

Now if we want to rewrite the local_accumulate in an event driven paradigm, we need to
identify the different callbacks to expose to our user on the call site. Especially, what will be the
callback parameters. There are five callback events that we have identified:

1. before entering outer loop (no work is done)
2. before entering inner loop (iteration over the pixel’s neighbor)
3. inner loop (actual operation to perform, result is accumulated)

4. after exiting inner loop (iteration over the neighbor is over, what to do with the accumulated
result?)

5. after exiting outer loop (iteration over the image is over)

template <class In, class Out, class SE, class T, class BeforeOuterLoopCB,
class BeforeInnerLoopCB, class InnerLoopCB class AfterInnerLoopCB,
class AfterQOuterLoopCB>
auto local_accumulate(In input, Out output, SE se, T init,
BeforeOuterLoopCB bolCB, BeforeInnerLoopCB bilCB,
InnerLoopCB ilCB, AfterInnerLoopCB ailCB,
AfterOuterLoopCB aolCB)

auto zipped_imgs = ranges::view::zip(input.pixels(), output.pixels()
bolCB(input, output); /7 (1)
for(auto&& row : ranges::rows(zipped_imgs))
for(auto [px_in, px_out] : rows)
{
bilCB(px_out.val(), init, px_in.val()) /7 (2)
for(auto nb : se(px_in))
i1CB(px_out.val(), px_out.val(), nb.val()) // (3)
ailCB(px_out.val(), init, px_in.val()) /7 (4)
}
aolCB(input, output) // (5)

In this code, we can see that all the callbacks do not take the same type and/or number of
parameters. Here is what the call site could look like if the user wants to perform a dilation:

local_accumulation(

input, // input image
output, // output image
se, // structuring element
0, // monoid's neutral element
[1(auto I, autok 0) { /* do nothing */ }, // (1) entering outer loop callback
[1(auto& o, auto init, auto in){ // (2) entering inner loop callback:
o = std::max(init, in); // initialize with neutral element
},
[1(auto& o, auto cur, auto nbh) { // (3) inner loop callback:
o = std::max(cur, nbh); // keep the local mazimum
},
[1(auto& o, auto init, auto in) { // (4) exiting inner loop callback

/% do nothing */
},
[1(auto I, auto& 0) { /* do nothing */ } // (5) eziting outer loop callback
)5

It is very verbose and non-intuitive but hopefully, once the compiler optimize out the empty
callbacks, the generated code is as fast as a non-generic handwritten dilation.
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3.4 Library concepts: listing and explanation

Let us now delve into the concepts related to the Image Processing area. Indeed, this domain
has his specificities, and we want to improve generic image processing library design by learning
from our past experiments and by working with new techniques. The most basic usage of an
image is the famous algebraic formula y = f(x) where y is a value generated by the image f
for the input x. Aside from generating a value, an image can also store a value, as in f(z) =y
where the value is assigned to the image for a given point. Those notions are the basis of our
work and will drive the entire design.

3.4.1 The fundamentals

First, let us introduce the fundamental concepts deriving from the basis notion. The Value
concept is refined into three distinct one (details in appendix . There are the basic Value
but also the ComparableValue and the Ordered Value which are useful when it comes to comparison
or ordering algorithms. The need behind those three concepts derives from the algorithms which
require an ordering relation in order to function properly. Most of mathematical morphology
algorithms requires it. For instance, the ordering relation for a gray-scale image is trivial whereas
it is a field of research for colored (rgh 8-bits) images.

The second fundamental brick is the concept of Point, detailed in appendix [C.1.2] which is
a bit less open than the concept Value as it must be totally ordered. Indeed, when it comes
to accessing a value stored in an image, whether it is for reading or for mutating purpose, it is
important that there is exactly one value accessed.

We Now introduce an abstract way to represent this relation Value x Point: the Pixel. This
is a well known notion in image processing, and it represents a couple (point,value). This
abstraction layer is easy to move around and contains facilities to read and mutate the pixel’s
value if possible. Indeed, not all pixels can mutate their value. If the pixel is yielded by an image
that only generates values on the fly then it cannot mutate it. Henceforth, we introduce two new
concepts: Pizel and OutputPizel (details in appendix . Those two concepts have a very
similar interface described in appendix They can both access the stored information: the
point and the value. On top of that, the OutputPixzel can mutate its value. When interacting
with pixels, the user is able to write code as followed:

auto pix = Pixel(); // Get a pizel

auto val = pix.val(); // yield the pizel value
auto pnt = pix.point(); // yield the pizel point
pix.val() = 42; // Assign a value

We show how those three fundamental concepts interact with each other in the
diagram fig. [3.10]

Now we need a helper concept: the ranges. Ranges [184, (143} |195| 193] are a set of concepts
defined in the C++ standard library shipped with the ISO C+420 norm in 2020 [162]. They
allow the user to abstract away iterators so that the iteration occurs directly over the values.
This offers the user the opportunity to migrate his source code from being:

template <class IteratorBegin, class IteratorEnd>
void my_algorithm(IteratorBegin beg, IteratorEnd end)
{
for(; beg != end; ++beg)
// use *beg to access the value

}

To being;:

template <class Range>
void my_algorithm(Range rng)
{
for(auto&& val : rng)
// use val to access the value
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Figure 3.10: Pixel concept.

In image processing, we refine further this concept by introducing multidimensional ranges
(MDRange). Indeed, in image processing the user is used to write double loop to iterate over a
bi-dimensional image. Abstracting away this aspect under standard ranges induces performance
loss. That is why we need to introduce this additional concept. A multidimensional range can be
split with a library function, mln: :ranges: :rows (mdrng) to fit the double-loop pattern while
retaining high performances. This topic is tackled in-depth later in section 4.5.1. For now, let
us consider multidimensional ranges as an image processing extension for performance for the
image traversing pattern. They are defined in appendix C.1.4 and their interface is the same as

standard ranges, as seen in appendix C.1.4. They are designed so that the user code can look
like this:

auto mdrng = MDRange(); // Get a multi-dimensional range of wvalues
auto rows = mln::ranges::rows(mdrng);
for(auto row : rows) // double loop pattern

for(auto val : row)

// use(val)

From an algebraic point of view, the definition of an image is not complete without considering
a definition domain on which it is defined. In image processing, the same rule applies. We cannot
consider an image without considering the set of points that are valid for this image. Henceforth,
we must define the concept of Domain (details in table C.7). The Domain concept is refined into
two sub-concepts named SizedDomain and ShapedDomain. This makes the existence of infinite
domain and domains that may be defined over non-continuous intervals in space possible. This
enables algorithms to require the domain to have certain shape if needed. The domain behavior
is described in appendix C.1.5.

In practice, a domain is used to get information about the points constituting the image.
Indeed, we can write code like this:

auto dom = Domain(); // Get a domain
auto pnt = Point(..., ...); // Get a random point
bool ret = dom.has(pnt); // Check wether the domain contains the point

bool is_empty = dom.empty(); // Check wether the domain is empty
auto dim = dom.dim(); // Yield the domain's dimension information
for(auto pnt : dom) // browse the definition domain

// use pnt as a point of the domain

We show how the concept Domain flows from the previous concepts in the diagram shown
in fig. 3.11.
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Figure 3.11: Domain concept.

All the prerequisites to introduce our main concept: Image are fulfilled. Similar to Pizel, we
have the distinction over image whose value can be mutated in a sub-concept named Writablelm-
age. These concepts are defined in table C.9. In addition to this definition, we can infer the
behavior described in appendix C.1.6. There are complicated requirements written in template
metaprogramming code and, in summary, they just require that the value types of the ranges
returned by the member functions pixels() and values() are the same as the value types
declared in the parent image type. In addition, we introduce two facilities which are the member
function concretize() and ch_value<V>(). The first is a way to turn a view into a concrete
type. This will be seen more in-depth in chapter 4. The last is a way to cast values from one
type to another. It forms a new image type whose underlying values will be returned after being
converted to a new value type. This last facility is extremely useful when we only want to cast
the underlying type while keeping all the other details (such as the dimension) identical. For
instance, when working with labeling algorithm, we know our algorithm will return an image
similar to the input one except for the underlying type which will be the type of the label. The
following code shows how it is used:

using label_t = int; // label type

template <class I> // Input image of type I
auto my_labeling_algorithm(I input_image)
-> image_ch_value_t<I, label_t> // Output image is Input image (I)
// whose underlying type is label_t
{
/o
}

We show the diagram building up the image concept from the previous concepts in fig. 3.12.

3.4.2 Advanced way to access image data

While being able to iterate over ranges of pixels or values is good, we are still lacking fundamental
facilities to access an element directly from the image. In order to solve this predicament, first
we need to define the concept of Index in appendix C.2.1 which we will use afterwards. This is a
very simple concept that encapsulate an integral value. This value can be negative as we want
to be able to do negative indexing in case our image has an extension, cf. section 3.4.2. The
first advanced concept is represented as an Indexablelmage. An element can be accessed simply
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Figure 3.12: Image concept.

by providing its index number. This concept is defined in table C.12. This introduces a simple
behavioral pattern described in appendix C.2.2. With this concept, we are able to write code as
followed:

auto ima = IndexableImage(); // Get an indezable image

int k = 15; // Get an indez

auto val = imalk]; // Get the element at the index
ima[k] = 255; // Mutates the element at the index

Being able to traverse an image through indexes is especially useful for algorithms that are aware
of the number of elements in the image. We chose to be flexible with our indexing method (i.e.
allowing signed indexes) not to fall into the same pitfall as the C++ standard library [196].
Indeed, requiring that the standard type std::size_t is unsigned led to loads of issues, the
first one being a conversion issue when writing a simple for-loop. Solving these issues led to
the appearance of new member function .ssize() (for signed size) and the new standard type
std: :ptrdiff_t to store the result of a subtraction between two std: :size_t. Furthermore,
in our specific area (image processing), it may be well-defined to access a buffer with negative
indexes when, for instance, we are accessing the value of the extension of an image. This is why
our indexes are signed.

Additionally, we want to be able to access a value by providing a point, the same way as in
the algebraic definition val = image(point). To do so, we introduce the concept of accessibility
through AccessibleImage. This concept is defined in table C.14. This introduces new behavior
that is described in appendix C.2.3. We can notice some facilities specifically including bound
checking. Indeed, we suppose, for fast access, that the user is always picking element from the
image’s domain, but it is possible to bound check elements if needed on access for specific usages.
With this concept, we are now able to write code as followed:

auto ima = AccessibleImage(); // Get an accessible image

auto p = Point(); // Get a point
auto val = ima(p); // Get a wvalue from a point

auto val = ima.at(p) // Same with no bound checking
auto pix = ima.pixel(p) // Get a pizel from a point
auto pix = ima.pixel_at(p) // Same with no bound checking
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ima(p) = 42; // Assigns a value from a point

ima.at(p) = 42; // Same with no bound checking
ima.pixel(p).val() = 42; // Assigns a pizel wvalue from a point
ima.pixel_at(p).val() = 42; // Same with no bound checking

Being able to traverse an image with points is especially useful for algorithms relying on
restricting/expanding definition domain that are exclusively yielding points.

