
On the Usefulness of Clause Strengthening in
Parallel SAT Solving

Vincent Vallade1, Ludovic Le Frioux2, Souheib Baarir1,3, Julien Sopena1,4, and
Fabrice Kordon1

1 Sorbonne Université, CNRS, LIP6, UMR 7606, Paris, France
2 LRDE, EPITA, Le Kremlin-Bicêtre, France
3 Université Paris Nanterre, Nanterre, France

4 Inria, DELYS Team, Paris, France

Abstract. In the context of parallel SATisfiability solving, this paper
presents an implementation and evaluation of a clause strengthening al-
gorithm. The developed component can be easily combined with (virtu-
ally) any CDCL-like SAT solver. Our implementation is integrated as a
part of Painless, a generic and modular framework for building parallel
SAT solvers.

Keywords: Parallel Satisfiability · Tool · Strengthening · Clause Shar-
ing · Portfolio · Divide-and-conquer

1 Introduction

Modern CDCL SAT solvers [12,1] have been successfully used to solve a wide
variety of real-world problems, such as those issued from hardware and software
verification [4].

With the omnipresence of many-core machines, these solvers have been adapted
to become parallel [3]. In this context, a key feature in the efficiency is informa-
tion sharing. This is usually implemented as sets of new (learnt) lemmas that
are exchanged between the different participants of the parallelization solving
strategy (i.e., the underling sequential solvers).

Besides, it is well admitted that the shorter the learnt lemmas the more
powerful they are. This explained the proposal of different techniques based
on resolution to shorten them [16,8,7,15]. A process known as strengthening.
Potentially as difficult as the SAT problem itself, the strengthening of those
learnt lemmas can benefit from parallelization [17].

This paper presents the implementation and evaluation of a parallel strength-
ening algorithm inspired from [17]. Our implementation is integrated as a part
of Painless [9], a framework for building parallel SAT solvers.

Paper Structure. Section 2 introduces some background. Strengthening is
presented in Section 3. Its implementation is described in Section 4. Some ex-
perimental results are depicted in Section 5. Section 6 concludes the paper.



2 Background

This section introduces useful background used in the remaining of this paper.

Boolean Satisfiability. A propositional variable is a variable that has two
possible values: true or false. A literal is a propositional variable or its negation
(NOT). A clause is a finite disjunction (OR) of literals. A clause with a unique
literal is called unit clause. A conjunctive normal form (CNF) formula is a finite
conjunction (AND) of clauses. In the rest of the paper clauses are represented
by the set of their literals, and formulas by the set of their clauses. Let F be
a formula, an assignment of variables of F is defined as a function A : V →
{true, false}, where V is the set of variables of F . A clause is satisfied when
at least one of its literals is evaluated to true. A formula is satisfied if all its
clauses are evaluated to true. A formula is said to be sat if there is at least
one assignment of its variables that makes it true; it is reported to be unsat
otherwise. The Boolean satisfiability (SAT) problem consists in determining if a
given formula is sat or unsat.

CDCL Algorithm. Conflict-driven clause learning algorithm [14,18] is used
in almost all (complete) modern SAT solvers. It enumerates assignments for
the given formula. Variables’ values are forced using unit propagation [5] (i.e.,
fixing recursively the values of variables in unit clauses). If an empty clause is
generated a conflict has been reached. The reasons are studied and a learnt clause
is derived and stored. The search backtracks and starts over. If unit propagation
does not generate a conflict, a guess is done (branching) to grow up the current
assignment. The search ends if a satisfying assignment has been found or if all
have been checked without finding solutions.

Let F be a formula, unit propagation can be iteratively applied for a given
partial assignment A: iterativeUnitPropagation(F,A) produces the set of
assignments implied by this operation. F |A returns the formula simplified by
the iterative unit propagations of A on F .

3 Strengthening Algorithm

The pseudo-code of the strengthening algorithm we implemented in our tool is
presented in Algorithm 1. The theoretical basics of this technique are presented
in [17]. This section only focuses on the technical details.

Algorithm 1 takes a clause Cin as input, and, potentially outputs a reduced
size (strengthened) clause, w.r.t. Cin, (lines 8 and 14). It considers an empty
assignment A (line 3), the knowledge of all the clauses of the problem F , and it
manages its own set of learnt clauses LR (line 4) empty at the beginning of the
program.

To achieve its strengthening task, Algorithm 1 iteratively assigns a false value
to each literal of the clause Cin, until it reaches a conflict or it assigns success-
fully all literals of the input clause. Therefore, there are two possible outputs,
respectively Cnew and Cout.



