
Proposal: an xml representation for automataThe Vau
anson Group <vau
anson�lrde.epita.fr>November 15, 2004Abstra
tThis paper presents the xml formalism that was introdu
ed at the 
iaa 2004 
onferen
eto represent automata. This formalism was 
reated to ful�ll the need that was expressed at
iaa 2003 to have a standard for ex
hanging automata between various appli
ations.This format allows the user to des
ribe many kinds of automata, in
luding weighted au-tomata and transdu
ers. In order to a
hieve maximal generi
ity, a �le is mainly divided intotwo parts: one to express the 
ontent of an automaton, and another one to spe
ify the kindof automata the �le refers to. Furthermore, extra data may be atta
hed to an automaton,su
h as layout information. Using this formalism it is also possible to put multiple automatain a unique �le.An implementation of this formalism was 
reated as an experimental feature in the Vau-
anson software platform, whi
h is a framework dedi
ated to automata manipulations.Introdu
tionVarious 
omputer programs manipulate automata. Among them exist �nalized produ
ts, experi-mental software, programs designed to manipulate automata as a �nal purpose or as intermediary
omputational tools. Some of them need to store their automata in order to reuse them in alatter exe
ution, while other just need to dump some debugging informations. It is noteworthythat 
omplementary programs designed to manipulate automata need to have a 
ommon repre-sentation. As an example, a program designed to edit automata must produ
e an output that is
ompatible with other programs designed to render automata.Therefore, there is a strong need to have a standard language designed to represent automata.Although a domain spe
i�
 language, it must be powerful enough to represents the numerous kindsof automata that were invented. This need was primarily expressed at the 
iaa 2003 
onferen
e.In order to ful�ll this need, the Vau
anson developers designed and began to implementan xml formalism to des
ribe automata. Vau
anson is a generi
 software platform designedto manipulate automata (in
luding weighted automata) and transdu
ers. A proposition of theirformalism was introdu
ed at the 
iaa 2004 
onferen
e. This paper do
uments this formalism andis a written version of the presentation that was made.This arti
le is divided in two parts: �rst the basi
 and mandatory features that are needed todes
ribe an automaton are presented. Then, a se
ond part introdu
e some extra features of theformalism, su
h as layout information and session �les.1 Basi
 featuresAs de
ided at 
iaa 2003, xml have been 
hosen. It brings developers an easier design pro
ess andsimpli�es the implementation task a lot, sin
e many libraries already exist to parse xml. Froman end-user point of view, xml is a well known format and should be grokked more easily thanany 
ustom format. One may argue that xml is extremely verbose and that, with big automata,huge �les may be produ
ed. However, working on 
ompressed xml �le is a 
ommon pra
ti
e andshould be an easy way of solving this issue. But still there is an overhead due to the time neededto de
ompress the �le. 1

vaucanson@lrde.epita.fr


At top level, the <automaton> tag is used to en
lose the de�nition of any automaton. Thenthe des
ription is divided into two parts: 
ontent and type. An example is given in �gure 1. The
ontent se
tion refers to the automaton's states, transitions, and related information, whereas thetype se
tion refers to the kind of automaton that is des
ribed: Boolean or weighted automaton,transdu
er and so on.
<automaton><type> ... </type><
ontent> ... </
ontent></automaton>Figure 1: Base stru
ture of an automaton.First, the information that is expe
ted to be found in the 
ontent se
tion will be presented.For this purpose, the Boolean automaton of �gure 1 will be used. Then the fo
us will be made onthe type se
tion.1.1 ContentIn order to des
ribe the 
ontent of an automaton, the user must provide information about fourkinds of obje
ts: states, transitions, initial states and �nal states. An example is shown in �gure2.1.1.1 StatesThe de
larations of the states for the automaton of �gure 1 is shown in �gure 3. It is performedinside a <states> tag using <state> tags. Ea
h state should be assigned an unique name usingthe name attribute. This name may be any string, and will be used latter to refer to transitions'sextremities.1.1.2 TransitionsThe de
larations of the transitions for the automaton of �gure 1 is shown in �gure 4. In a similarway as states, it is done using <transitions> and <transition> tags. The sr
 and dstattributes should refer to valid state names inside the states se
tion. Of 
ourse, these attributesindi
ate whi
h are the sour
e and destination of ea
h transition.The label attribute is the label of the transition, in a textual representation. This repre-sentation may vary with the kind of automaton whi
h is des
ribed. As an example, a �
lassi
al�Boolean letter automaton will have only one-letter labels whereas a transdu
er may have labelsof the form "a|b". Transitions upon an empty word (i.e. epsilon transitions) may be representedusing an empty string, the symbol "1", or by not spe
ifying the label attribute.

