Implementing Baker’s SUBTYPEP decision procedure

& Léo Valais
g April 1st, 2019
Q@ European Lisp Symposium

Motivations

Common Lisp type system, subtypep
& Baker's decision procedure

1/18

The Common Lisp type system

» Types — sets, subtypes — subsets

2/18

The Common Lisp type system

» Types — sets, subtypes — subsets

A Common Lisp

(defun tr (M)

(declare (type (array real (3 3)) M))
(+ (aref M 0 0)

(aref M 1 1)

(aref M 2 2)))

2/18

The Common Lisp type system

» Types — sets, subtypes — subsets
» Types — first class values

2/18

The Common Lisp type system

» Types — sets, subtypes — subsets
» Types — first class values
(subtypep (A) (B)) =AC B?
» Predicate function

v

2/18

The Common Lisp type system

» Types — sets, subtypes — subsets

» Types — first class values

» (subtypep (A) (B)) =AC B?
» Predicate function

A Common Lisp

(subtypep '(or my-class string (integer 0 (1024)))

' (or super-class
(array * 1)
(unsigned-byte 10)))

2/18

The Common Lisp type system

» Types — sets, subtypes — subsets

» Tunes — firct rlacs valiec

» Type specifiers arbitrarily deep

» May take a while to retrun

Problem #1 — complex input
‘ Arbitrarily complex input type specifiers

2/18

subtypep cannot always answer

» (satisfies (predicate)) = {x | predicate(x)}
» (satisfies oddp) — all odd numbers

3/18

subtypep cannot always answer

» (satisfies (predicate)) = {x | predicate(x)}
» (satisfies oddp) — all odd numbers
» (subtypep ’(satisfies oddp) ’(satisfies evenp))

3/18

subtypep cannot always answer

(satisfies (predicate)) = {x | predicate(x)}

v

v

(satisfies oddp) — all odd numbers

v

(subtypep ’(satisfies oddp) ’(satisfies evenp))

halting problem — subtypep cannot even answer @

v

3/18

subtypep cannot always answer

(satisfies (predicate)) = {x | predicate(x)}

v

v

(satisfies oddp) — all odd numbers

v

(subtypep ’(satisfies oddp) ’(satisfies evenp))

v

halting problem — subtypep cannot even answer @

Problem #2 — undecidability
‘ Subtypep cannot answer for some type specifiers

3/18

subtypep return values

(T T) — ACB
(subtypep (A) (B)) =< (NIL T) —AZB
(NIL NIL) — “undecidable”

» (NIL NIL) encodes undecidability

4/18

subtypep return values

(T T) —ACB
(subtypep (A) (B)) = (NIL T) —A¢ZB
(NIL NIL) — "l gave up, sorry &@"

» (NIL NIL) encodes undecidability input too complex”

4/18

subtypep return values

(T T) —ACB
(subtypep (A) (B)) = (NIL T) —A¢ZB
(NIL NIL) — "I gave up, sorry "

» (NIL NIL) encodes undecidability input too complex”
» Lack of reliability
» Painful limit for some applications

> Newton's regular type expressions
> Newton's optimized typecase implementation

4/18

Baker’s decision procedure

+ focus on result accuracy

4+ never returns (NIL NIL) when it is
possible to answer

5/18

Baker’s decision procedure

+ focus on result accuracy

4+ never returns (NIL NIL) when it is
possible to answer

= paper difficult to read
= not exhaustive

= very few solutions about satisfies

5/18

Baker’s decision procedure

+ focus on result accuracy

4+ never returns (NIL NIL) when it is

possible to answer = no implementation available

— paper difficult to read = exponential complexity (theoretical)
. 2 efficienc
= not exhaustive ciency

= very few solutions about satisfies

5/18

1. Application using subtypep

2. Baker's decision procedure
2.1 Pre-processing

2.2 Types as bit-vectors

2.3 Type specifier — bit-vector expression

3. Going further

6/18

The problem

A Common Lisp

(defclass point ()

((x :type number

rinitarg :x)

(y :type number

:initarg :y)

(name :type string
:initarg :name))

(:metaclass json-serializable))

(json-serialize (make-instance 'point
:x -10
1y 3.2
:name "al"))

7/18

The problem

O JSON serialization

A Common Lisp .
(defclass point () :X:: -10,
((x :type number s 8.2,
rinitarg :x) "NAME": "al"
(y :type number
:initarg :y)
(name :type string
:initarg :name))
(:metaclass json-serializable))

(json-serialize (make-instance 'point
:x -10
1y 3.2
:name "al"))

The problem

O JSON serialization
A Common Lisp

{
DICEE 0
g 8.2,
||NAME|| . ||a1||

(defclass point ()
((x :type number
rinitarg :x)
(y :type number
:initarg :y)
(name :?ype string A Common Lisp
:initarg :name))
(:metaclass json-serializable)) e fzem O
' (or number
string
x 10 (and symbol
fy 3'2" . (not keyword))
:name "al")) list
hash-table))

