Beating C in Scientific Computing Applications

On the Behavior and Performance of Lisp, Part 1

Didier Verna

EPITA Research and Development Laboratory
14-16 rue Voltaire, F-94276 Le Kremlin-Bicétre, France

didier@Irde.epita.fr

Abstract

This paper presents an ongoing research on the behavior and per-
formance of LISP with respect to C in the context of scientific
numerical computing. Several simple image processing algorithms
are used to evaluate the performance of pixel access and arithmetic
operations in both languages. We demonstrate that the behavior of
equivalent LISP and C code is similar with respect to the choice of
data structures and types, and also to external parameters such as
hardware optimization. We further demonstrate that properly typed
and optimized LISP code runs as fast as the equivalent C code, or
even faster in some cases.

Keywords C, Lisp, Image Processing, Scientific Numerical Cal-
culus, Performance

1. Introduction

More than 15 years after the standardization process of COMMON-
Lisp ['| (Steele, [1990), and more than 20 years after people really
started to care about performance (Gabriell 1985} |[Fateman et al.,
1995} [Reid, [1996), Lisp still suffers from the legend that it is a
slow language.

As a matter of fact, it is very rare to find efficiency demanding
applications written in LISP. To take a single example from a
scientific numerical calculus application domain, image processing
libraries are mostly written in C (Froment, [2000) or in C++ with
various degrees of genericity (bibl 2002} Ibanez et al.| 2003 Duret-
Lutz, 2000). Most of the time, programmers are simply unaware
of LISP, and in the best case, they falsely believe that sacrificing
expressiveness will get them better performance.

We must admit however that this point of view is not totally
unjustified. Recent studies (Neuss} [2003; |Quam, 2005) on various
numerical computation algorithms find that LiSP code compiled
with CMU-CL can run at 60% of the speed of equivalent C code.
People having already made the choice of LISP for other reasons
might call this “reasonable performance” (Boreczky and Rowe,
1994), but people coming from C or C++ will not: if you consider
an image processing chain that requires 12 hours to complete for
instance (and this is a real case), running at a 60% speed means
that you have just lost a day. This is unacceptable.

Hence, we have to do better: we have to show people that they
would lose nothing in performance by using LISP, the corollary
being that they would gain a lot in expressiveness.

This article presents the first part of an experimental study on
the behavior and performance of LISP in the context of numeri-
cal scientific computing; more precisely in the field of image pro-
cessing. This first part deals with fully dedicated (or “specialized”)
code: programs built with full knowledge of the algorithms and the

! COMMON-LISP is defined by the X3.226-1994 (R1999) ANsI standard.

data types to which they apply. The second and third part will be de-
voted to studying genericity, respectively through dynamic object-
orientation and static meta-programming. The rationale here is that
adding support for genericity would at best give equal performance,
but more probably entail a loss of efficiency. So if dedicated Li1SP
code is already unsatisfactory with respect to C versions, it would
be useless to try and go further.

In this paper, we demonstrate that given the current state of the
art in COMMON-LISP compiler technology (most notably, open-
coded arithmetics on unboxed numbers and efficient array types
(Fateman et al., {19935} sec. 4, p.13), the performances of equivalent
C and LISP programs are comparable; sometimes better with LISP.

Section [2] describes the experimental conditions in which our
performance measures were obtained. In section[3Jon the next page,
we study the behavior and performance of several specialized C
programs involving two fundamental operations of image process-
ing: pixel access and arithmetic processing. Section[don page5]in-
troduces the equivalent LISP code and studies its behavior compar-
atively to C. Finally, section [5]on page [T0] summarizes the bench-
marking results we obtained with both languages and several com-
pilers.

2. Experimental Conditions
2.1 The Protocol

Our experiments are based on 4 very simple algorithms: pixel as-
signment (initializing an image with a constant value), and pixel ad-
dition / multiplication / division (filling a destination image with the
addition / multiplication / division of every pixel from a source im-
age by a constant value). These algorithms involve two fundamen-
tal atomic operations of image processing: pixel (array element)
access and arithmetic processing.

In order to avoid benchmarking any program initialization side-
effect (initial page faults ezc.), the performances have been mea-
sured on 200 consecutive iterations of each algorithm.