Once we know that an image is both indezable and accessible we can introduce new behaviors
(described in appendix that we put behind the concept of IndexableAndAccessibleImage
defined in table This behavior is related to retrieving an index from points and vise versa.
Indeed, it is now possible to write such code:

auto pnt = ima.point_at_index(k); // Get the point from an index
auto k = ima.index_of_point(pnt); // Get the index from a point

// Get the index difference for a shift of delta_point
auto delta_idx = ima.delta_index(delta_pnt);

Additionally, it is useful, for propagating algorithms, to be able to traverse images in both a
forward way and a backward way. As it may not be possible for all images, this notion needs to
be refined into a new concept Bidirectionallmage. This concept is defined in table [C.1§ and its
behavior is described in appendix [C.2.5] Thanks to this concept, we are able to write code as
followed:

template <class I>
my_algorithm(I input)
{
// forward pass
for(auto pix : input.pixels())
// use pic

auto backward = mln::ranges::views::reverse(input.pixels())
for(auto pix : backward)
// use pix

Finally, we need a way, when possible, to iterate over a contiguous data buffer for very fast
and optimized calculation. That is what the concept of Rawlmage is for: an image whose data
buffer can be accessed, as well as its mutable counterpart, which are defined in table[C.20] Having
a raw image whose data buffer can be accessed enables us to expose two more member functions
to access the data buffer and its strides to compute accurate pointer arithmetic. They behave as
described in appendix [C.2.6] This allows writing code as followed:

auto ima = Image(); // Image of int
const int* data = ima.data(); // Access the underlying buffer
auto dim = ima.domain().dim(); // Get the dimension of the image
// Retrieve information about strides
auto strides = std::vector<std::ptrdiff_t>(0, dim)
for (int i = 0; i < dim; ++i)

strides[i] = ima.stride(i)

// Now use data and strides to traverse the raw buffer

V7

We show how those concepts are defined and interact with each other in the diagram shown

in fig.

3.4.3 Local algorithm concepts: structuring elements and extensions

From the beginning concepts emerge from behavioral patterns extracted from algorithms. In
image processing, there is a family of algorithms called the local algorithms. They work by
considering a specific pixel as well as all the pixels surrounding within a window that has a
specific shape centered in this first pixel. The window is called the structuring element and the
pixels considered by this window are called the neighborhood. This leads us to introduce the
concept of StructuringElement which is defined in table [C:22]
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Figure 3.13: All images concepts.

This concept is refined into three sub-concepts that are related to properties a structuring
element can provide. Those properties are:

e decomposability: ability to split a complex structuring element into several smaller and
simpler structuring element. There is an equivalence in behavior when the algorithm is
recursively run for each smaller structuring element one after another, in a multi-pass way.

o separability: ability to split a complex structuring element into several smaller and simpler
structuring element. There is an equivalence in behavior when the convolution is recursively
run for each smaller structuring element one after another, in a precise order, in a multi-pass
way.

e incremental: ability to tell the points that are added to or removed from the range when
the structuring element is shifted by a basic displacement (e.g. for a 2D point, the basic
displacement is (0,1)). Usually used to compute attributes over a sliding structuring
element in linear time.

The fig. 3.14 shows how a 5x5 rectangle is decomposed into periodic lines. The fig. 3.15 shows
how a disc of radius 3 is decomposed in periodic lines.
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Rectangle 5x5 structuring element Periodic line #1 Periodic line #2

Figure 3.14: Decomposition in period lines of a rectangle structuring element.

The behavior requirements of those concepts is described in appendix C.3.1. Being able to
manipulate structuring element allows us to write the following code:
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Figure 3.15: Decomposition in period lines of a disc structuring element.

auto se = se::disc(.radius=3); // get a structuring element

for(auto pix : ima.pixels()) // traverse image
for(auto nb : se(pix)) // traverse neighboring pizels
/e

Additionally, we introduce the concept of Neighborhood in table C.24. This concept has
facilities to know what points/pixels are placed before or after another point/pixel inside the
window of a specific structuring element. It behaves as described in appendix C.3.2. This concept
is useful when one wants to only consider a certain part of the neighboring pixels within a
structuring element. This offers the opportunity to write the following code:

auto se = se::disc(.radius=3); // get a structuring element
for(auto pix : ima.pixels()) // traverse image
for(auto nb : se.before(pix))// traverse neighboring pizels located before pix

Y/

And the last concept we need to introduce is the extension. Indeed, extension management is
very important when dealing with local algorithm as pixels on the border need to be processed
too. Indeed, the behavior near the border of the image must be defined and well-specified. There
are several strategies when it comes to borders and extension. We refine a concept for each
strategy we have identified:

e fillable: fill the border with a specific value.

e mirrorable: mirror the image as if there was an axial symmetry, with the border being the
axis.

o periodizeable: repeat the image, as if a modulo size was applied to the coordinates.
e clampable: extend the value at the image’s border into the extension.

e extent with: used when tiling. It considers the current image as a sub-image of another
bigger image and pick the extension values from the parent image.

Those concepts are defined in table C.26 and their behavior is described in appendix C.3.3. All
those concepts allow us to introduce the final refined image concepts: WithFExtensionImage,
Concretelmage and ViewImage. Those two last will be seen in detail in the next chapter 4. Those
concepts are defined in table C.28. Their behavior is described in appendix C.3.4. It is now
possible to write the following code:

template <class I, class SE>
my_local_algorithm(I input, SE se) {
// if the exztension is large enough to function with the passed structuring element
if (input.extension().fit(se)) {
sy
}
+
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We show how those three concepts (structuring elements, neighborhood and extension)
interact with each other in the diagram shown in fig. 3.16.
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Figure 3.16: Structuring element and Extension concepts.

Finally, we introduce a helper concept to centralize the detection of the “writability” of
an image. Indeed, we do not want the user to have to use the writable counterpart of each
concept for each and every case. That is why we introduce this final concept, OutputImage
in appendix C.3.5, that will tell whether the values of an image are mutable.

The correct way to use it is:

template <class Img>
requires RawImage<Img> && OutputImage<Img>
void my_algorithm(Img img) {
// write data in img ...
}

3.5 Summary

In this chapter, we present that concepts are not designed after data structures but after
algorithms. Indeed, a concept consists in extracting a consistent behavioral pattern from several
pieces of code (algorithms) and name it to give it a meaning. Through a simple but concrete
example, we present in a didactic way to extract concepts from an image processing algorithm
(gamma correction).

This chapter then proceeds to explain how, in theory, image types are related to each other.
We present the set of different image types families and how algorithms exist in those sets, which
introduce the notion of version of an algorithm. An algorithm have different versions for each
image types family it supports. We distinguish it from an algorithm specialization, the latter
being the ability to leverage a property to make an optimization and increase performances.

This chapter then proceeds to describe the notion of algorithm canvas which is the result
flowing from the taxonomy of image processing algorithms. Indeed, there are three main algorithm
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families: the pixel-wise algorithms (binary threshold), the local algorithms (dilation) and the
global algorithms (Chamfer distance transform). We focus primarily on local algorithms and how
they can all be written with the same canvas of code. Indeed, for instance, the only difference
between a dilation and an erosion is the supremum operator (max vs. min). We then discuss
avenues to leverage these canvas to possibly solve heterogeneous computing issues.

Finally, this chapter introduces our first main contribution: a complete taxonomy related
to the image processing area. We first introduce fundamental concepts such as point, pizel,
domain and image. We then motivate and introduce advanced concepts related to images and the
different way to access data (forward, backward traversing, indexing, direct access to underlying
buffer, ...). In the end, we introduce the concepts related to orbiting notions such as structuring
element, neighborhood and extension (border management) which are necessary to be able to
work with local algorithms.

The next chapter will make use of the presented concepts to introduce the second main
contribution of this thesis: the image views.



Chapter 4

Image views

HIS concept of views is not new [24] and naturally appeared in Image processing with Milena
T under the name of morpher |80, 95]. It was always useful to be able to project an image
through a prism that could extract specific information about it without the need to copy the
underlying data buffer. In modern days, the language C++ (20) also introduces this mechanism
with the ranges [184] facilities for non-owning collections. It is named views and allows the user
to access the content of a container (vector, map) through a prism. In Pylene, we decided to align
the naming system after what was decided in C+420 in order not to confuse the user. This way,
a transform view in image processing will do the same thing on an image that the transform
view in the standard range library does on a container. Views feature the following properties:
cheap to copy, non-owner (does not own any data buffer), lazy evaluation (accessing the value
of a pixel may require computations) and composition. When chained, the compiler builds a
tree of expressions (or expression template as used in many scientific computing libraries such as
Eigen [84]), thus it knows at compile-time the type of the composition and ensures a 0-overhead
at evaluation. We will first motivate the usage of views in image processing. We will then present
the main views used in image processing. Then will be discussed how image views differ from
the one used in C++’s ranges and their main properties (especially how they keep/discard the
properties from the parent image) through a concrete example: the management of border and
extension policies. Finally, we will discuss the limitations of such a design.

4.1 The Genesis of a new abstraction layers: Views

In image processing an algorithm is naively written by taking one or several inputs’ data (among
which is the input image(s)), by performing work on this input data and then by returning the
resulting data (or an error). Let us take for example the alpha-blending example which can be
implemented in naive C++ code as followed:
void blend_inplace(const uint8_t* imal, uint8_t* ima2, float alpha,
int width, int height, int stridel, int stride2) {
for (int y = 0; y < height; ++y) {
const uint8_t* iptr = imal + y * stridel;
uint8_t* optr = ima2 + y * stride2;
for (int x = 0; x < width; ++x)
optr[x] = iptr[x] * alpha + optr[x] * (l1-alpha);
}
}

This code has several flaws. It makes strong hypothesis about the input images: its data buffer
contiguity and its shape (2D). Let us suppose that our user now wants to restrict the algorithm
to a specific region inside the image. The maintainer would have then to provide an overload of
the algorithm with one additional input argument corresponding to the region of interest. Let
us suppose that the user now wants to support manipulate 3D images. The maintainer would
now have to provide two additional overloads with an additional stride argument (one for the

105
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base algorithm, one for the region of interest-restricted algorithm). Let us now suppose that
the user only wants to manipulate the red color channel. Now the maintainer must support
and additional overloads of the algorithm for each channel and/or color type. The complexity
increases manyfold for each kind of customization points the maintainer wants to offer to the
user. Of course, it is possible to prevent code duplication through clever usage of computer
engineering techniques (code factorization etc.) but the complexity would still leak through the
API anyway. That is way the other solution is to make the user able to perform those restriction
upstream from the algorithm transparently so that the downstream algorithm is easy to write,
understand and maintain. In order to achieve this, we need to raise the abstraction level around
images by one layer so that we can work at the image level. The alpha-blending algorithm would
then be written as shown in fig. [4.1]

ima imal ima?2

Figure 4.1: Alpha-blending algorithm written at image level.

This way to express an algorithm is achieved by introducing views to image processing. An
image now is a view and can be restricted/projected/manipulated however the user need before
feeding it to an algorithm. Even the whole alpha blending algorithm can be rewritten in terms
of views entirely, as shown in fig.

auto alphablend =
[1(auto imal, auto ima2, float alpha) {
return alpha * imal + (1 - alpha) * ima2;

};

[imal] [alpha] [imaz] [1—alpha]

Figure 4.2: Alpha-blending, generic implementation with views, expression tree.

Being able to perform powerful manipulation on images before feeding them to algorithms
completely nullify the initial problem of having several overloads of the same algorithm while
maintaining and documenting all the associated optional arguments. Indeed, in order to perform
the alpha-blending transformation on the base input image, all that the user must do is:

auto imal, ima2 = /* ... */;
auto ima_blended = alphablend(imal, ima2, 0.2);

If the user wants to restrict the region to be blended, or the color channel to work on, he just
has to write the following modification:

auto roi = /* ... */;
auto blended_roi = alphablend(view::clip(imal, roi), view::clip(ima2, roi), 0.2);
auto blended_red = alphablend(view::red(imal), view::red(ima2), 0.2);

The restriction is done upstream from the algorithm and propagated downstream without
increasing the code complexity. This way, view greatly increase what the user can do by writing
less code. The authors explain in detail in how to turn a pixel-wise image processing
algorithm into a new image type which is an image view.
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4.2 Views for image processing

There are four fundamental kinds of views, inspired by the functional programming paradigm:
transform(input, f) applies the transformation f on each pixel of the image input,
filter(input, pred) keeps the pixels of input that satisfy the predicate pred, clip(input,
domain) keeps the pixels of input that are in the domain, and zip(inputi, inputy, ...,
input,) allows to pack several pixels of several images to iterate on them all at the same time.
From those four fundamentals come out more very useful views such as cast<T>(input) or
mask (input, msk) that are more specific to the image processing area.