2



<automaton><type> ... </type><
ontent><states> ... </states><transitions> ... </transitions><initials> ... </initials><finals> ... </finals></
ontent></automaton> Figure 2: The 
ontent tag.
<states><state name="0" /><state name="1" /><state name="2" /></states> Figure 3: States de
laration.
<transitions><transition sr
="0" label="a" dst="0" /><transition sr
="0" label="b" dst="1" /><transition sr
="1" label="a" dst="2" /><transition sr
="1" label="b" dst="0" /><transition sr
="2" label="a" dst="1" /><transition sr
="2" label="b" dst="2" /></transitions>Figure 4: Transitions de
laration.3



<initials><initial state="0"/></initials><finals><final state="0"/></finals>Figure 5: Initials and �nal states de
laration.1.1.3 Initial and �nal statesInitial and �nal states are de
lared both in a very similar fashion. As for states and transitions theuser must 
reate appropriate se
tions using the <initials> and <finals> tags. Inside thosese
tions, he may de
lare initial and �nal states using the <initial> and <final> tags. Anexample for the automaton of �gure 1 is given in �gure 5.Ea
h <initial> or <final> tag must be a

ompanied of a name attribute 
ontaining a validand de
lared state name. This will be the state the tag refers to.Using spe
ial tags to indi
ate the initial or �nal status of a state allow the user to give extrainformation about this status, and is more 
onsistent than just putting some extra attributes to the<state> tag. As an example, when working with weighted automata or transdu
ers, it is morenatural to think of initial states as state whi
h are the destination a spe
ial kind of transition, withno sour
e, but whi
h may have an arbitrarily 
omplex label. Furthermore, having four se
tionsfor states, transitions, initial and �nal states makes the xml formalism 
loser to the mathemati
alde�nition of an automaton.1.1.4 Complex example
<states><state name="A" /><state name="B" /></states><transitions><transition sr
="A" dst="B" /><transition sr
="B" label="2 b+3 a" dst="A" /></transitions><initials><initial label="2" state="A"/></initials><finals><final label="4 a" state="B"/></finals>Figure 6: Advan
ed usage of 
ontents.Figure 6 shows a more 
omplex example for di�erent tags that may o

ur inside the 
ontentse
tion. The �rst thing to be noti
ed is the name of the states, whi
h are not integers. Then, an4



empty transition is de
lared just by not spe
ifying any label attribute, and another transitionhas a rational expression as label. Finally, sin
e the example is a weighted automata, initial and�nal states my have weights, and even be labeled with rational expressions.As this example shows, the format for the 
ontent se
tion remains rather simple, even fornon-trivial stru
tures. It has a strong expressiveness and allows the user to spe
ify di�erent kindsof automata.1.2 TypeSin
e the formalism proposed here may be used to des
ribe various types of automata, there is aneed to des
ribe the 
ontext within whi
h the 
ontent information is relevant. In other words, anautomaton is not just a 
ontent, but also has a type. The aim of the type se
tion is therefore tospe
ify the algebrai
 
ontext of the des
ribed automaton.First the formalism will be indi
ated for �usual� Boolean automata, and then some more
omplex examples will be given.1.2.1 Spe
ifying the monoid.When spe
ifying a Boolean automaton, the only relevant information that 
annot be guessed bythe 
omputer is the monoid the automaton is de
lared on. Therefore, the type se
tion for su
h anautomaton just 
ontain a <monoid> tag, as shown in �gure 7.<type><monoid><generator value="a"/><generator value="b"/></monoid></type>Figure 7: A basi
 type se
tion for Boolean automata over {a, b}.There should always be a monoid se
tion inside a type se
tion. When no attributes are spe
-i�ed, a monoid is 
onsidered to be a free monoid. Thus, <generator> tags may be used insidethe monoid se
tion to spe
ify the monoid generators whi
h, in 
ase of free monoids, are letters.The textual representation of those letters is indi
ated using the value attribute.1.2.2 Using spe
ial semirings.When working on weighted automata, a semiring information should be added to the monoid one.An example of type de
laration for su
h an automaton is given in �gure 8.<type><monoid><generator value="a" /><generator value="b" /></monoid><semiring set="Z" operations="numeri
al" /></type>Figure 8: A type se
tion for weighted automata.Sin
e a semiring mathemati
ally 
onsists of a set equipped with two spe
ial operations, the xmlde�nition of a semiring 
onsist of de
laring a set and some operations. The set is de
lared using5