Additionally, the behavior of the algorithms is controlled by the
following parameters:

Image size Unless otherwise specified, the benchmarks presented
in this paper are for 800 * 800 images. However, we also ran
the tests on smaller images with an increased iterations number.
Some interesting comparisons between the two image sizes are
presented in sections[3.5]on page ff] and .6]on page [0}

Data type We have benchmarked both integer and floating-point
images, with the corresponding arithmetic operations (operand
of the same type, no type conversion needed). Additionally, no
arithmetic overflow occurs in our programs.

Array types We have benchmarked 2D images represented either
directly as 2D arrays, or as 1D arrays of consecutive lines

(see also[2.2). Some interesting comparisons between these two
storage layouts are presented in sections [3.I] on the next page
and[4.3]on page[q]

Access type We have benchmarked both linear and pseudo-random
image traversal. By “linear”, we mean that the images are tra-
versed as they are represented in memory: from the first pixel to
the last, line after line. By “pseudo-random”, we mean that the
images are traversed by examining in turn pixels distant from
a constant offset in the image memory representation (see also

section [2.3).

Optimization We have benchmarked our algorithms with 3 differ-
ent optimization levels: unoptimized, optimized, and also with
inlining of each algorithm’s function into the iterations loop.
The exact meaning of these 3 optimization levels will be de-
tailed later. For simplicity, we will now simply say “inlined” to
refer to the optimized and inlined versions.

The combination of all these parameters amounts to a total of
48 actual test cases for each algorithm, for a total of 192 individual
tests. Not all combinations are interesting; we present only com-
parative results where we think there is a point to be made.

The benchmarks have been generated on a Debian GNU/LinuxE]
system running a packaged 2.4.27-2-686 kernel version on a
Pentium 4, 3GHz, with 1GB RAM and 1MB level 2 cache. In or-
der to avoid non deterministic operating system or hardware side-
effects as much as possible, the PC was freshly rebooted in single-
user mode, and the kernel used was compiled without symmet-
ric multiprocessing support (the CPU’s hyperthreading facility was
turned off).

Given the inherent fuzzy and non-deterministic nature of the
art of benchmarking, we are reluctant to provide precise numerical
values. However such values are not really needed since the global
shape of the comparative charts presented in this paper are usually
more than sufficient to make some behavior perfectly clear. Nev-
ertheless, people interested in the precise benchmarks we obtained
can find the complete source code and results of our experiments
at the author’s Websitﬂ The reader should be aware that during
the development phase of our experiments, several consecutive trial
runs have demonstrated that timing differences of less than 10% are
not significant of anything.

2.2 Note on array types

In the case of a 2D image represented as a 1D array in memory,
we used a single index to traverse the whole image linearly. One
might argue that this is unfair to the 2D representation because
since the image really is a 2D one, we should use 2D coordinates
(hence a double loop) and use additional arithmetics to compute the
resulting 1D position of the corresponding pixel in the array. Our
answer to this is no, for the following two reasons.

1. Firstly, remember that we are in the case of dedicated code,
with full knowledge of data types and implementation choices.
In such a case, a real world program will obviously choose the
fastest solution and choose a single loop implementation for
linear pixel access.

2. Secondly, remember that our main goal is to compare the per-
formances of “equivalent” code in C and LiSP. Comparing the
respective merits of 1D or 2D implementation is only second-
order priority at best. Hence, as long as the tested code is equiv-
alent in both languages, our comparisons hold.

2http://wuw.debian.org

3http://www.lrde.epita.fr/~didier/comp/research/publi.
php

2.3 Note on access types

It is important to consider pseudo-random access in the experi-
ments because not all image processing algorithms work linearly.
For instance, many morphological operators, like those based on
“front propagation” algorithms (d’Ornellas| 2001} access pixels in
an order that, while not being random, is however completely un-
related to the image’s in-memory storage layout.

In order to simulate non-linear pixel access, we chose a scheme
involving only arithmetic operations (the ones we were interested
in benchmarking anyway): we avoided using real randomization
because that would have introduced a bias in the benchmarks, and
worse, it would have been impossible to compare results from C
and Lisp without a precise knowledge of the respective cost of the
randomization function in each language or compiler.

The chosen scheme is to traverse the image by steps of a con-
stant value, unrelated to the image geometry. In order to be sure
that all pixels are accessed, the image size and the step size have to
be relatively prime. 509 was chosen as the constant offset for this
experiment, because it is prime relatively to 800 (our chosen image
size) and is also small enough to avoid arithmetic overflow for a
complete image traversal.

3. C Programs and Benchmarks

In this section, we establish the ground for comparison by studying
the behavior and performance of specialized C implementations of
the algorithms described earlier.