Algorithm 1: Strengthening algorithm
1 function strengthen(Cin: clause) : the strengthened clause
2 Cout := ∅
3 A := ∅
4 F ′ := F ∪ LR

5 for l ∈ (Cin \ Cout) s.t. ¬l /∈ iterativeUnitPropagation(F ′,A) do
6 if ∅ ∈ F ′|A then
7 (LR, Cnew) := analyze(F ′,A)
8 return Cnew

9 end
10 Cout = Cout ∪ {l}
11 A = A ∪ {¬l}
12 end
13 LR = LR ∪ {Cout}
14 return Cout

At each iteration, Algorithm 1 picks a literal whose complementary is not
implied by the current assignment (¬l /∈ iterativeUnitPropagation(F ′,A)).
This ensures the stripping of the input clause from all literals that are implied by
the rest of the clause. Then, it executes a unit propagation (line 5). If no conflict
is discovered, the literal is added to the output clause Cout and its negation is
added to the set of assignment A (line 10-11).

When a conflict is reached (line 6), function analyze() is then called (line 7):
it executes a sequence of backtracking, unit propagation, and conflict analysis
until getting out of the conflict or emptying the set A. During this phase, the
algorithm learns new clauses (that are added to LR). When analyze() reaches
a zone without conflict (while assuming A), it generates the clause Cnew that is
returned (line 8). This last is composed of the set of literals: {l|¬l ∈ A} ∪ {k},
k being some literal of Cout /∈ A.

If all the literal of Cin are assigned successfully, then the clause Cout is added
to LR and then returned (lines 13-14).

4 Implementation

Our implementation is based on Painless [9] which is a framework allowing the
implementation of parallel SAT solvers for many-core environments. The main
components of Painless are: working organization, clause sharing, and sequential
engines. For this work, we focused on the third component and implemented a
reducer solver that can be included in all Painless’ configurations.5

About the Painless Framework. The main idea of the framework is to sep-
arate the technical components (e.g., dedicated to concurrent programming as-
5 This version of Painless can be found at https://github.com/lip6/painless, branch
strengthening



pects) from those implementing heuristics and optimizations embedded in a
parallel SAT solver. Three main components arise when treating parallel SAT
solvers: Sequential Engines, Parallelisation, and Sharing. These form the global
architecture of Painless. They can be instantiated independently to produce new
complete solvers.

The core element considered here is a sequential SAT solver. This can be
any CDCL-like solver. Technically, these engines are operated through a generic
SolverInterface providing basics of sequential solvers: solve, add clauses, etc.

To build a parallel solver using the aforementioned engines, one needs a par-
allelisation strategy (e.g., portfolio, divide-and-conquer). In Painless, a strategy
is represented by a tree-structure of arbitrary depth. The internal nodes of the
tree (WorkingStrategy) represent parallelisation strategies, and leaves are core
engines operated by a thread (SequentialWorker).

In Painless, solvers can export (import) clauses to (from) the others during
the resolution process. The sharing of these learnt clauses is dedicated to par-
ticular components called Sharers. Each Sharer is in charge of sets of producers
and consumers and its behaviour reduces to a loop of sleeping and exchange
phases w.r.t. to a given SharingStrategy.

Implementing Strengthening. This section presents the implementation of
strengthening we included into the Painless framework. The development of such
a component has been designed to be easily used in combination with all other
mechanisms provided by Painless.

The Reducer engine of Fig. 1 implements Algorithm 1. As it can be easily
observed, the main component of this algorithm are iterative unit propagation
and analysis (based on assumptions) procedures. These are also the usual com-
ponents provided by any CDCL-like SAT solver.

Therefore, we implemented the strengthening operation as a decorator of
SolverInterface. This decorator is a SolverInterface itself that uses, by delegation,
another SolverInterface to apply the strengthening (see Fig. 1).

Sharing

SharingStrategy

Sharer

CDCL solver

Reducer
Cin

Cout

strengthen

SolverInterface

SolverInterface

...

Sequential
Engines

SW

SW

SW

...

PF

Parallelisation

Fig. 1: Parallel strengthening architecture

The CDCL solver needs to be able to solve a formula with a set of assump-
tions. Assumptions are literals with a predefined value that the solver must
accept as immutable. This is how we implemented the loop in Algorithm 1. We



give the negation of the learnt clause as assumptions to the solver, which stops
the resolution when a conflict is reached or when the solver has branched on
all the assumptions. The solver must also be able to express a conflict only in
terms of assumptions, i.e. the set of literals returned by the analysis contains
only literals present in the initial set of assumptions.

