
Diversifying a Parallel SAT Solver with Bayesian
Moment Matching

Vincent Vallade1(�), Saeed Nejati4[0000−0002−1473−3630], Julien Sopena1,2,
Souheib Baarir1,3, and Vijay Ganesh5[0000−0002−6029−2047]

1 Sorbonne Université, CNRS F-75005 Paris, France
vincent.vallade@lip6.fr

2 Sorbonne Université, Inria F-75005 Paris, France
3 Paris Nanterre University, CNRS F-75005 Paris, France (Now at EPITA)

4 Amazon Web Services, Seattle, USA
5 University of Waterloo, Waterloo, Canada

Abstract. In this paper, we present a Bayesian Moment Matching (BMM)
in-processing technique for Conflict-Driven Clause-Learning (CDCL) SAT
solvers. BMM is a probabilistic algorithm which takes as input a Boolean
formula in conjunctive normal form and a prior on a possible satisfying
assignment, and outputs a posterior for a new assignment most likely to
maximize the number of satisfied clauses. We invoke this BMM method,
as an in-processing technique, with the goal of updating the polarity and
branching activity scores. The key insight underpinning our method is
that Bayesian reasoning is a powerful way to guide the CDCL search
procedure away from fruitless parts of the search space of a satisfiable
Boolean formula, and towards those regions that are likely to contain
satisfying assignments.

1 Introduction

Modern Conflict-Driven Clause-Learning (CDCL) SAT solvers have been used
successfully to solve a wide variety of real-world problems, coming from a variety
of domains such as hardware and software verification/testing [3,5], security [2],
cryptography [11], and resolving mathematical conjectures [4].

In their paper [7], Duan et al. present a Bayesian Moment Matching (BMM)
based probabilistic learning algorithm that was used as a pre-processor to a
CDCL SAT solver with the aim of providing an initial assignment for the solver’s
search to start from (the problem of finding an optimal initial assignment to start
a solver’s search from is often referred to as the initialization problem). The
BMM method for the Boolean SAT problem takes as input a Boolean formula
in Conjunctive Normal Form (CNF) and a probability assignment P (x = T )
for every variable x that captures the likelihood of that variable x being true
according to the method (where the corresponding joint probability distribution
over the value assignment to the variables of the input formula is referred to as
the prior), and outputs a joint probability distribution or posterior that is most
likely to maximize the number of satisfied clauses. The BMM method repeatedly



applies Bayesian inference update rule on the input distribution and uses each
clause in the input formula as evidence in order to compute the output posterior.
The learned probabilities collectively represent an assignment that most likely
satisfies most of the clauses (if not all). While Dual et al. report excellent results
of using BMM as a pre-processor to solve the initialization problem, they didn’t
use it in any other way in their solver.

In this paper, we propose a BMM-based in-processing technique to update
the polarity and branching scores of a CDCL solver. The choice of the prior
distribution can affect the quality of the learned posterior distribution, and BMM
uses Bayesian inference starting from a random prior. Therefore, running the
same solver with different initial seeds could lead to different performance results.
However, this behavior can be exploited in parallel portfolio settings, where the
solvers are run with different priors. Therefore, in this paper we also evaluate
the use of BMM approach for diversification of parallel portfolio solvers.

2 Algorithm Description

We refer the reader to [7] for a full description of the BMM method. We use the
same methodology by applying the BMM method as a preprocessing mechanism
to initialize the polarity and branching order (or activity) of the variables. In
this paper, we go further and use the BMM method as an in-processor to update
these same metrics. Algorithm 1 gives an overview of CDCL, along with the
BMM update technique (see the shaded instructions).

We recall that the CDCL algorithm is based on a main loop that first applies
unitPropagation6 on the formula F simplified by the current assignment A
(Line 6). If the formula is empty, the algorithm returns true (Line 9), and A
is the model. If the formula implies an empty clause, then two scenarios are
possible: (i) we are at level 0 and the algorithm returns false (Line 13); (ii)
otherwise we deduce the reasons for the empty clause and a backjump point is
computed (Lines 15-18). Otherwise, a new literal is selected to make progress
in the resolution of F (Lines 23-24). Note that lvl represents the number of
decisions in the current branch, often called decision level.