For benchmarking the C programs, we used the GNU C com-
piler, Gcc ﬂ version 4.0.3 (Debian package version 4.0.3-1). Full
optimization is obtained with the -03 and -DNDEBUG flags. To
prevent the compiler from inlining the algorithm functions, the
noinline GCC attribute (GNU C specific extension) is used. On
the contrary, to force inlining of these functions, they are declared
as static inline.

For the sake of clarity, two sample programs (details removed)
are presented in listings[T]and 2} the addition algorithm for f1loat
images, both in linear and pseudo-random access mode.

void add (image *to, image =from, float val)
{

int i;

const int n = ima—>n;

for (i = 0;

< n; o ++i)

i
to—>data[i] from—>data[i] + val;

Listing 1. Linear float Pixel Addition, C Version

void add (image *to, image =from, float val)
{

int i, pos, offset = 0;

const int n = ima—>n;

for (i = 0; i < n; ++i)
{
offset += OFFSET;
pos = offset % n;
to—>data[pos] = from—>data[pos] + val;

}

Listing 2. Pseudo-Random float Pixel Addition, C Version

thtp ://gcc.gnu.org

http://www.debian.org
http://www.lrde.epita.fr/~didier/comp/research/publi.php
http://www.lrde.epita.fr/~didier/comp/research/publi.php
http://gcc.gnu.org

3.1 Array types

Although 1D array implementation would probably be the usual
choice (for questions of locality, and perhaps also genericity with
respect to the image ranks), it is interesting to see how 1D or 2D
array implementations behave in C, and compare this behavior with
the equivalent LISP implementations.

In the 2D implementation, the image data is an array of pointers
to individually malloc’ed lines (in sequential order), and a double
line / column loop is used to access the pixels linearly.

Chart [T] shows the timings for all linear optimized algorithms
with a 2D (rear) or 1D (front) array implementation.

From Rear to Front: 2D / 1D Array

I Integer
[Floating Point

15

Execution time (seconds)
=

05

C oo O AD HE

Assignment Addition Multiplication Division

Chart 1. Linear Optimized Algorithms, 2D or 1D C Versions

This chart indicates that the 1D implementation ran 10% faster
than the 2D one at best for integer arithmetics. This is hardly
significant, and even less in the case of floating point treatment.
The same experiments (not presented here) with inlined algorithms
confirm this, with the case of the integer division more pronounced,
as it runs 25% faster in the 1D implementation (the performance of
integer division will be discussed in section [3.4] on the following
page).

Chart [2| shows the timings for all pseudo-random optimized
algorithms with a 2D (rear) or 1D (front) array implementation.

From Rear to Front: 2D / 1D Array

I R

25
B Integer

1 Floating Point
20

15

10

Execution time (seconds)
e e e e . s e
s b b v b b

0

Assignment Addition Multiplication Division

Chart 2. Pseudo-Random Optimized Algorithms, 2D or 1D C
Versions

In that case, the differences between the two implementations
are somewhat deeper: the 1D implementation almost 20% faster
than the 2D one on the 3 algorithms invoking arithmetics, and
this is the other way around for pixel assignment. Again, the same

experiments (not presented here) with inlined algorithms confirm
this.

In the remainder of this section, we will consider 1D storage
layout exclusively.

3.2 The Assignment algorithm

From Rear to Front: Unoptimized / Optimized / Inlined

10

0.01 I I I I

Int/ Rand Int/ Linear Float / Rand Float / Linear

T
|

-
T

|

Execution time (seconds)

o

[
T
Ll

Chart 3. 1D Pixel Assignment, C Versions

Chart 3] presents the results obtained for the 1D assignment al-
gorithm. Benchmarks are grouped by data type / access type com-
binations (this makes 4 groups). In each group, the timings (from
rear to front) for the unoptimized, optimized and inlined versions
are displayed. In order to make small timings more distinct, a log-
arithmic scale is used on the Y axis.

3.2.1 Access Types

The first thing we remark on this chart is the huge difference in
the performance of pseudo-random and linear access. In numbers,
the linear versions run between 15 and 35 times faster than their
pseudo-random counterpart, depending on the optimization level.
An explanation for this behavior is provided in section 33 on the
next page.

3.2.2 Optimization levels

Chart 3] also demonstrates that while optimization is insignificant
on the pseudo-random versions, the influence is non-negligible in
the linear case: the optimized versions of the pixel assignment
algorithm run approximately 60% faster than the unoptimized ones.
To explain this, two hypotheses can be raised:

1. the huge cost of pseudo-random access completely hides the
effects of optimization,

2. and / or special optimization techniques related to sequential
memory addressing are at work in the linear case.