In Pylena, the practitioner can use a large array of views. Those views come into different
form and allow the practitioner to seamlessly use arithmetic or logic operators on images like he
would when using expression template. We separate the available views in two main families:
the views that perform a restriction of the domain (clip, filter) and the views that transform the
values (transform, zip).

4.2.1 Domain-restricting views

The filter view It is also a fundamental view which consists in keeping only the values that
satisfy a predicate. This is very useful when working with thresholds as shown in the following
code:

auto my_threshold = 145;

auto inferior_to [my_threshold] (uint8_t val) { return val <= my_threshold; };
auto superiorstrict_to = [](uint8_t val) { return not inferior_to(val); };
mln: :image2d<uint8_t> ima_grayscale = /* ... */;

auto ima_inferior = mln::view::filter(ima_grayscale, inferior_to);

auto ima_superiorstrict = mln::view::filter(ima_grayscale, superiorstrict_to);
mln::fill(ima_inferior, Ou8);

mln::fill(ima_superiorstrict, 255u8);

This code shows a way to binarize ima_grayscale with a custom threshold using the filter view.
It is important to note that the resulting filtered image has its domain of definition changed.
And the new domain of definition will most likely not be in a regular usual shape (such as a 2D
rectangle). This implies that the usage of this view inside certain algorithms may be limited.

The clip view It is a convenient way to extract a sub-image from a base image. This view
essentially redefine the domain of definition to restrict it into a smaller one. It does not change
anything else which means it proxies every access to the image. For instance, we make use of
this view to easily subdivide a 2D-image into 4 tiles as shown in the code below:

mln::image2d<mln: :rgb8> large_image = /* ... */;
point2d shape = large_image.domain().shape();
auto middle_pnt = point2d{shape.x() / 2, shape.y() / 2};
auto tl = large_image.domain().t1(); // top-left point
auto br = large_image.domain() .br(); // bottom-right point
auto four_tiles = std::tuple{
mln::view::clip(ima, mln::box2d{tl, middle_pnt}), // top-left tile
mln::view::clip(ima, mln::box2d{ // top-right tile
point2d{middle_pnt.x(), tl.y(O},
point2d{br.x(), middle_pnt.y()}
b,
mln::view::clip(ima, mln::box2d{ // bottom-left tile
point2d{tl.x(), middle_point.y()},
point2d{middle_pnt.x(), br.y(}
B,
mln::view::clip(ima, mln::box2d{middle_pnt, br}) // bottom-right tile
};

The mask view It is very image-processing oriented as it allows the practitioner to provide a
boolean image the same size as the original image to select only the pixels whose corresponding
value in the mask is true. Its usage is shown in the following code:
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mln::image2d<mln::rgb8> ima = /* ... */;
auto mask = ima > 127;
mln::fill(mln::view: :mask(ima, mask), 255);

This code set all the values that are superior to 127 to the max value 255. It shows that it can
both be used with read and write access.

4.2.2 Value-transforming views

The transform view It is the most important view of all. It consists in applying a function
to each image’s pixel. For instance, writing the grayscale algorithm with a transform view is as
simple as the following code:

auto grayscale_transform = [](mln::rgbh8 val) -> uint8_t {
return 0.2126 * v[0] // red
+ 0.7152 * v[1] // green
+ 0.0722 * v[2]; // blue
};
mln::image2d<mln::rgb8> ima_rgb = /* ... */;
mln: :image2d<uint8_t> ima_grayscale = mln::view::transform(ima_rgb, grayscale_transform);

There is no loop in this code, just the pixel-wise transformation function. Furthermore, the code
will not compute the resulting image. The computation will happen on-the-fly each time a value
from ima_grayscale is requested. This view allows the practitioner to quickly write and adapt
any pixel-wise algorithm he needs for his more complex calculation, efficiently.

The zip view It is one of the most useful view and allow the practitioner to iterate over a set
of image at the same time. The basic use-case consists in iterating over a set of input image and
the output image to be able to consistently assign output values to a resulting computation from
input values. Its usage is shown in the following code:

mln::image2d<uint8_t> input = /* ... */;
mln::image2d<uint8_t> output{input.domain()};
auto zipped_ima = mln::view::zip(input, output);
for (auto&& [v_in, v_out] : zipped_ima.values())
v_out = v_in < 145 ? 0 : 255; // binarisation

This code is another example of how to compute a binary threshold on an image.

The channel/RGB views It is a projector to access a specific color channel of an image.
There exists image with many more channels than just the standard red/green/blue ones, from
the astrophysics or medical area for instances. This view is a tool to restrict an image and only
access a specific channel. Its usage is shown in the following code:

mln::image2d<mln: :rgbh8> ima = /* ... */;
mln::copy(mln::view::red(ima), mln::view::green(ima));

This code copies the red component into the green component. It shows that the view can be
used in both read and write access. Another more generic view exists; min::view: :channel (ima, k),
that access the k-th channel in ima.

The cast views It is a way to convert an image’s underlying type to another type, by
performing a cast. As this does not modify the underlying value in itself, the write access cannot
be granted. This view can be used as shown in the following code:

mln::image2d<double> ima = /* ... */;
mln::image2d<uint8_t> ima_8bits = mln::view::cast<uint8_t>(ima);
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The arithmetical operators +,—,*,/,% are implemented in the form of transformation
views that operate point-wise between two images whose size is identical. For instance, writing
the following code:

VA B 7
VA V4

mln::image2d<uint8_t> imal
mln::image2d<uint8_t> ima2
auto ret = imal + ima2;

Is equivalent to writing the following code:

auto ret = mln::view::transform(imal, ima2, [](auto v1, auto v2){ return vl + v2; 1});

It is important to note that the — unary operator is also supported: -imai.

The logical operators <,<=,==,!=,>,>= are implemented in the same way that arith-
metical operators are. Both unary and binary operators are expressed as transform, and writing
the following code:

auto ret = !imal && ima2;

Is equivalent to writing the following code:

mln::view: :transform(imal, [](auto v){ return !v; });
mln::view: :transform(tmp, ima2, []J(auto v1, auto v2){ return vi && v2; });

auto tmp
auto ret

It is far more expressive and more comprehensible by the practitioner. Also, a new facility is
introduced to express the logic behind a ternary expression (if C then A else B): the operator
ifelse(C, A, B). The rationale is to be able to swap between values depending on a boolean
mask. This way, a mathematical morphology algorithm such as hit or miss can be implemented
in the following simple manner:

mln::image2d<uint8_t> ima = /* ... */;

auto ero = erode(ima);

auto dil = dilate(ima);

uint8_t zero = 0;
auto ret = mln::view::ifelse(dil < ero, ero - dil, zero);

Everything is taken care of and the practitioner just has to write his algorithm.

The mathematical operators They are implemented in the form of views that operates
point-wise. The supported mathematical operators are the following: abs, pow, sqr, cbrt, sqrt,
sum, prod, min, max, dot, cross, lI0norm, 11norm, 12norm, 12norm__sqr, linfnorm, lpnorm, 10dist,
11dist, 12dist, 12dist__sqr, linfdist, and Ipdist. Calling an operator onto an image is equivalent to
calling a transform view on each value of this image:

VB V4

view: :maths: :abs(ima);

auto ima
auto ret

Is equivalent to calling:

auto ima = /* ... */;
auto ret = view::transform(ima, [](auto v){ return std::abs(v); });

4.3 View properties

Views feature interesting properties, especially how they keep/discard the properties of the
concrete image they are based on. However, before talking about those properties, it is important
to draw the line and point the main differences between the C++420 ranges views and our image
views.
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4.3.1 Differences between C++420 ranges views and image views

C++20 ranges views are a new abstraction layer introduced on top of the already existing
iterators. This means that a view is created from an existing container from its iterators. There
are also special views such as std::views::iota that are able to generate an infinite sequence
of number. Those last are the generator views and are designed to be used the same way as a
container, except that they do not own any data. In C4++20 the views are mainly constructed
from a container such as std: :vector, std: :map or std::1list. For instance, the way to create
a view featuring all the elements of a container is shown in the following code:

auto vec = std::vector { /* ... */ };
auto vec_vw = std::views::all(vec);

This induces issues regarding dangling references when passing temporary views or when the
container owning the data expires. To summarize the model of ranges in C4++20, they are a new
abstraction layer much more friendly and powerful than iterators and can construct non-owning,
cheap-to-copy views from an owning container.

4.3.2 Data ownership

The concept of View brought to us a fundamental issue when dealing with images: “ What is an
tmage?”. More precisely: should an image always be the owner of its data buffer? Should we
have a shared ownership of the data buffer between all the images using it? Then what happens
when the data changes? The issue about the semantic of an image is crucial but also very similar
to the issue there is to differentiate a container (such as std::vector, that is to say the data
buffer) and a view, as seen in section

From here we have considered two approaches. The first one is to have shared ownership of the
data buffer for the image and its derived views. However, this does not allow the differentiation
between an already computed image and a lazy image. To be able to make this differentiation is
crucial in an Image Processing library as we want to make the most out of the data we already
have, and we do not want to compute data we do not need. Also, we cannot distinguish when the
copyability property is required. This is the main reason why we did not adopt this approach.

The second one is to make the differentiation between a concrete image which owns the data
(like the standard containers) and the views that are lightweight cheap-to-copy objects. However,
this would imply we have to distinguish both image families when writing algorithms, and we do
not want that. Indeed, that would defeat the purpose of genericity.

This is why we have chosen to take a path where we mix both approaches at the same time.
We assert that all image are cheap-to-copy (including views), even the concrete images. The
concrete image will have a shared ownership semantic related to its data buffer and will remain
cheap-to-copy. It will also behave the same way a view behaves. That is why, with our semantic,
all images are views. Ultimately, there is still a way to distinguish a view from a concrete image,
if needed, and we introduce two new concepts ViewImage and ConcreteImage for this purpose:
template <typename I>
concept Concretelmage =

Image<I> &&

std::concepts::semiregular<I> && // A concrete image is default constructible
not image_view_v<I>;

template <typename I>

concept ViewImage =
Image<I> &&
image_view_v<I>;

Having images as views is a very important property as it simplify greatly the reasoning when
performance is needed. This allows the user to pass his images everywhere without worrying
about dangling data buffer expiring around the corner. It also enables us to have a library
design similar to the C++’s standard library which the user is familiar with and, why not, have
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standard algorithm and standard view work on our image types. All of these are the main reason
why we decided to adopt this design. However, unlike the standard library, we are not required
to work with iterator due to backward compatibility.

0 if x < 150
255 if x > 150

(] (int x)

/

auto h

auto u

\,

auto v = transform(u, h) —

Figure 4.3: An image view performing a thresholding.

In our design, all images are lightweight (cheap-to-copy) objects with shared ownership over
the data. A view image is a non-owning image that only stores pointers, as shown in fig. [4.3] A
concrete image stores the data. The only difference between a view and a concrete image is given
by a trait image_view which will check the view property of the given image to tell whether it
is a concrete owning image type or not. Compared to the C++20 ranges views model where no
mechanism prevent errors resulting from dangling references and confusing ownership of data. It
is especially adapted to image processing as the user generally wants to avoid deep copy of its
data. Indeed, when the user wants a deep-copy (clone), he wants to do it explicitly.

This design induces one major property which is the lazy-evaluation of the views.