We augment the aforementioned algorithm with the BMM procedure as a pre-
processor, as well as an in-processing search re-initializer of variable polarities
and activities (guiding the algorithm at key points of its progression). The shaded
instructions in algorithm 1 implement both the pre-processing and in-processing
steps. These steps are described in the following paragraphs.

Pre-processing step: BMM is called to initialize the polarity and activity of
the variables (Line 4). During pre-processing, the input to BMM are the input
clauses and a randomly-generated prior distribution for each variable. Because
this step is executed once, we can afford more computational cost to get to a
more accurate posterior distribution. Therefore the number of passes over the
set of input clauses is set to K = 100.
6 The unitPropagation function implements the Boolean constraint propagation

(BCP) procedure that forces (in cascade) the values of variables in unit clauses [6]



Algorithm 1: Conflict-driven clause learning algorithm with Bayesian
Moment Matching (CDCL + BMM).
1 function CDCL(F : CNF formula)

/* returns true if F is sat else false (unsat) */
2 A ← ∅ // Current assignment
3 lvl← 0 // Current decision level
4 bmmUpdate() // Call BMM with K = 100
5 forever
6 (F ′,A′) ← unitPropagation(F|A)
7 A ← A∪A′ // Add propagated literals in A
8 if F ′ = ∅ then
9 return true // F is sat

10 end
11 if ∅ ∈ F ′ then // There is a conflict to be analysed
12 if lvl = 0 then
13 return false // F is unsat
14 end
15 C ← conflictAnalysis(F ,A)
16 F ← F ∪ {C}
17 lvl← backjumpAndRestart(lvl, C, . . . )
18 A ← {ℓ ∈ A | δ(ℓ) ≤ lvl}
19 else
20 if threshold limit is reached then
21 bmmUpdate() // Call BMM with K = 10
22 end
23 A ← A∪ {pickBranching()} // Pick a new decision literal
24 lvl← lvl + 1

25 end
26 end
27 end

In-processing step: When the unit propagation reaches a fix point (Line 21),
i.e. no unit clauses left to propagate and there is no conflict, BMM procedure
is called to re-evaluate the probabilities for all variables. The difference here
is that the prior distribution given to BMM is determined by the assignment
trail (probability of variables on the trail is set to zero or one according to their
polarity), and the rest of the variables are updated based on this prior. Moreover,
a subset of the learnt clauses is considered as evidence by BMM (those learnt
clauses that have a LBD [1] value less than or equal to 3). Unlike the pre-
processing step, this step is executed several times during the search process,
therefore we limit the number of passes over the set of clauses to K = 10.

The BMM update process has a considerable overhead, therefore we only call
the update whenever a certain threshold is reached. This threshold is crossed
when the solver has restarted 50 times and whenever the number of variables in
the "current" assignment trail exceeds 40% of the total number of variables in



s

0 100 101 102 103 104

slime

0

100

101

102

103

104

sli
m

e-
bm

m

UNSAT SAT

(a) Best runs

0 100 101 102 103 104

slime

0

100

101

102

103

104

sli
m

e-
bm

m

UNSAT SAT

(b) Worst runs

Fig. 1: Scatter plot showing the performance of the slime-bmm vs slime se-
quential solvers on the 2021 SAT Competition Crypto benchmark.

the input formula or the current trail size is larger than 90% of the largest trail
seen so far 7. The learned posterior distribution over all variables together with
the trail are used in the pickBranching() of the CDCL to further extend the
search tree.

The pre-processing step is similar to the pre-processing component in [7],
however, the in-processing step has a novel design. In the original BMM pa-
per, authors only update the BMM probabilities when a unary or binary clause
is learned, and use those clauses as new evidence. Learning unary and binary
clauses mean that solver can learn valuable information from the search sub-
space that it is exploring. However, it is equally important to help guide the
search of the CDCL solver whenever the BCP has reached a fix-point (i.e., is
not making progress) by modifying the polarity and activity prior to branch-
ing. Therefore, we designed this BMM update method to be called to guide
the solver’s search whenever the BCP is not making progress (i.e., there are no
prospects of further learning without making decisions).

3 Evaluation of slime and slime-bmm Sequential Solvers

We chose to compare the efficacy of our BMM technique in the context of crypto
benchmarks, given its previous success in this domain [11]. We chose the winner
of the crypto track of the SAT competition 20218, called slime [12], as the base
CDCL engine for our implementation9, and evaluated it on the crypto track
benchmarks from the same competition.
7 These magic numbers are borrowed from the base solver that we used for our imple-

mentation
8 https://satcompetition.github.io/2021/
9 https://github.com/lip6/painless/tree/bmm

https://github.com/lip6/painless/tree/bmm


Table 1: This table shows performance of p-slime and p-slime-bmm on the 2021
Crypto Track.