These two hypotheses have not been investigated further yet.

As real world applications need non linear pixel access some-
times, it is important to remember, especially during program de-
velopment, that turning on optimization is much less rewarding in
that case.

3.3 Addition and Multiplication

Charts similar to chart[3]were made for the addition and multiplica-
tion algorithms. They are very similar in shape so only the addition
one is presented (see chart[d on the following page). This chart en-
tails 3 remarks:

e The difference in performance between pseudo-random and lin-
ear access is confirmed: the linear versions run approximately

From Rear to Front: Unoptimized / Optimized / Inlinined

10
1
O'l I I

Int/ Rand Int/ Linear Float / Rand Float / Linear

Chart 4. 1D Pixel Addition, C Versions

T

T

L
|

T
T

L
|

Execution time (seconds)

T

T

L
|

between 25 and 35 times faster than the pseudo-random access
ones (15 — 35 for the assignment algorithm), depending on the
optimization level. This increased performance gap in the unop-
timized case is unlikely to be due to the arithmetic operations
involved. A more probable cause is the fact that two images
are involved, hence doubling the number of memory accesses.
Again, refer to section [3.3] for an explanation.

As in the previous algorithm (although less visible on this
chart), optimization is more rewarding in the case of linear ac-
cess: whereas the optimized versions of pseudo-random access
algorithms run 10% faster than their unoptimized counterpart,
the gain is of 36% for linear access. However, it should be noted
that this ratio is inferior to that obtained with the assignment
algorithm (60%) in which no arithmetics was involved (apart
from the same looping code). This, again, suggests that opti-
mization has more to do with sequential memory addressing
than with arithmetic operations.

Inlining the algorithms functions doesn’t help much (this was
also visible on chart[3|on the preceding page): the gain in perfor-
mance is insignificant. It fluctuates between - and +2% which
does not permit to draw any conclusion. This observation is not
surprising because the cost of the function calls is negligible
compared to the time needed to execute the functions them-
selves (i.e. the time needed to traverse the whole images).

3.4 Division

From Rear to Front: Unoptimized / Optimized / Inlined

Int/ Rand Int/ Linear Float / Rand Float / Linear

Chart 5. 1D Pixel Division, C Versions

10

T

T

L
|

Execution time (seconds)
=
T
L
|

01

T

T

L
|

The division algorithm, however, comes with a little surprise.
As shown in chart[3] the division chart globally has the same shape
as that of chart] but inlining does have a non-negligible impact
on integer division: in pseudo-random access mode, the inlined
version runs 1.2 times faster than the optimized one, and the ratio
amounts to almost 3.5 in the linear case. In fact, inlining reduces
the execution time to something closer to that of the multiplication
algorithm.

Careful disassembly of the code (shown in listings [3] and [4)
reveals that the division instruction (idiv) is indeed missing from
the inlined version, and replaced by a multiplication (imull) and
some other additional (cheaper) arithmetics.

0x08048970 <div_sb+48>: lea 0x0(,%ecx ,4),% eax
0x08048977 <div_sb+55>: inc Jecx

0x08048978 <div_sb+56>: mov (%esi,%oeax,1),%edx
0x0804897b <div_sb+59>: mov %eax ,0 xffffffe8 (%ebp)
0x0804897e <div_sb+62>: mov Joedx ,% eax

0x08048980 <div_sb+64>: mov %edx ,0 xffffffed (%ebp)
0x08048983 <div_sb+67>: cltd

0x08048984 <div_sb+68>: idiv %ebx

0x08048986 <div_sb+70>: mov Oxffffffe8(%ebp),%edx
0x08048989 <div_sb+73>: cmp JDecx ,0 xfEfffff0(%ebp)
0x0804898¢c <div_sb+76>: mov J%eax ,0 xffffffe0(%ebp)
0x0804898f <div_sb+79>: mov JDeax ,(% edi,%edx ,1)
0x08048992 <div_sb+82>: jne 0x8048970 <div_sb+48>

Listing 3. Assembly Integer Division Excerpt

0x080489d0 <main+640>: lea 0x0(,%esi ,4),% ecx
0x080489d7 <main+647>: mov $0x92492493 % eax
0x080489dc <main+652>: imull (%ebx,%ecx,1)
0x080489df <main+655>: inc %esi