4.3.3 Lazy evaluation, composability and chaining

The major key point of views is the lazy evaluation. When a concrete image is piped through
a view, no computation is done. The computation happens when the practitioner requests a
value by doing val = V(p). The implications are multiples: an image can be piped into several
computation-heavy views, some of which can be discarded later on, and it will not impact the
performance. Also, when processing large images, applying a transformation on a part of the
image (such as clipping or filtering) is as simple as restricting the domain with a view and
applying the transformation to this resulting sub-image.

Lazy-evaluation combined with the view chaining allows the user to write clear and very
efficient code whose evaluation is delayed till very last moment as shown in fig. (see |142] for
additional examples). Neither memory allocation nor computation are performed; the image i
has just recorded all the operations required to compute its values.

The tree of type resulting from this view chaining is illustrated by fig. [£.5 It illustrates
how chaining views with each other result in the formation of an abstract tree that records the
operations to perform. This model allows building complex computational trees via views while
keeping efficient performance at runtime. However, those trees are complex for the compiler to
process and can induce substantial compilation time overhead.

4.3.4 Preserving image properties

Views will also try to preserve properties of the original image when they can. That means that
views can preserve the ability of the practitioner to, for instance, write into an image. This
may be a trivial property to preserve when considering a view that restrict a domain, but when
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// Lazy-Filtering: keep pizels whose value

// is below < 128

auto h = view::filter(g, [l (auto value) {
return value < 128;

);

image2d<rgb8> imal = /* ... */;
image2d<uint8_t> ima2 = /* ... */;

// Projection: project the red channel value
auto f = view::transform(imal, [](auto v) {
return v.r;

B;

// Lazy-evaluation of a gamma correction
using value_t = typename Image::value_type;
constexpr float gamma = 2.2f;
constexpr auto max_val =
std: :numeric_limits<value_t>::max();
auto i = view::transform(h,
[gamma_corr = 1 / gamma, max_val] (auto value) {
return std::pow(value / max_val,
gamma_corr) * max_val;

// Lazy-evaluation of the element-wise
// minimum
auto g = view::transform(view::zip(f, ima2),
[](auto value) {
return std::min(std::get<0>(value),
std: :get<i>(value));

Ds %

Figure 4.4: Lazy-evaluation and view chaining.

[z’ = view : tranform]

/

[gamma] [maw-valj [h = view :: filter]

g = view :: tranform

[f = view :: trcmsform] (imaQ]

1mal

Figure 4.5: Abstract Syntax Tree of the types chained by the code in fig.

considering a view that transforms the resulting values, it is not. Let us consider the projection
h:(r,g,b) — g that selects the green component of an RGB triplet. When piping the resulting
view into, for instance, a blurring algorithm, the computation will be performed in place thanks
to the fact we still have the ability to write into the image. A legacy way of obtaining the same
result would have been to create a temporary single-channel image to extract the green channel
of the original RGB image so that the temporary image could then be blurred. The final step
would have then been to copy the values of the temporary blurred image back into the green
channel of the original image. The comparison, including the memory used, between the legacy
way and the in-place way of doing this computation is shown in fig. [4.6

On the other hand, when considering the view g : (r,g,b) — 0.2126 x4+ 0.7152 % g + 0.0722 % b
that compute the gray level of a color triplet (as shown in fig. , the ability to write a value
into the image cannot be preserved. Indeed, one would need an inverse function that is able to
deduce the original color triplet from the gray level to be able to write back into the original
image. This operation alone is a whole field of research on its own [133, |59, 50]

Similarly, a view can apply a restriction on an image domain. In fig. [£.8, we show the
adaptor clip(input, roi) that restricts the image to a non-regular roi and filter(input,
predicate) that restricts the domain based on a predicate. All subsequent operations on those
images will only affect the selected pixels. In this case of restriction, the ability to write data
back into the original image is preserved through the view.

Views feature many interesting properties that change the way we program an image processing
application. To illustrate those features, let us consider the following image processing pipeline:
(Start) Load an input RGB-8 2D image (a classical HDR photography) (A) Convert it in
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Pipeline Memory

Pipeline Memory

Input y ?

Copy green A
channel ?

Blur green Select green ‘ ?
image . channel /
Copy back .

green channel . Blurring { ?

(a) Legacy pipeline with copy (b) Modern pipeline with
view

Input ‘, ?

Figure 4.6: Comparison of a legacy and a modern pipeline using algorithms (green) and views
(purple).

, 0.2126 x r +0.7152 x g
+0.0722 x b

transform(

Figure 4.7: Usage of transform view: grayscale.

. [1¢int x) {
c]_lp( > DiamondShape_ROI ) — filter( > return (x % 2) ==0; ) —>
}
(a) Clip view (b) Filter view

Figure 4.8: Clip and filter image adaptors that restrict the image domain by a non-regular ROI
and by a predicate that selects only even pixels.

Input Grayscale Sub-quantization ik Output
(RGB-16) Conversion (8-bits conversion) Ly (Gray 8-bits)

Figure 4.9: Example of a simple image processing pipeline.
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grayscale (B) Sub-quantize to 8-bits (C) Perform the grayscale dilation of the image (End) Save
the resulting 2D 8-bits grayscale image; as described in fig. 4.9. This pipeline is expressed with
two notions. The first notion is composition of algorithms (A — B — () in order to achieve

the desired result. The second notion is the composition of views (Input — A — B) which
overlaps partially with the algorithm part. This express that part of the algorithm is performed
lazily only when we perform the last part (C). Those two notions are illustrated by the fig. 4.10.

Algorithm Composition = MyComplexOperator

Input Grayscale Sub-quantization Dilati Output
(RGB-16) Conversion (8-bits conversion) Hation (Gray 8-bits)
Image Views Composition = MyComplexImage

Figure 4.10: Example of a simple image processing pipeline illustrating the difference between
the composition of algorithms and image views.

There are six properties one want to keep track when working with views: forward, writable,
accessible, indexable, bidirectional and raw. Those properties echo to the concepts seen in sec-
tion 3.4. An image is forward when it can be traversed in a forward way. It is writable when the
values are mutable. It is accessible whenever it allows to access the value associated to a point
(i.e. it allows to write the expression v = ima(p)). It is indexable whenever its values can be
accessed through an index localizer (i.e. it allows to write the expression v = imalidz]). Usually,
accessing through an index is faster than accessing by a point. It is bidirectional when it can be
traversed in both a forward and a backward way. Finally, an image is raw when its data buffer is
contiguous and can directly be accessed with information about strides. The table 4.1 presents
all the views and how they preserve the base properties of a concrete image.

Table 4.1: Views: property conservation

Property
View type Forward Bidirectional ~Raw  Writable Accessible Indexable
Expression

Image imal, ima2 v v v v v v
Cast cast<T>(ima) v v X X v v
Transform transform(ima, func) v v X vl v v
Filter filter(ima, pred) v v X X v v
Clip clip(ima, dom) v v X v v v
mask mask(ima, mask) v v X v v v
Zip zip(imal, ima2) v v X v v 4
Channel red(ima) v v X v v v
Arithmetic imal + ima2 v v X X v v
Logical ima > 125 v/ v/ X X2 v v/
Mathematical | abs(ima) v 4 X X v v

1.

. writability is preserved only if func is a projection.

2. writability not preserved except for the expression ifelse(ima, imal, ima2).

Also, we may want to extend the property preservation discussion to other concepts we saw
in the previous chapter 3, especially the concepts of structuring element and extension.
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4.4 Decorating images to ease border management

When looking at local algorithms, we notice that a long recurring issue is regarding the behavior
on the border of the image. There are many ways of dealing with this problem. One is to allocate
additional memory for the border and paste values in it. Another is to check the bounds when
looping over the neighbors inside the computational window. We can also decorate the image to
return a correct lazily computed value when accessing out-of-image-bound value still inside the
extension. The point is: all these methods have advantages as well as disadvantages.

Memory allocated border The border width is fixed at the image’s creation and cannot be
augmented without doing a reallocation. There is also a cost when computing border’s values
(to fill it) which is proportional to the border’s width and to the image’s size. On the other hand,
the access time of a border value during the algorithm unrolling is as fast as a native access time
within the image itself. The last issue remaining would be that the border is not infinite. We
cannot process a local algorithm with a structuring element that does not fit in the extension.
This method is especially adapted when there is medium structuring elements with a known size
which will yield a lot of out-of-image’s bound accesses. When speed is required, this method is a
de facto standard.

Bound checking Assuming there is no border, and we are not allowed to access out-of-image-
bound values, a bound check is required when accessing each values. Another way to do would
be to decorate the facility that yields the neighbors of a pixel: do not yield out-of-image-bound
pixels. This removes the need to bound check for each pixel’s value which is relatively faster. The
caveats of this method are that it induces a slight slow down when yielding the pixel’s neighbors
from the structuring element, and that it is not always viable: some algorithms do need to access
values in an extension to produce proper results.

Image decoration The border is infinite, and we make a view of our image to decorate it with
the required extension. This is achieved using views: the original image is chained into a view
that will add the required feature to the image. For instance, let us consider the following image:
struct borderless_image {

VZame

// NO exztension_type subtype

// NO extension() method
};

Attempting to use this image in a local algorithm that works with a structuring element
will raise an error, as the structuring element does not fit inside the image when considering
the behavior on the borders. However, instead of narrowing the region of interest (i.e. casting
out bordering pixels), it is possible to make a view that will return an image for which the
behavior at the border is well-defined. Referring to the taxonomy from the previous chapter
we remember that we can construct a custom extension type for the sake of an example (as
described in section . This example will decorate the image so that the border is always
filled with a specific value. The following code shows how we can write such an extension:
template <class ValueType>
struct FillExt {

using support_fill = std::true_type; // Support the fill policy
bool is_fill_supported() const { return true; }

using value_type = ValueType; // Underlying value_type
// Always fit structuring element of any size
template <class StructuringElement>

bool fit(const StructuringElement& se) const { return true; }

void fill(ValueType v) { v_ = v; } // Assign the filled value
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/.
// Yield the value for a given point (always return filled value)
template <class PointType>
ValueType val(PointType) const { return v_; }
Vs
private:
ValueType v_;
s

Now that our extension type is written, we introduce a new image type which will adapt our
base borderless_image into a view which features out FillExt extension type.

template <class BaseImage>

struct filled_border_image : image_view_adaptor<BaseImage>{
V72
using extension_type = FillExt;
extension_type& extention() const { ext_; }

Zame

value_type at(point_type pnt) {

if (!domain() .has(pnt)) {

return extension().val()

}
}
// ... adapt all the methods that can make out-of-bound access and fallback on
// the extension's wvalue ...

private:

extension_type ext_;

};

Finally, all that is left to do is to write the function that will construct the view from the
base image:
template <class BaseImage>
auto fill_extension_view(BaseImage ima) {
// call to the image_view_adaptor ctor

auto with_fill_ext_ima = filled_border_image<BaseImage>(ima) ;
return with_fill_ext_ima; // <-- this is a view

This simple function enables very powerful usage as illustrated in the code below:

auto ima = image2d<uint8_t>{
{0, 1, 2},
{3, 4, 5}
{6, 7, 8}
};
ima.at({1, 1}); // 0K, 4
ima.at ({5, 5}); // ERROR, out-of-bound
// Get a view
auto ima_with_filled_border = fill_extension_view(ima);
// Fill border with wvalue 255
ima_with_filled_border.extension().fill1(255);
ima_with_filled_border.at ({5, 5}); // 0K, 255

For the sake of brevity we have simplified the implementation in our example. In practice
the implementation of such a pattern is more complex as there are many strategies to support,
the interfaces of the extension may be different, the decoration of the image type may not be
enough, notably for the none strategy where it is required to decorate the structuring element.