Solvers PAR2 UNSAT SAT TOTAL (200)
p-slime-bmm-50% 133H36 13 147 160
p-slime-bmm-75% 136H05 13 145 158
p-slime-bmm-90% 138H39 13 144 157
p-slime 142H03 13 142 155
p-slime-bmm-25% 147H42 13 140 153

It is worth noting that slime uses an in-processing approach similar to ours: a
Stochastic Local Search (SLS) engine is used when the BCP reaches a fix point
to guide the search. So, we replaced this component by our BMM procedure
along with the removal of all heuristics related to the SLS sub-routine. It is this
version that we refer to as slime-bmm.

Since the initialization of the BMM component induces randomness, we ran
slime-bmm 10 times on each instance. As the slime configuration that won the
competition was deterministic [12], a simple run of this latter was sufficient.

The scatter plots of fig. 1 show the results of our experiment. Plot of fig. 1a
(respectively fig. 1b) highlights the scores of solvers with respect to the best
(respectively worst) runs. The axis are running time in seconds on a logarithmic
scale. If both solvers timeout for an instance, it is not represented in the figures.
So we can focus on the instances where one of the two solvers stands out. Even
though the timeout is fixed at 5000s, for readability, a timeout run is shown with
a point beyond the grey dotted line, above 104 seconds.

Here we can observe that in the case of the best runs, slime-bmm is more
effective than slime, solving 6 more instances. On the other hand, when looking
at the worst case, slime is more stable and outperforms slime-bmm.
There are two main takeaways from the experimental results we observed in this
section. First, BMM is a good candidate for an in-processing component that can
help guide the CDCL search. Compared to other solving engines that are used
for in-processing component (e.g. SLS), our experience was that BMM performs
well right out of the box, without too much tuning of the heuristics. Second,
running sequential solvers with different random priors given to BMM makes
the solver explore different solutions (for satisfiable instances), which is a great
opportunity for parallel portfolio solvers. Thus, in the next section we explored
the possibility of using BMM with different priors as a means of diversifying the
set of worker solvers in a parallel portfolio setting.

3.1 Architecture of the p-slime-bmm Parallel Portfolio Solver and
Results

We named the resulting parallel solvers p-slime and p-slime-bmm. To imple-
ment these solvers, we used Painless infrastructure [9], a framework that eases
the implementation of parallel SAT solvers for many-core environments. The par-
allelization and sharing strategies we implemented are the same as the one used



by the winner of the parallel track of the SAT competition 2021 p-mcomsps [13].
Both p-slime and p-slime-bmm are portfolio solvers [8]. Therefore each instance
of a CDCL engine (thread) is launched on the entire formula. The sharing strat-
egy is based on the Literal Block Distance (LBD) measure: the LBD of a clause is
the number of decision levels represented in that clause [1]. Initially the thread re-
sponsible for sharing receives every clause with a LBD inferior or equal to 2. This
distribution happens in an asynchronous manner between the solver threads and
the sharing threads. After some predetermined round of sharing, if the sharing
threads received too much/not enough clauses from a particular solver, it will
dynamically decrease/increase the LBD limit for this solver. In p-slime-bmm,
the cdcl engines are either slime or slime-bmm and we make the proportion of
slime-bmm vary between the different versions of the solver from 25% to 90%.
The aim here is to ensure a total collaboration between the solvers (of the port-
folio) to get a maximum of solved instances. As a deterministic solver would
not make sense in the parallel context, we use slime diversification mechanism,
which consists in fixing a random polarity to each variable, for each slime in
the portfolio.

Both solvers were run on a cluster of 12-core Intel Xeon CPU E5645, with 64
GB of RAM, a timeout of 5000s, setting the framework to launch 10 sequential
solvers. In this performance study, we use the following success metrics: penalized
average runtime (PAR-2) sums the execution time of a solver and penalizes the
executions that exceed the timeout with a factor 2; the number of instances
solved. As observed in table 1, it seems that having both algorithms in equal
proportion is the sweet spot, as p-slime-bmm-50% solves 5 more SAT instances
than p-slime, resulting in a much better PAR-2. Hence, the new proposed solver
proves to be more efficient than the state-of-the-art p-slime.