The Reducer is always at the root of a portfolio. For example, if one wants to
implement a divide-and-conquer solver complemented by a Reducer, they must
create a portfolio with a Reducer and a divide-and-conquer as workers. This is
extremely easy to do thanks to the composite nature of Painless’ Parallelisation
engine. The Reducer is both a consumer and a producer of the Sharer. It receives
clauses, strengthened them and shares them back after.

5 Empirical Study

To assess the performances of the developed component and study its impact
in different parallel solvers, we integrated our Reducer in several parallelisation
strategies. We then conducted a set of experiments to compare the results.

Solvers Description. All parallel solvers we constructed, but one, are based
on P-MCOMSPS [11]. It implements a portfolio strategy [6] (PF) and uses
MapleCOMSPS [13] as sequential engine. The solvers differ however by their shar-
ing strategies.

One of the main heuristics used in sharing strategies is the so-called Literal
Block Distance (LBD) measure: the LBD of a clause is the number of decision
levels represented in that clause. It is fairly admitted that the lower the LBD,
the better the clause [1]. In a parallel context, it is useful to share these low LBD
clauses.

We therefore derived the following strategies: AI, only learnt clauses with
an LBD value less or equal than a threshold are shared. This threshold is ad-
ditively increased if not enough clauses are exchanged [2]; Li shares only learnt
clauses with an LBD value ≤ i. Hence, we ended up by developing the solver
P-MCOMSPS-AI6, the solver P-MCOMSPS-L27 and the solver P-MCOMSPS-L4 (L4 is
a new untested yet strategy).

To complete the picture, we also developed a divide-and-conquer (DC) solver
that uses L4 sharing strategy. We call this solver DC-MCOMSPS-L4 [10].

For each of these solvers, we created its counterpart including the Re-
ducer component. We called them by extending their names by -REDUCE (e.g.,
P-MCOMSPS-L4-REDUCE). It is important to note that the we do not use a addi-
tional core for the Reducer, e.g., if we use 12 cores for P-MCOMSPS-L4, we also
use 12 cores for P-MCOMSPS-L4-REDUCE, one thread performs the strengthening
instead of the CDCL algorithm.

6 AI is the strategy used by the winner of the parallel track of 2018 SAT competition.
7 L2 is the strategy used by the second of the parallel track of 2018 SAT competition.



Table 1: Results of the different solvers on the SAT benchmark 2018
Parallelisation Solvers PAR-2 CTI UNSAT SAT SCR(400)

PF

P-MCOMSPS-L4 363h06 26h53 115 165 280
P-MCOMSPS-L4-REDUCE 342h33 21h47 121 168 289

P-MCOMSPS-L2 379h32 23h04 108 165 273
P-MCOMSPS-L2-REDUCE 371h53 20h45 115 163 278

P-MCOMSPS-AI 356h13 37h10 121 165 286
P-MCOMSPS-AI-REDUCE 342h36 32h15 125 167 292

DC
DC-MCOMSPS-L4 448h34 17h17 100 146 246

DC-MCOMSPS-L4-REDUCE 437h44 18h59 103 149 252

Experimental Results. For the evaluation we use the main benchmark of the
SAT competition 20188 which contains 400 instances. All jobs were run on an
Intel Xeon CPUs @ 2.40GHz and 1.48TB of RAM. Solvers have been launched
with 12 threads, a 150GB memory limit, and a 5000 seconds timeout (the timeout
is the same as for the SAT competitions).

The performance of our solvers is evaluated using the following success met-
rics: penalized average runtime (PAR-2) sums the execution time of a solver and
penalizes the executions that exceed the timeout with a factor 2; solution-count
ranking (SCR) counts the number of problems solved by a solver; cumulative
time of the intersection (CTI) sums the execution time of a solver on the prob-
lems solved by all the solvers.

Table 1 presents the results of our experiments, where each solver is compared
to its counterpart (with a Reducer component). The shaded cells indicate which
one of the two solvers has the best results. We observe that in all metrics, but
two cases, the versions with a Reducer are better: more instances are solved and
better PAR-2 values are obtained in all cases. Only CTI of the DC version is not
as good as the other values. Also, the gains in the number of instances solved
appears to be greater in the unsat category, but the number of sat instances
also improves.

To go further in our evaluation, we measured the minimisation capabilities of
the Reducer on instances that each solver could actually solve, while discarding
those where the Reducer did not receive any clause (problem solved too quickly):
(1) P-MCOMSPS-L4-REDUCE (255 instances), 44.21% of the clauses treated by the
Reducer are actually shortened. The mean size of these clauses after strengthen-
ing is 25.45% less than the mean of their original size; (2) P-MCOMSPS-L2-REDUCE
(257 instances), treated 32.59% of the clauses and it lower their size by 23.67%;
(3) P-MCOMSPS-AI-REDUCE (258 instances) treated 34.79% clauses and reduced
by 27.75%; (4) DC-MCOMSPS-L4-REDUCE (245 instances) reduced 28.80% clauses
by 18.86%. In conclusion, the Reducer succeeded to reduce 1/3 of the clauses it
receives by 1/4 of their size.