At the end, this method has the advantage to always work. Given any structuring element of
any size, any algorithm will work. The disadvantage is that we need to check for out-of-bound
access at the image level, and lazily compute the value in case of out-of-image-bound access. The
slowness induced is not negligible and should be weighted carefully.

It is important to note the very close relation between an image’s domain (to perform
out-of-bound checks), the structuring element (notably its size) and the extension (its width). A
user may require, for a specific set of those three elements, to decorate the image, and/or the
structuring element and/or to perform computation and/or reallocation. To resolve this issue,
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we decided to provide the user with a new facility: the border manager whose job is to prepare a
suitable pair (image and structuring element) given a set of configuration wanted by the user.

We designed the configuration to be constructed from a given set of a policy and a method.
We currently offer two policies: native and auto.

e Native: if the border is large enough: forward the image as-is to the algorithm to allow the
fastest access possible. Otherwise, the border manager fails and halt the program.

o Auto: if the border is large enough: forward the image as-is to the algorithm to allow the
fastest access possible. Otherwise, decorate the image with a view whose extension will
emulate what is required by the algorithm with the given structuring element.

We also provide seven different methods to fill up our extension with the wanted values. It
is important to note that not all the methods are available for both policies. The policies are:
none, fill, mirror, periodize, clamp, image and user.

The none policy enforces a policy where there is no border to use. This method cannot
fail as it makes the border vanish. To enforce this method, the border manager decorates the
structuring element in a view that checks the domain inclusion of each neighboring point. The
fill policy enforces that the border is filled with a specific value. The mirror policy enforces that
the border is filled with a mirrored value from an axial symmetry relative to the image’s edges.
The periodize policy enforces that the border replicate the image, like a mosaic. The clamp policy
enforces that the border is filled with values expanded from the values at the image’s edge. The
image policy enforces all points out of the current image’s domain are to be picked inside another
image. A basic use-case is preparing tiles from a larger image. The position of our image can be
offset in the image acting as an extension which ease the usage when, for instance, clipping a
sub-image. The fig. shows how a sub-image (tile) can consider the base image as its border.
Finally, the user policy assumes the user knows what he is doing and do not touch nor decorate
the given image in any way. The fig. illustrates all the border methods mentioned.

As a consequence the usage of a local algorithm becomes very simple:

// default border width is 3
image2d<int> ima = {{0, 1, 0}, {0, 1, 1}, {0, 1, 0}};

auto disc_se = se::disc{1}; // radius is 1
auto bm = extension::bm::fill(0); // fill border with 0 with policy auto

local_algorithm(ima, disc_se, bm); // will handle the border for you

The border manager bm is set with the method fill (with value 0) and the policy auto (which is
the default policy). To use the policy native, one would write extension: :bm: :native: :£i11(0)
instead.

In the implementation of the local algorithm, a dispatch is made with the pattern visitor,
relying on the standard facilities std: :visit and std: :variant so that the performance overhead
as well as the complexity of use remain minimal. Let us assume we have a local algorithm
implemented this way:

template <class Ima, class SE>

local_algorithm(Ima ima, SE se)

{
// assume ima has a large enough border for the given se
// use ima & se in loop

}

We can rewrite it leveraging the border manager facility this way:

template <class Ima, class SE, class BM>
local_algorithm(Ima ima, SE se, BM bm)
{
auto [managed_ima, managed_se] = bm.manage(ima, se);
std::visit([&] (auto&& ima_, auto&& se_) {
// use ima_ and se_ in loop
}, managed_ima, managed_se);
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Figure 4.11: Border methods’ breakdown.

The overhead is kept minimal thanks to using std::variant and std::visit and the algorithm
implementer delegates the border management to the border manager. This is made possible
thanks to the views. Indeed, under the hood the border manager may pipe the original image
into a view that will behave accordingly to the policy chosen by the user. This is transparent
from both practitioner and maintainer points of views.

4.5 Views limitations

Views can be of tremendous use in our area however it relies on metaprogramming techniques
which are infamous for greatly increasing the compilation time of source code. Also, when one
starts to chain views a lot, combining different image type (via zip for instance), combined with
the overhead induced via the border manager using std: :variant, the compilation time can
really become an issue. Indeed, C++ developers tend to minimize the cost of compilation time
because once the program is compiled, the binaries can be distributed and are really fast to
execute. However, we are not exactly in that case as our library is generic. That means we
distribute source code to our user and our user compiles it when prototyping their program. This
is an issue every library developer faces: distributing heavily templated source code as a library
can be a deal-breaker. In the industry, it was even to the point that people refused to use boost
in their code line. The boost maintainers had to modularize their library, so that users were able
to cherry-pick the parts they needed without pulling half of the library which was a disaster for
the compilation time of their project.

The ranges for C++20’s standard library and its views face the same issue. It was not rare
for someone to need 90sec to compile the calendar toy example of the library which just contains
code that displays a given month in the classic printed format (day number-of-month correctly
displayed in column corresponding to the day of week label). This massive compile-time is due to
early compiler implementation needing massive RAM usage for template type and having to do
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memory swap on disk when the computer running the compilation was out of RAM. Nowadays,
compilers have optimized the whole process, but the combinatorial explosion behind the types
can still be an issue. Introducing complex view code in a program that is compiled often may
not be a good idea. However, a program that is rarely compiled but is run a great number of
time may take advantages of all the optimizations the compiler can do to remain very efficient.

4.5.1 Image traversing with ranges

Lastly, views usage should be measured when used at critical points. We learned from experience
that one simple change can make the compiler miss optimization opportunities which can
greatly impact the resulting performance. Let us illustrate our remark with a concrete example:
image traversing. In a previous version of our library, we used macro for image traversing.
mln_concrete, mln_piter, mln_qgiter, for_all and mln_value are all macros aiming at hiding
the underlying complexity. Our goal were to replace those macros with existing C++ core
language code to improve the user experience as well as ease the maintenance, contribution and
further improvement of the library. To do so, we based our image traversing on std: :ranges.
Let us take the old implementation (from Milena [85] we had of our dilation algorithm as an
example:

template<class I, class SE>
mln_concrete(I) dilate(const I& f, const SE& se)
{
mln_concrete(I) g;
initialize(g, £);
mln_piter(I) p(f.domain());
mln_qiter(SE) q(se, p);
for_all(p) // for all p in f domain
{
mln_value(I) v = £(p);
for_all(q) // for all q in se(p)
if(f.has(q) and £(q) > v)
v = f(q;
g(p) = v;
}

return g;

This code features the macro mentioned above and, while being explicit, may be quite obscure
with regard to its internals for a non-initiated user. However, it uses an in-house iterator on
points to traverse the image under the hood. This in-house iterator prevents the compiler to make
crucial optimizations, such as vectorization, which hinders greatly the performances. Rewriting
the algorithm using ranges in modern code results in the following code:

template<class I, , class SE>
auto dilate(I input, const SE& se)
{

auto output = input.concretize(); // clone image
for(auto [in_px, out_px] : view::zip(f.pixels(), g.pixels()))
{

out_px.val() = out_px.val();

for(auto nhx : se(in_px))

out_pix.val() = std::max(nhx.val(), out_px.val());

}
return output;

}

This code use the zip view to iterate over two images (the input image and the resulting output
image) simultaneously. This is native code, and it should, in theory, at least be as efficient as the
old version of the code (with macros) as it allows compiler optimizations such as vectorization or
inner loops unrolling. But through benchmarking, we have learned that this solution does not
mix well [28] with the multidimensional nature of images. The issue originates from the fact that
we have no way to explicitly say in the code that the multidimensional range is made of chunk of
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contiguous rows of memory. Indeed, for each element we have to compute an index originating
from potentially N dimensions. This disables critical optimizations such as vectorization, which
was a disaster performance-wise. We solved this problem by augmenting range-v3’s ranges with
our own multidimensional ranges. Indeed, we only need to have contiguity on the last dimension
to provide the compiler code it can optimize. Which means that each for-loop that traverses
the whole n-dimensional image can be transformed into a double for-loop whose inner loop is
guaranteed to be a contiguous row. This way we have now an outer range as well as an inner
range, as illustrated in fig.

— Outer range

— Zigzag range

— Inner range

Figure 4.12: Range-v3’s ranges (a) vs. multidimensional ranges (b).

Thanks to this new design we can now rewrite our algorithm with a double for-loop for the
image traversing. Hopefully it stays really similar to what one would be used to when working
with the classical two-dimensional image. As an example, we can rewrite the dilation algorithm
this way:

template<class I, class SE>
auto dilate(I input, const SE& se)
{
auto output = input.concretize(); // clone image
// this line is needed to avoid dangling reference
auto zipped_pixels = view::zip(input.pixels(), output.pixels());
for(auto&& row : ranges::rows(zipped_pixels)) // unroll the contiguous segments
for(auto [in_px, out_px] : row) // optimized traversing of the segment
{
out_px.val() = out_px.val();
for(auto nhx : se(in_px))
out_pix.val() = std::max(in_px.val(), out_px.val());
}

return output;

The highlight of this code is the usage a new tool: ranges: :rows to bring out an inner range
(contiguous) from the multidimensional outer range.

4.5.2 Performance discussion

In order to have a relevant discussion on performance, we decided to implement a real world
image processing pipeline: the background subtraction. It is used to detect changes in image
sequences . It is mainly used when regions of interest are foreground objects. The pipeline
components include: subtraction, Gaussian filtering, threshold, erode and dilate, as shown

in fig. £.13]
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Background Grayscale . Opening
(RGB-8) Conversion EloLFE Thresholding (Erosion+Dilation)
Input Grayscale Gaussian Output
(RGB-8) Conversion (Gray 8-bits)

Figure 4.13: Background subtraction pipeline using algorithms and views .

float kThreshold = 150; float kVSigma = 10;

float kHSigma = 10; int kOpeningRadius = 32;

auto img_gray = view::transform(img_color, to_gray);

auto bg_gray view: :transform(bg_color, to_gray);

auto bg_blurred = gaussian2d(bg_gray, kHSigma, kVSigma);
auto tmp_gray = img_gray - bg_blurred;

auto thresholdf = [](auto x) { return x < kThreshold; };
auto tmp_bin = view::transform(tmp_gray, thresholdf);
auto ero = erosion(tmp_bin, disc(kOpeningRadius));
dilation(ero, disc(kOpeningRadius), output);

Figure 4.14: Pipeline implementation with wiews . Highlighted code uses views by prefixing
operators with the namespace view.

The first thing that we notice is that the implementation of the pipeline using views is
transcribed very explicitly in the code, as shown in fig. [£.14] There is a direct correspondence
between the graphic pipeline and the code.

For our benchmark, we have decided to run the algorithm on an original set of image to
detect a changing foreground. We have considered 10 data set. We present in fig. three of
them for the sake of brevity.

We have run benchmarks on this set comparing multiple ways of achieving this result, both
using Pylene and OpenCV as well as varying the size and the shape of the structuring element
window. The breakdown of these benchmarks is presented in fig. [4.16] In table we benchmark
the computation time and the memory usageE]of these implementations (all single-threaded) with
an opening of disc of radius 32 on 10 MPix RGB images (the minimum of many runs is kept).

The results should not be misunderstood. They do not say that OpenCV is faster or slower
but shows that implementations all have the same order of processing time, so the comparison
makes sense (the algorithms used in our implementation are not the same as those used in
OpenCV for blur and dilation/erosion). It allows us to validate experimentally the advantages of
views in pipelines. First, we have to be cautious about the real benefit in terms of processing
time. Here, most of the time is spent in algorithms that are not eligible for view transformation.
Thus, depending on the operations of the pipeline, views may not improve processing time.
Nevertheless, using views does not degrade performance neither (only 1% in this experiment).