4 Conclusion

In this paper, we presented a Bayesian Moment Matching (BMM) in-processing
technique for CDCL SAT solvers. We invoked this BMM method, as an in-
processing technique after Boolean Constraint Propagation and before branch-
ing is called in a CDCL SAT solver, with the goal of updating the polarity and
branching activity scores. Bayesian reasoning has proven to be a powerful way to
guide the CDCL search procedure away from fruitless parts of the search space
of a satisfiable Boolean formula. We experimented massively our approach on
cryptographic instances and under sequential settings. The outputs were posi-
tives for some random seeds and not others (given the probabilistic nature of
BMM). This led us to develop a portfolio parallel solver using our new algorithm
as a back-end engine along with the standard engines. The resulting derived hy-
brid parallel solver showed good performances with respect to the vanilla solver.
Using an incremental approach, we found that 50% of slime-bmm is a good pro-
portion but it may not be the most optimal solution. The next step will be to
fine-tune the proportion of slime-bmm in the portfolio based on the work done
in [10] using a Multi-Armed Bandit approach.



References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern sat solvers.
In: Proceedings of the 21st International Joint Conferences on Artifical Intelligence
(IJCAI). pp. 399–404. AAAI Press (2009)

2. Avgerinos, T., Cha, S.K., Hao, B.L.T., Brumley, D.: Aeg: Automatic exploit gen-
eration. In: Network and Distributed System Security Symposium (Feb 2011)

3. Bradley, A.R.: Sat-based model checking without unrolling. In: International Work-
shop on Verification, Model Checking, and Abstract Interpretation. pp. 70–87.
Springer (2011)

4. Bright, C., Kotsireas, I., Ganesh, V.: The science of less-than-brute force: When
satisfiability solving meets symbolic computation. In: Communications of the ACM
(CACM). ACM (2022)

5. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Automat-
ically Generating Inputs of Death. ACM Transactions on Information and System
Security (TISSEC) 12(2), 10 (2008)

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commununications of the ACM 5(7), 394–397 (1962)

7. Duan, H., Nejati, S., Trimponias, G., Poupart, P., Ganesh, V.: Online bayesian mo-
ment matching based sat solver heuristics. In: International Conference on Machine
Learning. pp. 2710–2719. PMLR (2020)

8. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel sat solver. Journal on Sat-
isfiability, Boolean Modeling and Computation 6(4), 245–262 (2009)

9. Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: Painless: a framework for parallel
sat solving. In: Proceedings of the 20th International Conference on Theory and
Applications of Satisfiability Testing (SAT). pp. 233–250. Springer (2017)

10. Liang, J.H., Oh, C., Mathew, M., Thomas, C., Li, C., Ganesh, V.: Machine
learning-based restart policy for CDCL SAT solvers. In: Theory and Applications of
Satisfiability Testing - SAT 2018 - 21st International Conference, SAT 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12,
2018, Proceedings. pp. 94–110 (2018). https://doi.org/10.1007/978-3-319-94144-
8_6, https://doi.org/10.1007/978-3-319-94144-8_6

11. Nejati, S., Ganesh, V.: Cdcl (crypto) sat solvers for cryptanalysis. arXiv preprint
arXiv:2005.13415 (2020)

12. Riveros, O.: Slime sat solver. In: Proceedings of SAT Competition 2021: Solver
and Benchmark Descriptions. p. 37. Department of Computer Science, University
of Helsinki, Finland (2021)

13. Vallade, V., Le Frioux, L., Oanea, R., Baarir, S., Sopena, J., Kordon, F., Nejati,
S., Ganesh, V.: New concurrent and distributed painless solvers: P-mcomsps, p-
mcomsps-com,p-mcomsps-mpi, and p-mcomsps-com-mpi. In: Proceedings of SAT
Competition 2021: Solver and Benchmark Descriptions. p. 40. Department of Com-
puter Science, University of Helsinki, Finland (2021)

https://doi.org/10.1007/978-3-319-94144-8_6
https://doi.org/10.1007/978-3-319-94144-8_6
https://doi.org/10.1007/978-3-319-94144-8_6

	Diversifying a Parallel SAT Solver with Bayesian Moment Matching