8 http://sat2018.forsyte.tuwien.ac.at/benchmarks/Main.zip



6 Conclusion

This paper presents an implementation of clause strengthening [17] which has
been integrated into Painless [9]. Thanks to the modularity of Painless, we were
able to test the efficiency of strengthening within different configurations of
parallel SAT solvers.

In this study, we used several sharing strategies and different parallelisation
paradigms (i.e., portfolio and divide-and-conquer). Our experiments show that
having a core dedicated to strengthening improves the performance of our par-
allel solvers whatever the configuration is (including the winner configuration
from the SAT competition 2018).

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern sat solvers.
In: Proceedings of the 21st International Joint Conferences on Artifical Intelligence
(IJCAI). pp. 399–404. AAAI Press (2009)

2. Balyo, T., Sanders, P., Sinz, C.: Hordesat: A massively parallel portfolio sat solver.
In: Proceedings of the 18th International Conference on Theory and Applications
of Satisfiability Testing (SAT). pp. 156–172. Springer (2015)

3. Balyo, T., Sinz, C.: Parallel satisfiability. In: Handbook of Parallel Constraint Rea-
soning, pp. 3–29. Springer (2018)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bdds.
In: Proceedings of the 5th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). pp. 193–207. Springer (1999)

5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commununications of the ACM 5(7), 394–397 (1962)

6. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel sat solver. Journal on Sat-
isfiability, Boolean Modeling and Computation 6(4), 245–262 (2009)

7. Han, H., Somenzi, F.: Alembic: An efficient algorithm for cnf prepro-
cessing. In: Proceedings of the 44th Annual Design Automation Con-
ference. p. 582–587. DAC ’07, Association for Computing Machinery,
New York, NY, USA (2007). https://doi.org/10.1145/1278480.1278628,
https://doi.org/10.1145/1278480.1278628

8. Heule, M.J.H., Järvisalo, M., Biere, A.: Efficient cnf simplification based on binary
implication graphs. In: Sakallah, K.A., Simon, L. (eds.) Theory and Applications of
Satisfiability Testing - SAT 2011. pp. 201–215. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

9. Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: Painless: a framework for parallel
sat solving. In: Proceedings of the 20th International Conference on Theory and
Applications of Satisfiability Testing (SAT). pp. 233–250. Springer (2017)

10. Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: Modular and efficient divide-
and-conquer SAT solver on top of the Painless framework. In: Proceedings of the
25th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). pp. 135–151. Springer (2019)

11. Le Frioux, L., Metin, H., Baarir, S., Colange, M., Sopena, J., Kordon, F.: painless-
mcomsps and painless-mcomsps-sym. In: Proceedings of SAT Competition 2018:
Solver and Benchmark Descriptions. pp. 33–34. Department of Computer Science,
University of Helsinki, Finland (2018)



12. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for sat solvers. In: Proceedings of the 19th International Conference on
Theory and Applications of Satisfiability Testing (SAT). pp. 123–140. Springer
(2016)

13. Liang, J.H., Oh, C., Ganesh, V., Czarnecki, K., Poupart, P.: Maplecomsps, maple-
comsps lrb, maplecomsps chb. In: Proceedings of SAT Competition 2016: Solver
and Benchmark Descriptions. p. 52. Department of Computer Science, University
of Helsinki, Finland (2016)

14. Marques-Silva, J.P., Sakallah, K.: Grasp: A search algorithm for propositional sat-
isfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

15. Piette, C., Hamadi, Y., Saïs, L.: Vivifying propositional clausal formulae. In: Pro-
ceedings of the 2008 Conference on ECAI 2008: 18th European Conference on
Artificial Intelligence. p. 525–529. IOS Press, NLD (2008)

16. Sörensson, N., Biere, A.: Minimizing learned clauses. In: Proceedings of the 12th In-
ternational Conference on Theory and Applications of Satisfiability Testing (SAT),
pp. 237–243. Springer (2009)

17. Wieringa, S., Heljanko, K.: Concurrent clause strengthening. In: Proceedings of the
16th International Conference on Theory and Applications of Satisfiability Testing
(SAT). pp. 116–132. Springer (2013)

18. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven
learning in a boolean satisfiability solver. In: Proceedings of the 20th IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). pp. 279–285. IEEE
(2001)