the set attribute of a <semiring> tag, whereas the operations are made using an operationsattribute.Valid sets are: B, Z, R,. . . Valid operations are: boolean, numeri
al, tropi
alMax, tropi
alMin,. . . Thedefault values for these attributes are B and boolean.1.2.3 Transdu
ersAs there are two ways of formalizing transdu
ers, there are two way of de
laring a transdu
er inthe type se
tion of an xml automaton.<type><monoid type="produ
t"><monoid><generator value="a" /><generator value="b" /></monoid><monoid><generator value="x" /><generator value="y" /></monoid></monoid><type>Figure 9: Transdu
ers using produ
ts of free monoids.Produ
t of free monoids A �rst solution, presented in �gure 9, is to 
onsider a transdu
er asa Boolean automaton over a produ
t of free monoids. This 
ould be easily a
hieved using a typeattribute for the <monoid> tag. When this attribute is set to produ
t the monoid is 
onsidered tobe a produ
t of free monoids, and therefore other monoid de
larations are expe
ted to be en
losedinside the monoid se
tion. Note that there may be an arbitrary number of free monoids inside theprodu
t, and therefore multi-band transdu
ers may be de
lared.Rational series as semiring A Boolean series may be used to denote a language. A Booleanseries equipped with union and 
on
atenation also 
onstitute a semiring. Therefore, using Booleanseries as weights on a letter automaton is a valid approa
h to de�ne a transdu
er.Su
h a de�nition is possible using the proposed xml formalism. An example is given in�gure 10. The set attribute of the <semiring> tag may be assigned a ratseries value, thusindi
ating the referred semiring is a rational series. The properties of the series are en
losed inthe <semiring> tag, using �
lassi
al� <monoid> and <semiring> tags.As those examples shows, it is possible to represents 
omplex kinds of automata using the pro-posed xml formalism. Classi
al automata, weighted automata and multiple kinds of transdu
ersare supported. There is however default values that are provided for simple types, to avoid theuser typing 
omplex xml 
ode for simple obje
ts. As an example, de�ning a boolean automatonjust means de�ning its alphabet, thereby using the <monoid> tag.Equipped with those features it is possible to des
ribe the stri
t minimum that is required towork with an automaton. It allows an user to load an automaton in order to run various algorithms,tests and manipulations on it. However, one 
ould expe
t more from an xml representation for6



<type><monoid><generator value="a" /><generator value="b" /></monoid><semiring set="ratseries"><monoid><generator value="x" /><generator value="y" /></monoid><semiring set="B" operations="boolean" /></semiring></type>Figure 10: Transdu
ers as weighted automata.automata: it would be helpful to de�ne multiple automata in one �le, or to have layout informationin order to display automata.2 Other featuresBasi
ally the proposed formalism provides two extra features: the ability to des
ribe an automa-ton's geometry, and to make session �les. These features are presented in this se
tion.2.1 GeometryWhen required to display an automaton, a layout must be used. There exist some spe
ializedappli
ations that 
ompute su
h a layout (e.g. Graphviz ) or sometimes an end user would like to
hoose a 
ustom layout. More than just a layout, it is often useful to spe
ify information su
h asedges style, states 
olor, and so on.<automaton><geometry StateFillColor="blue" />...<states><state name="s0"><geometry x="10" y="10" /></state>...</states><transitions><geometry EdgeLineStyle="dashed" />...</transitions>...</automaton> Figure 11: Geometry.This 
an be a
hieved using the <geometry> tag, as shown in �gure 11. This tag may be pla
edanywhere in the do
ument and 
ontrol the way its surrounding blo
 should be displayed. Various7



attributes are available to 
hange di�erent aspe
ts of the automaton. Layout information may bespe
i�ed using the x and y attributes, but there exists other attributes su
h as StateFillColoror EdgeLineStyle. The attribute names have been 
hosen to be those of Vau
anson-G, a LATEXpa
kage dedi
ated to automata representation.2.2 SessionsIt is often desirable to store more than one automaton in a �le. One may want to run the samealgorithm with various entry and save ea
h results, or to store the intermediary automata thatare 
omputed by an algorithm at di�erent iterations.<session><automaton>...</automaton><automaton>...</automaton><automaton>...</automaton></session> Figure 12: xml sessions.This is the purpose of the <session> tag, that may be used as a top-level tag to en
losevarious <automaton> tags. The so-de�ned �le is 
alled a session and 
ontains multiple automata.An example is given in �gure 12.Therefore this formalism also 
ontains extra features that provide more than a basi
 informationsuitable only for automata 
omputations. Graphi
al appli
ations designed to represent or edit the
ontent of an automaton have a su�
ient expressiveness using this formalism, thanks to the<geometry> tag. It is also possible to store sessions in one unique �le, for programs that need todo so, using a <session> tag.Con
lusionThis paper propose an xml formalism to represent automata. This formalism has been designed tobe both simple and powerful. Simple, be
ause the notations are intuitive and simple automata maybe des
ribed easily. Powerful, be
ause it is possible to des
ribe quite 
omplex kinds of automata.In order to a
hieve this, an xml automaton �le is 
omposed of two parts: one that des
ribe thetype of automaton that is de�ned, and one that des
ribe the 
ontent of the automaton. It is alsopossible to de�ne multiple automata in one unique �le, and to store geometry information (su
has layout data) using the formalism.During the design of the formalism, an experimental implementation was developed for theVau
anson platform, both to provide an experimental playground and to 
he
k the 
onsisten
yof this formalism.Finally, this xml format allow an user to des
ribe any weighted automaton, in
luding �stan-dard� Boolean automata. Transdu
ers (in
luding weighted and multi-band transdu
ers) may alsobe des
ribed, using two di�erent algebrai
 views. Furthermore, the format is easily extensible8



and other features may be added in a later time. The Vau
anson developers hope to see thisformalism spread among other appli
ations that manipulate automata in the future.

9


	Basic features
	Content
	States
	Transitions
	Initial and final states
	Complex example

	Type
	Specifying the monoid.
	Using special semirings.
	Transducers


	Other features
	Geometry
	Sessions