(json-serialize (make-instance 'point

Our employee class

» 2 slots = 2 calls to subtypep

» Trigger error if one fails

A Common Lisp

(defclass employee ()
((name :type (or string
(and symbol
(not keyword))
unsigned-byte))

(part-time-p boolean))
(:metaclass json-serializable))

Baker's decision procedure

Application of our implementation to check

employee.name C json

9/18

Pre-processing steps

A Common Lisp

(subtypep '(or string
(and symbol

(not keyword))
unsigned-byte)
'json)

10/18

Pre-processing steps

A Common Lisp

(subtypep '(or string
(and symbol
(not keyword))
unsigned-byte)

number
string
(and symbol
(not keyword))
list
hash-table))

» Alias expansion

10/18

Pre-processing steps

A Common Lisp

(subtypep
"(AND (or string

(and symbol
(not keyword))

unsigned-byte)

(NOT (or number
string »PCR=PN-Q=10
(and symbol
(not keyword))

» Alias expansion

list
hash-table)))

Bit-vector type representation

11/18

Bit-vector type representation

Types represented as bit-vectors Bp

t nil sym "str" --- @ist)
Bni1 0 O 0 0 0
B 1 1 1 1 1
6L 0 1 0 0 0
Bogmor | 1 1 1 0 0
Betring | 0 0 0 1 0
e 0 1 0 0 1

11/18

Bit-vector type representation

Types represented as bit-vectors Bp

t nil sym "str' - Qist) Properties (bitwise)
Bni1 0 O 0 0 0
B 1 1 1 1 1 Bpug = Bp V Bg
B alil 0 1 0 0 0 BPOQ =Bp A BQ
Brmen || L L 1 0 0 Bs = -Bp
Bering |0 0 0 1 0
Biist 0 1 0 0 e 1

11/18

Back to our problem

A Common Lisp

(subtypep '(and (or string

(and symbol
(not keyword))

unsigned-byte)

(not (or number
string
(and symbol
(not keyword))

list
hash-table)))

Back to our problem

o Bit-vector expression reduction

U/“\C
O\ |

string (1 unsigned-byte

/N /\\\

symbol number string (N 1list hash-table
keyword symbol
keyword

12/18

Back to our problem

[] Bit-vector expression reduction
/ ; \
V

Bstring VAN Bunsigned—byte

AN IR

Bsymbol - Brnumber Bstring VAN Biist Bhash-table

| /\

Bkeyword Bsymbol -

Bkeyword

—

12/18

employee verification

(defclass employee ()
((name :type (or string
(and symbol
(not keyword))
unsigned-byte))
(part-time-p boolean))
(:metaclass json-serializable))

(subtypep '(or string
(and symbol

(not keyword))
unsigned-byte)
'json)

v employee.name

13/18

employee verification

(defclass employee ()
((name :type (or string
(and symbol
(not keyword)) ¥ employecelnans
unsigned-byte)) ? employee.part-time-p
(part-time-p boolean))
(:metaclass json-serializable))

(subtypep '(or string
(and symbol

(not keyword))
unsigned-byte)
'json)

13/18

employee verification

(defclass employee ()
((name :type (or string
(and symbol
(not keyword)) ¥ employecelnans
unsigned-byte)) v employee.part-time-p
(part-time-p boolean))
(:metaclass json-serializable))

(subtypep '(or string
(and symbol

(not keyword))
unsigned-byte)
'json)

13/18

employee verification

(defclass employee ()
((name :type (or string
(and symbol

(not keyword)) v employee.name
unsigned-byte)) v employee.part-time-p
(part-time-p boolean))
(:metaclass json-serializable))
Conclusion
(subtypep '(or string employee is JSON-
(and symbol compatible! A

(not keyword))
unsigned-byte)
'json)

13/18

CLOS classes & member type
specifiers

Choosing representative elements right

14/18

CLOS classes

» Issue — find a representative instance

» Cannot use make-instance — possible side-effects

15/18

CLOS classes

» Issue — find a representative instance
» Cannot use make-instance — possible side-effects

» Baker's solution

> hook into defclass implementation
- not portable
- maybe not trivial

15/18

CLOS classes

» Issue — find a representative instance

» Cannot use make-instance — possible side-effects
» Baker's solution

> hook into defclass implementation
- not portable
- maybe not trivial

» Our solution — the Meta Object Protocol

> register class prototypes — “fake” instances

+ portable (for implementations supporting the MOP)
+ easier to implement

+ packageable

15/18

member type specifiers

» Explicitly provide type's elements
» (member (A) (B) (C)) ={A,B,C}
» “Anonymous’ types

» Bit-vector B(member (A) (B) (C»
1. add A, B, C as representatives
2. Bmenver (4) (B) (c)) = Byay V Bigy V Bicy

16/18

Conclusion

» subtypep unreliability
» Baker's decision procedure

> no implementation given
> many details missing
> seems elegant and powerful

» Our implementation

> incomplete & experimental
> motivating accuracy & performance measures

» Future work
> implement missing type specifiers (array & complex)
> find solutions for cons & satisfies
> open source the implementation!

17/18

Thanks for listening! @

Any question?

18/18