'Memory usage is computed with valgring/massif as the difference between the memory peak of the run and
the memory peak without any computation (just setup and image loading)

Framework ‘ Compute Time  Memory usage AMemory usage
Pylene (w/o views) | 2.11s (£ 144ms) 106 MB +0%
OpenCV 2.41s (+ 134ms) 59 MB -44%
Pylene (views) 2.13s (£ 164ms) 51 MB -52%

Table 4.2: Benchmarks of the pipeline fig. on a dataset (12 images) of 10MPix images.
Average computation time and memory usage of implementations with/without views and with
OpenCV as a baseline.
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Background Candidate Result

S P 5

Figure 4.15: Background detection: data set samples.

It seems to show that using views does not introduce performance penalties and may even be
beneficial in lightweight pipelines as the one in fig. However, views reduce drastically the
memory usage (also seen in fig. which is beneficial when developing applications which are
memory constrained. From the developer standpoint, it requires only few changes in the code as
shown in fig. [£.14] — the implementation of the algorithms remains the same — which is a real
advantage for software maintenance.
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Figure 4.16: Background detection: garden results.
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4.6 Summary

Views are composable. One of the most important feature in a pipeline design (generally, in
software engineering) is object composition. It enables composing simple blocks into complex
ones. Those complex blocks can then be managed as if they were still simple blocks. In fig.
we have 3 simple image processing operators Image — Image (the grayscale conversion, the
sub-quantization and the dilation). As shown in fig. algorithm composition would consider
these 3 simple operators as a single complex operator Image — Image that could then be used in
another even more complex processing pipeline. Just like algorithms, image views are composable,
e.g. a view of the view of an image remains an image. In fig. we compose the input image
with a grayscale transform view and a sub-quantization view, which is then feed to the dilation
algorithm.

Views improve usability. The code to compose images in fig. is almost as simple as:

auto input = imread(...);
auto A = transform(input, [](rgbl6 x) -> float {
return (x.r + x.g + x.b) / 3.f;

};
)5
auto MyComplexImage = transform(A, [](float x) -> uint8_t {
return (x / 256 + .5f);
}
)5

People familiar with functional programming may notice similarities with these languages
where transform (map) and filter are sequence operators. Views use the functional paradigm
and are created by functions that take a function as argument: the operator or the predicate to
apply for each pixel; we do not iterate by hand on each pixel.

Views improve re-usability. The code snippets above are simple but not very re-usable.
However, following the functional programming paradigm, it is quite easy to define new views,
because some image adaptors can be considered as high-order functions for which we can
bind some parameters, as one would do with the curry technique |17]. In fig. , we show
how the primitive transform can be used to create a view summing two images and a view
operator performing the grayscale conversion as well as the sub-quantization which can be reused
afterwarddd

Views for lazy computing. Because the operation is recorded within the image view, this
new image type allows fundamental image types to be mixed with algorithms. In fig. £.17] the
creation of views does not involve any computation in itself but rather delays the computation
until the expression v(p) is invoked. Because views can be composed, the evaluation can be
delayed quite far. Image adaptors are template expressions |20, 40| as they record the expression
used to generate the image as a template parameter. A view actually represents an expression

tree (fig. [4.2)).

Views for performance. With a classical design, each operation of the pipeline is implemented
on “its own”. Each operation requires memory to be allocated for the output image and also, each
operation requires that the image is fully traversed. This design is simple, flexible, composable,
but is not memory efficient nor computation efficient. With the lazy evaluation approach, the
image is traversed only once (when the dilation is applied) which has two benefits. First, there
are no intermediate images, which is very memory efficient. Second, traversing the image is faster

2These functions could have been written in a more generic way for more re-usability, but this is not the purpose
here.



4.6. SUMMARY 125

auto operator+(Image A, Image B) {
return transform(A, B, std::plus<>());
}
auto togray = [](Image A) {
return transform(A, [](auto x) {
return (x.r + x.g + x.b) / 3.f;
};
)
};
auto subquantizel6to8b = [](Image A) {
return transform(A, [](float x) {
return uint8_t(x / 256 +.5f);

)
};

auto input = imread(...);
auto MyComplexImage = subquantizel6to8b(togray(A));

Figure 4.17: Using high-order primitive views to create custom view operators.

thanks to a better memory cache usage, and performs an optimal selective traversal. Indeed,
in our example (fig. @, processing a RGB16 pixel from the dilation algorithm directly converts
it in grayscale, then sub-quantize it to 8-bits, and finally makes it available for the dilation
algorithm. It acts as if we were writing an optimal operator that would combine all these
operations. This approach is somewhat related to the kernel-fusing operations available in some
HPC specifications [150] but views-fusion is optimized by the C++ compiler only [139]. The
selective aspect intervenes when a region of interest is selected at one point in the processing
pipeline. Indeed, the entirety of the pipeline is then executed only on the region of interest, even
if this selection happens only at the very end of the processing pipeline.

Views for productivity. All point-wise image processing algorithms can (and should) be
rewritten intuitively by using a one-liner view. The transform views is the key enabling that
point. This implies that there exists a new abstraction level available to the practitioner
when prototyping their algorithm. The time spent implementing features is reduced, thus the
feedback-loop time is reduced too. This naturally brings productivity gain for the practitioner.
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Chapter 5

A bridge between the static world
and the dynamic world

N the programming world, there are three main families of programming language [38]. There
I are (i) compiled programming languages, such as C, C++, Rust or Go, (ii) interpreted
programming languages, such as Python, PHP or Javascript, and (iii) hybrid programming
languages, such as Java or C#. The latter have a fast compilation pass that compiles the source
code into an intermediate bytecode. Then, this bytecode is interpreted via an interpreter on the
host (runner) machine.

5.1 Introducing the static and dynamic bridge

Many studies have been carried out to compare the advantages and disadvantages of each family
of programming languages [4]. In this thesis we focus mainly on comparing the burden that are
shouldered by the maintainer and the end-user.

5.1.1 Languages types

Compiled languages From the maintainer point of view, there is a lot of burden to shoulder.
First he must decide whether he wants to distribute a package of source code or a package of
binaries to the end-user. In the case of source code, he requires the end-user to have a compiler
infrastructure, supported and validated by the library, on the end-user’s machine, as well as all
the source dependencies resolved via specific package managers such as cargo, conan or vepkg, or
via the system-wide package manager.

If the maintainer distribute binaries, he must generate one version for each couple of Operating
System, Processor architecture he supports. Indeed, to generate a binary, there are many steps,
as illustrated in fig. 5.1l First the compiler does a pass to generate machine code for each
translation unit. There can be as many machine code as there are architecture and/or operating
system supported. The maintainer may want to support different operating systems (last two
Windows and OSX version, a handful Linux or Unix distributions, maybe mobile phone portages).
Each of these OSes requires their own bundle. Additionally, the hardware may change, or the
maintainer may want to take advantage of some specific hardware when available (like vectorized
SIMD instructions such as SSE4, XOP, FMA4, AVX-512, etc.): this also requires the maintainer
to multiply the number of binaries he compiles and distributes. Finally, the linker resolves
the dependencies of the program and assembles the final binary. At that time the maintainer
has to sort out how he wants to bundle the dependencies of his program. Should he statically
link them alongside the binary and distribute them, at the risk of having the size of his binary
exploding? Or should he state that the user has to install the dependencies on his system (via
the system-wide package manager for instance) so that the binary can run? The burden of
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handling the dependencies is then shifted to the end-user when installing the program. Usually
the package manager, such as apt, yum or pacman, solves this transparently for the end-user and
the programs works “out-of-the-box” once installed, as illustrated in fig. The downside is
that the maintainer has to publish many bundles of his package for each couple of Operating
System, Processor architecture he supports.

-cpp, -hpp
C++ source code

.obj, .0
Machine code

Compiler

.a, .so, lib, .dll, .exe Linker .a, .so, lib, .dll, .exe
Library or executable binary Hnker Library or executable binary

Result

At compile-time At runtime

(a) Compile-time (b) Runtime

Figure 5.1: Compiled languages: compile-time (a) vs. runtime (b).

Interpreted languages From the maintainer point of view, this is the ideal standpoint. It
is easier to distribute software via an interpreted language because only the source code, a
dependency tree and the assets are released in the distributed package. All the burden about
resolving the dependencies and installing the framework to run the script is shouldered by the
end-user that is using the program. Indeed, as shown in fig. everything happens at runtime.
The main advantage of this approach is to build a very rich ecosystem as distributing, maintaining
and using programs is very easy once integrated in a package manager (often delivered alongside
the language SDK natively, e.g. pip for Python). However, the most notable disadvantage is the
performance which is explained by the fact that the source code is not compiled into optimized
assembly code ready to be executed by the computer. Instead, the interpreter must do all the
work in one go and, very often, this is slow (at least the first pass). Nowadays, interpreters
differentiate two use cases. One is opening the console interpreter from the command line and
typing commands to get the immediate interpreted results. This is called the read-eval-print-loop
(REPL) [159]. This use-case usually does not provide heavy optimization because the user is
likely prototyping his script and thus does not need it in the first place. The second use case is
when the interpreter parses files and/or libraries as a whole. In this use-case, it is likely that the
files do not change, while they are used a lot. It is then relevant for the interpreter to pay a pass
to generate intermediate bytecode that can be interpreted faster for the future passes onward.
As an example, the Python programming language has several implementations: CPython, PyPy,
Jython or IronPython. CPython generate intermediate bytecode in *.pyc files while Jython,
IronPython and PyPy embed a Just-In-Time (JIT) compiler to generate resp. JVM bytecode,
CLR (.NET) bytecode, or a large variety of bytecode format.

Hybrid languages The burden is shared evenly between the maintainer and the user, while re-
maining minimal. Indeed, languages such as Java or C# are in this category. Those programming
languages need a compiling pass which is designed to be fast, so that the feedback loop while
prototyping remains fast. The result of the compilation is bytecode which is then executed on a
hosting Virtual Machine (VM) that the user must install on his computer. The main advantages
of this solution are the portability and the small distributed binary size. Indeed, in theory,
any machine supporting the VM may also support the program. Also, as the VM executes the
bytecode and resolves system dependencies, the distributed binary does not need to embed any
system dependency. Finally, the user has the advantage of running a compiled program which
provides fast user experience. The goal of hybrid languages is to bring together the advantages
of both compiled and interpreted languages; no dependency management for the user, one small
binary to distribute for the maintainer, good execution performance, and fast feedback loop



5.1. INTRODUCING THE STATIC AND DYNAMIC BRIDGE 131

Interpreter
/ Hot codc\
( detection )
-py, Python . Result
source code .
Bytecode Compiler /

v

.pyc, machine
native code

Bytecode compilation

At runtime S g

. J

Figure 5.2: Interpreted languages: runtime

when prototyping (fast incremental compilation), while minimizing the downsides; usually a
garbage collector is working inside the VM to handle memory allocations and de-allocations. In
this regard, both Java and C# have achieved this feat quite elegantly. In theory, VM can further
increase performance by implementing hot code detection which would compile the bytecode
into native optimized machine code. This area is still a field of research to this day (cf. Java
HotSpot [182, 79, 126]).

To summarize Interpreted and hybrid programming languages produces more portable arti-
facts and therefore are easier to deploy in a dynamic environment. We summarize in fig. 5.3 the
different approaches in order to be able to execute a binary from source code.

Depends on Host machine

Compiled SOURCE CODE ——————————————— s transformed into———————p PROGRAM/LIB
SOURCE CODE .
Interpreted = U —> Interpreter
PROGRAM N
Hybrid SOURCE CODE Is transformed into—| PROGRAM (—Is executed onp Virtual Machine

for VM

‘:I Primary form of the program (what the developer produces)

I:] What is frequently distributed to the user

Figure 5.3: Languages types: summary diagram
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5.1.2 Static and dynamic information

Compiled programming languages usually have poor support of introspection facilities. At best,
static reflection is available at compile-time, but dynamic reflection is not an option. The structure
of the program does not change at runtime. Some flexibility exists when delving into the area of
hot-swapping dynamic libraries at runtime, however these techniques drag alongside security-
related issues that injecting possible foreign machine code into one’s program may generate.
The only exception is Common Lisp. Indeed, there exists fully compliant implementation of
this standard which are compiler-only, and runtime introspection is part of the Common Lisp
standard. Interpreted programming languages usually have very developed introspection facilities.
Dynamic reflection at runtime is possible and some language, such as Python (notably via the
functions dir and getattr). Hybrid programming languages usually offers very good static and
dynamic introspection facility at both compile-time and runtime, even if it means that runtime
facilities will hurt performance. Also, those languages are usually designed to be able to hot-swap
code at runtime. It is then possible to have the application running, recompile part of the binary
of the application, replace the old running binary by the new compiled one, all at runtime.

The next important step is to classify what information is known at compile-time (ma-
chine /bytecode code generation): we call it static information; and what information is known at
runtime (program execution): we call it dynamic information. In image processing, we have, on
the one hand, knowledge about the following static information:

o Image’s value type (unit8, rgh8, complex, etc.),
o Image’s dimension size (1D, 2D, 3D, etc.),
o Architecture of the hardware hosting the program (x86, ARM, PowerPC, GPU, etc.).

This means that, while the information may not be known at compile-time, we are able to write
(or, more accurately, generate) code dedicated for those common types that we know constitute
a large portion of the use cases. Furthermore, we can write optimized portion of code dedicated
to handle some particular known types that the program will use when it encounters them at
runtime. On the other hand, the following information are always dynamic:

e Image’s actual values,
o Image’s actual size,
o Architecture of the hardware hosting the program (x86, ARM, PowerPC, GPU, etc.).

The library needs both information type (static and dynamic) however, even if some information
are missing, it is not a fatality and the library can still recover and work efficiently at runtime.

On another note, we notice that the architecture hosting the program is an information which
is both static and dynamic. This translates the complexity of this information. Indeed, the
maintainer needs to guess the array of architectures he wants to support and generate binaries
for them (static). Also, the program needs to detect at runtime (dynamically) on which hardware
he is running to possibly leverage it to increase performance. This is an area of research on its
own called heterogeneous computing [146], 147].

5.1.3 Introducing our hybrid solution

Image processing communities like to have bridges with interpretable language such as Python or
Matlab, to interface with their favorite tools, algorithms and/or facilities. As an example, with
Python, the module NumPy [161] is a community standard which is heavily used. Henceforth,
to broaden the usage of our library, we should be able to provide a way to communicate between
our library and NumPy. There is always a need for genericity in both C++ and Python. Indeed,
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template <typename T>
T add(T a, T b) {

return a + b; def add(a, b):
} return a + b
(a) C++ static genericity (b) Python dynamic gener-
icity

Figure 5.4: C++ Static (a) vs. Python Dynamic (b) genericity.

in C++ genericity is achieved via template programming, which is static, whereas in Python
genericity is achieved via duck typing, which is dynamic, as shown in fig. [5.4]

On the one hand, static polymorphism induces no indirection in the generated code as the
type is known at compile-time. It is then possible to generate optimized code for specific types.
It is not possible to add a new supported type at runtime as the code has already been compiled.
On the other hand, dynamic polymorphism implies that there will be some indirection when
executing the code. Indeed, the code first needs to dispatch onto the appropriate function
handling the input types to perform the operation properly. Nevertheless, it is possible to add
new supported type at runtime without recompiling the library binary.

From the maintainer point of view, however, only distributing the C+-+ templated source
code is a showstopper to the usability of his library by a Python user, because he does not hand
over binaries. Indeed, one caveat of using C++ template programming is that the C++ compiler
cannot generate a binary until it knows which type (of image, of value) will be used. But the
maintainer does not know this information and the user (on Python’s end) does not want to
recompile the generic library code each time he has another set of types to try out. From here,
there are still multiple ways to achieve our goal.

The first option is to embed and distribute, alongside the library, a JIT compiler whose job
would be to generate the binaries and bindings just as they are used. This solution brings speed
(excluding the first run that includes the compilation time) and unrestrained genericity. However,
it binds both user and maintainer to the specificities of a compiler vendor, which means loosing
in platform portability.

Another option is to type-erase (dynamic polymorphism) our types to enable the use of
various concrete types through a single generic interface. This would translate into a class
hierarchy whose concrete classes are the leaves (thus, whose value types and dimensions are
known). This induces a non-negligible performance overhead but enables us to keep the genericity
and portability at the cost of maintaining the class hierarchy.

Type generalization can also be considered. It is possible to cast everything into a super-type
that is suitable for the vast majority of cases. For instance, we could say that we have a
super-type image4D<double> into which we can easily promote subtypes such as image2D<int>
or image3D<float>. Of course, we would lose the generic aspect and induce non-negligible speed
cost whereas we would keep the platform portability.

And finally there is the dynamic dispatch. It consists in embedding dynamic information
about types at runtime, and in dispatching (think of switch/case) to the correct facility that
can handle those types. The obvious caveat is the cost of maintenance induced by the genericity
as we would have numerous possible dispatches that would grow in a multiplicative way with
the number of handled types, which is not very generic. On the other hand there is almost no
speed loss and the portability is guaranteed. Theoretical models exist that could bring solutions
to lower the number of dispatcher to write, such as multi-method [87]. Unfortunately they are
currently not part of the C++ programming language.



134CHAPTER 5. A BRIDGE BETWEEN THE STATIC WORLD AND THE DYNAMIC WORLD

5.2 Designing the hybrid solution

In Pylene we have chosen a hybrid solution midway between type-erasure and dynamic dispatch.
The goal is to have a set of known types for which we have no speed cost, as well as supporting
other types to ensure we remain generic. In [149] we provide a facility to expose our generic code
to Python. As seen in the previous chapter, it is not possible to bind C++ source code to Python.
We need to have a compiled binary implementing Python binding (we chose Pybind11 [137])
to be able to call C++ code from Python. In order to achieve the binding without sacrificing
the genericity and the performance, we have designed a solution in two steps. We do not want
to provide an abstract interface that will resolve the calls to access data on the call-site via
virtual call because it would be very slow when the C++ code is executed. This would defeat
the purpose of having to rely on C++ in a first place. However, it is possible to convert an
abstract class into an instantiated concrete generic class whose template parameter are known.
This requires, however, to enumerate all the possible cases. With modern C++, it has become
possible to design n x n dispatch without gigantic switch-case clauses.

5.2.1 First step: converting back and forth

The first step of our solution consists in designing a buffer class that holds all the information
about an image: dimension, underlying type, strides and pointer to data buffer. This class is
named ndimage_buffer. When interfacing with Python, it is necessary to convert the Python
image which is a NumpPy.array into our image type and vise versa, converting our C++ image
type back into a Python image. The purpose of this buffer image is to hold all the information
from the NumpPy.array to then instantiate a concrete C++ type. This process is illustrated
in fig. The first pitfall here is due to a limitation from the abstraction interface used in
Python. Indeed, when using, for instance Scikit-Image, it is not possible to differentiate a 2D
multichannel image from a 3D grayscale image because the image is always broken down to its
most simple value and a 2D multichannel image is turned into a 3-dimensional NumpPy.array
containing a single 8-bits channel, the last dimension contains only 3 elements at max but can
theoretically contain more as the type system does not prevent that. To prevent this confusion,
the C++ wrapper code may choose between two strategies; first is to consider all 3D /1-channel
image as 2D/RGB images by default, second is to let the user give the information. For the sake
of simplicity, we have chosen the first strategy.

NumPy.ndarray C++ py::buffer .| C++ type-erased

Python image Multichannel "| ndimage_ buffer
informjation

Casting

C+-+/Python Binding v

C++ concrete type
ndimage<T, dim>

Figure 5.5: Bridge from Python to C++ via Pybind11 and a type-erased C++ class.

From the point of view of a practitioner, the code on the call-site (python side) should be as
followed:
from skimage import data
import numpy as np
import Pylena as pln # our Python binding

img = data.astronaut() # 2D-rgb8 image -> NumPy.ndarray(ndim=3, dtype='uint8')
# pln.<any_algorithm>(img)

The C++ code contains lots of glue code necessary to expose the module to Python. In this
thesis we have chosen to work with Pybinll [137] which provides a modern API and is being
actively maintained and improved. The glue code exposing the Python module from C++ is
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given in appendix [D.4] In order to have a seamless interaction between Python’s NumPy .ndarray
and C++4, we need to define a proper strategy to convert the Python type into the C++ type
without copying all data around. Pybind11 offers us two possibilities to achieve this. The first
one is to use the buffer protocol to pass around NumPy’s buffer information to C++ in a way so
that C++ can properly interpret the data into a proper C++ class. The second one is to use a
custom type-caster to implicitly convert the Python type into a C++ type each time it is needed.
With the first method, one would need to write the following code on Python’s side:

np_img = data.astronaut() # 2D-7gb8 image -> NumPy.ndarray(ndim=3, dtype='uint8')

pln_img = pln.ndimage(np_img) # conversion into the C++ image type

pln_img_ret = pln.<any_algorithm>(pln_img) # call to any C++ algorithm

np_img_ret = pln_img.to_numpy(); # convert back into NumPy.ndarray
# use np.<...>(np_img_ret) # use resulting image with NumPy

Whereas the second method would require the user to only write the following code on Python’s
side:
np_img = data.astronaut() # 2D-rgb8 image -> NumPy.ndarray(ndim=3, dtype='uint8')

np_img_ret = pln.<any_algorithm>(np_img) # implicit conversion with custom type-caster on C++ side
# use np.<...>(np_img_ret) # use resulting image with NumPy

Removing this conversion step is the major reason we have chosen the second method: the
custom type-caster. The C++4 code for this part is given in appendix

We are now all set and are able to convert back-and-forth a Python image into a C++ image
and vise versa.

5.2.2 Second step: multi-dispatcher (a.k.a. n x n dispatch)

The second step of our hybrid solution is to dispatch the abstract buffer type coming from
Python to an efficient generic code. The naive way of doing so would be to include a gigantic
switch-case clause in each algorithm implementation and dispatch to the correct instantiated
generic algorithm from there. Aside from being a nightmare to maintain, the size of those
clauses would grow several folds depending on the cardinality of the generic implementation.
For instance, for a generic dilation, there are 3 axes of cardinality: the underlying type, the
dimension and the structuring element shape. In the case where the library support 5 different
structuring element shapes, 10 underlying types and 6 dimension for the image, the switch-case
statement would need to dispatch over 300 clauses. Also, each supported algorithm would need
to have dispatcher in their code. This solution defeats the purpose of genericity which is to write
less code in the first place. We need to design a solution to implement those dispatchers while
keeping our code short and efficient. The idea we took to solve this problem comes from the
design of a C++ feature, the variant, and especially the visitor, applied to image processing, as
in [89] for instance. We need to have a way to write the implementation of the algorithm once
while enumerating all the possible cases. Also, if possible, the list of supported types should be
written once at one place for maintenance purpose.

Simple dispatcher We then had the idea of writing a dispatcher. This dispatcher lists all the
supported types and calls the given callbacks forwarding the given arguments by instantiating a
specific type. Let us try to expose to Python, for instance, the generic existing algorithm for
thresholding a binary image. The Python call-site code will look like this:

img_grayscale = skimage.data.grass()
pln.operators.binary_threshold(img_grayscale)

On the C++ side, we want to avoid writing code that looks like this:

mln: :ndbuffer_image binary_threshold(mln::ndbuffer_image input) {
auto dim = input.dim();
auto tid = input.tid();
switch(dim) {
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case 1: // 1D image
switch(tid) {
case UINTS8:
if (auto* image_ptr = input.template cast_to<uint8_t, 1>(); image_ptr)
return mln::binary_threshold(*image_ptr);
case RGB8:
// error support only RGB8 images
}
break;
case 2: // 2D image
Y/
break;
// ... 3D, 4D, ...
}
}

Instead, it is possible to separate the dispatching code and the logical code entirely by using a
templated operator, the same way we use lambdas in the pattern std::variant/std::visit.
For our binary threshold example, the operator can be implemented just by writing the following
code:

// Operator templated by the dimension
template <auto Dim>
struct binary_threshold_op_t {
// Function templated by the image type
template <typename Img>
mln: :ndbuffer_image operator() (Img&& img) const {
// Cast to a grayscale (information known) of the correct dimension
if (autox* image_ptr = std::forward<Img>(img).template cast_to<std::uint8_t, Dim>(); image_ptr)
// ACTUAL call to the generic algorithm
return mln::binary_threshold(*image_ptr) ;
else {
std: :runtime_error("Unable to convert the image to the required type.");
return {};
}
}
};
This code allows us to dispatch over any number of dimensions. We are required to pass a
grayscale image for the algorithm so here the example is limited to dispatching over just one
cardinality: the dimension. Let us now take a look at how we can implement the dispatcher
for our example to work. The dispatcher must take the dimension as first parameter and any
number of arguments to forward to the instantiated operator. The dispatcher then looks like the
following code:
template <template <auto> class Op, typename... Args>
auto dispatch_v(std::size_t dim, Args&&... args) {
switch (dim) {
case (1):
return Op<i1>{}(std::forward<Args>(args)...);
case (2):
return 0p<2>{}(std::forward<Args>(args)...);
case (3):
return Op<3>{}(std::forward<Args>(args)...);
/E o %/

}
}

The operator Op is instantiated with the correct dimension number. Then the operator () (paren-
thesis) is called while taking as parameters the forwarded arguments passed to the dispatcher.
In our case, it will instantiate the type binary_threshold_op_t<2> and then call the function
binary_threshold_op_t<2>.operator() (input), forwarding the input image to the underlying algorithm.
Indeed, using the dispatcher is as simple as writing dispatch_v<binary_threshold_op_t>(input.dim(), input);

The main advantage of this approach is that we respect all the requirements. First the logical
code is bounded in the operator, second, the supported types are all listed in one place (the
dispatcher), only once. Also, while our example is limited to one cardinality, any number of
dispatcher can be piped to one after another to achieve the cardinality wanted.



5.2. DESIGNING THE HYBRID SOLUTION 137

Double dispatcher Let us push our example to implement the mathematical morphology
dilation operator. We now have two more generic axes to cover: the structuring element shape
and the underlying datatype. First, let us take a look at what the Python code may look like:

img_grayscale = skimage.data.grass()
rect = pln.se.rect2d(width=3, height=3)
img_dil = pln.operators.dilate(img_grayscale, se)

The first thing to notice is the need to add additional bindings to expose our C++ structuring
elements. The glue code to achieve this is given in appendix Let us take a look at our
dilation operator:

template <auto Dim, typename T>
struct dilate_operator_t {
template <typename Img, typename SE>
mln: :ndbuffer_image operator() (Img&& img, SE se) const {
if (autox image_ptr = std::forward<Img>(img).template cast_to<T, Dim>(); image_ptr)
// ACTUAL call to the generic algorithm
return mln::dilation(*image_ptr, se);
else {
std::runtime_error("Unable to convert the image to the required type.");
return {};
}
}
};

This operator needs double dispatch over two cardinalities: the dimension Dim and the value type
T. We can skip the dispatch of the structuring element’s shape as we have made a std: :variant
of all the supported structuring element for the sake of simplicity. Dispatching over the supported
structuring elements can then be offloaded upstream from the call of the double dispatch, just
by calling std::visit. We can immediately notice that there is an issue with our dilation
operator. Indeed, there are two template parameters and our dispatcher dispatch_v does
only handle one. We solve this issue by writing another intermediate operator dispatcher
dilate_operator_intermediate_t serving as trampoline operator that will partially instantiate
the final operator dilate_operator_t along the dimension template parameter to feed it to the
last dispatcher, dispatch_t:
template <auto Dim>
struct dilate_operator_intermediate_t {
template <typename Img, typename SE>
mln: :ndbuffer_image operator() (Img&& img, SE&& se) const {
// Partial instantiation
return double_dispatch_t<dilate_operator_t, Dim>(
input.sample_type(), std::forward<Img>(input), std::forward<SE>(se));

}
};

Dispatching the operator alongside two cardinalities (even three including the structuring element
handled by std::variant) would then become as simple as calling:

// dispatch the structuring elements through using std::visit for std::variant

return std::visit(

[&input] (const auto& se_) { // dispatch over the trampoline

return dispatch_v<dilate_operator_intermediate_t>(input.dim(), input, se_);

}, se);

In order for this to work, we need to piece together the final part of our puzzle, which is
the double dispatch function that will handle the last dispatch along the underlying data while
forwarding the first dispatch along the dimension. This dispatcher works the same as the simple
one (dispatch_v) but take an additional template parameter (here Dim) that will be forwarded
as-is to the given operator Op. The implementation then looks like this:
template <template <auto, typename> class Op, auto Dim, typename... Args>

auto double_dispatch_t(type_id tid, Args&&... args) {
switch (tid) {
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case (type_id::INT8):
return Op<Dim, std::int8_t>{}(std::forward<Args>(args)...);
case (type_id::UINT8):
return Op<Dim, std::uint8_t>{}(std::forward<Args>(args)...);
case (type_id::DOUBLE):
return Op<Dim, double>{}(std::forward<Args>(args)...);
/x o x/
}
}

We have now presented all the techniques and design required to build operators that are agnostic
from the supported data-types, dimensions and/or additional data such as structuring elements.
Indeed, the maintainer has gathered all the logic about listing the supported data types and
dimension in one place: the custom dispatcher. He just needs to maintain those facilities to
enable full support for all exposed algorithm, by default. This hybrid solution mixes type-erasure
and modern C++ facilities to allow maximum performance. Indeed, the dispatch is performed
before entering algorithms and the custom type-caster facility allows plugging C++’s image
directly to the Python’s image without having any unnecessary copies. The only caveat would
be the code bloat incurred by all the explicit instantiation leading to compiling a larger and
larger binary the more algorithms are being exposed. This can lead to performance issues due to
potential pre-fetching memory optimization missed or code locality issues [42]. Another point
not covered right now would be a way to support arbitrary data types, possibly injected from
Python, into C++. Indeed, our hybrid solution only support the types provided by the library
and listed in the dispatchers. It will instantiate all the code relative to them and support all
the combinations, but the user may be tempted to plug a user-defined type from Python as an
underlying image data-type. To allow this use-case, we introduce a new concept: the wvalue-set.
The value-set is a standard way to manipulate the underlying values. Through type-erasure, we
can either manipulate known underlying value type with native facilities (near-zero overhead), or
fallback to a virtual call that may report an error, or callback user-provided Python routine to
manipulate unknown user values.

5.2.3 Third and final step: type-erasure & the value-set

As common thread in this section, we will work on the stretch algorithm which is naively defined
in fig. [5.6] We can represent the pipeline calling this algorithm from Python in fig. 5.7, The
motivation here is to abstract away the logic related to the underlying type inside the algorithm.
In our example, it means reworking the lines 4 and 5 so that the value operations max and divide
does not appear in our algorithm anymore. Instead, they will be delegated to a value-set. This
would allow, theoretically, having all algorithm working for every underlying value type possible
(be they static, dynamic, custom, injected from Python, etc.).

template <class T>
mln::image2d<float> naive_stretch(const mln::image2d<T>& src) {
mln::image2d<float> res = mln::transform(src, [](auto val) -> float {
auto max = std::numeric_limits<T>::max();
return static_cast<float>(val) / static_cast<float>(max);
B
return res;

}

Figure 5.6: Stretch algorithm, naive C++ version.

Introducing the value-set The value-set is an abstraction layer around common operations
needed when implementing an image processing algorithm such as an addition, a multiplication,
a type conversion, getting the maximum, etc. It can be defined in C++ as a class template
whose parameter is the manipulated type. The following code shows how to define a value-set:
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Figure 5.7: Python to C++ pipeline algorithm through the n x n dispatcher.

template <class T = void>
struct value_set {
template <class U>
U cast(T v) const { return static_cast<U>(v); }

T max() const noexcept { return std::numeric_limits<T>::max(); }
T min() const noexcept { return std::numeric_limits<T>::min(); }
/* anf, sup, ... */

T add(T 1, T r) const noexcept { return 1 + r; }

T sub(T 1, T r) const noexcept { return 1 - r; }

/* mod, pow, min, mazx, ... */
};
We can see that the default parameter of the class template is void. Indeed, we use the same
technique as what is used in the standard library for all the comparison operators (std:1less,
std::greater, ...) which is known as the “diamond” [187, 188] operator (or transparent
functions [189, 127]). It consists in providing a default (void) specialization that accept any types
(by templates) and forward them directly to the underlying operator. The following code shows
how to implement this specialization:

template <>
struct value_set<void> {
template <class U, class T>
U cast(T&& t) const { return static_cast<U>(std::forward<T>); }

template <class T, class U>

auto add(T&% 1, U&& r) const noexcept { return std::forward<T>(1l) + std::forward<U>(r); }

template <class T, class U>

auto sub(T&% 1, U&& r) const noexcept { return std::forward<T>(1l) - std::forward<U>(r); }
};/ /
The full code of the value-set is given in appendix D.3.2. The template parameter is shifted
from the class to the member functions. It is also important to note that the member functions
are not static, which requires to instantiate the value-set before using it. It may sound like a
disadvantage at first glance, but it can be turned into an advantage later on. Indeed, this design
allows a subclass to hold member variables which will be crucial for injecting user-types from
Python.

Now that we have designed how our value-set is intended to work, we can deduce that an
image is able to provide its own value-set. Indeed, an image knows what values it holds and
thus is able to instantiate the proper value-set corresponding to this type. The member function
returning the value-set in the class template ndimage<T, D> is then implemented as followed:

template <class T, std::size_t D>
class ndimage {
VAR V4
auto get_value_set() const noexcept {
return value_set<T>{};
}
};

Let us recall our naive stretch algorithm presented earlier. The pipeline representing the
operations on values inside the algorithm is presented in fig. 5.8. Typically, this algorithm
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Figure 5.8: Naive stretch algorithm, pipeline to perform operations on values.

performs three operations that are the responsibility of a value-set: getting the max, performing
a cast, and performing a division. The first step is then to use the value set shown above to
abstract away those operations. The new algorithm is shown in fig. 5.9.

template <class T>
mln::image2d<float> fast_stretch(const mln::image2d<T>& src) {

auto vs = src.get_value_set(); // value-set for T
auto vs_f = mln::value_set<float>{}; // fast value-set for float
mln::image2d<float> res = mln::transform(src, [&vs, &vs_f](auto val) -> float {
auto max = vs.max(); // returns T
auto fval = vs.template cast<float>(val); // returns float
auto fmax = vs.template cast<float>(max); // returns float
return vs_f.div(fval, fmax); // div directly returns float
B;
return res;

Figure 5.9: Stretch algorithm, fast C++ version.
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Figure 5.10: Fast stretch algorithm, pipeline to perform operations on values.

We instantiate the value-set needed for T values and for float values on lines 3 and 4. Then
the maximum value is obtained via the value-set of T on line 6. Then a cast is performed via the
value-set to get floating point value on lines 7 and 8. Finally, a floating point div