0x080489¢0 <main+656>: mov (%ebx,%ecx ,1),% eax
0x080489e3 <main+659>: mov %edx ,0 xffffff7c(%ebp)
0x080489e9 <main+665>: add JDeax ,% edx

0x080489eb <main+667>: mov (%ebx,%ecx ,1),% eax
0x080489ee <main+670>: sar $0x2,%edx

0x080489f1 <main+673>: sar $0x1f,%eax
0x080489f4 <main+676>: sub JDeax ,% edx

0x080489f6 <main+678>: cmp %esi 0 xffffffa8(%ebp)
0x080489f9 <main+681>: mov Y%edx ,(% edi ,%ecx ,1)
0x080489fc <main+684>: jne 0x80489d0 <main+640>

Listing 4. Assembly Inlined Integer Division Excerpt

This is an indication of a constant integer division optimization
Chap. 10). In fact, the dividend in our program is
indeed a constant, and GCC is able to propagate this knowledge
within the inlined version of the division function. Replacing this
constant by a call to atoi ("7"), for instance, in the source code
suffices to neutralize the optimization.

Although the case of integer division is somewhat peculiar, if
not trivial, it demonstrates that inlining is always worth trying, even
when the cost of the function call itself is negligible, because one
never knows which next optimization such or such compiler will be
able to perform.

Finally, notice that division is more costly in general: the pres-
ence of division arithmetics here, flattens the performance gap be-
tween pseudo-access and linear access. Whereas the other algo-
rithms featured a factor between 25 and 35, linear floating-point
division runs “only” 8.1 — 9.5 times faster than the pseudo-access
versions.

3.5 Caching

As we just saw, the gain from pseudo-random to linear access is
15 — 35 for pixel assignment, addition and multiplication, and 8.1
— 9.5 for (floating point) pixel division. The arithmetic operations
needed to implement pseudo-random access involve one addition

and one (integer division) remainder per pixel access, as apparent
on listing 2] on page [2] These supplemental arithmetic operations
alone cannot explain this performance gap.

In order to convince ourselves of this, we benchmarked alter-
native versions of the algorithms in which pseudo-random access
related computations are being performed, but the image is still ac-
cessed linearly. An example of such code is shown in listing[5]

void assign (image xima, float val)

{

int i, offset = 0;
const int n = ima—>n;
for (i = 0; i < n; ++i)

{
offset += OFFSET;
ima—>data[i] = offset % n;
}
}
Listing 5. Fake Pseudo-Random float Pixel Assignment, C Ver-
sion

Comparing the performances of these versions and the real
linear ones shows that the performances degrade only by a factor 4
— 6; not 25 — 35.

What is really going on here is that pseudo-random access de-
feats the CPU’s level 2 caching optimization. This can be demon-
strated by using smaller images (that fit entirely into the cache)
and a larger number of iterations in order to maintain the same
amount of arithmetic operations. The initial experiments were run
on 800800 images and 200 iterations. Such images are 2.44 times
bigger than our level 2 cache. We ran the same tests on 400 * 400
images and 800 iterations. This gives us almost the same number of
arithmetic operations, but this time, it is almost possible to fit two
images into the cache.

Charts [6] and [7] present all algorithms side by side, respectively
for optimized linear and pseudo-random access. From rear to front,
benchmarks for big and small images are superimposed. Timings
are displayed on a linear scale this time.

I Integer
[Floating Point

From Rear to Front: Big/ Small Image
25

20

15

10

Execution time (seconds)
L e e e e L B B
v b b b b

0

Assignment Addition Multiplication Division

Chart 6. 1D Pseudo-Random Optimized Algorithms, C Versions

For pseudo-random access, the assignment algorithm goes ap-
proximately 5.5 times faster for the small image, and the other algo-
rithms gain roughly a factor of 3, despite the same amount of arith-
metics. In the linear case however, the assignment algorithm gains
2.6 (instead of 5.5), the addition and multiplication ones hardly
reach 1.3 (instead of 3), and the division one gains practically noth-
ing.

In section 23] on page 2] we emphasized on the importance of
considering pseudo-random access in our tests. Here, we further

From Rear to Front: Big/ Small Image

L T 7 4

r | B Integer il

| Floating Point b

15 —

g L 4

§ L 4

< L 4

E 1 -

= L 4
S

= L 4

8 t 4

i} L |

05— |r —

0 Assignment Addition Multiplication Division

Chart 7. 1D Linear Optimized Algorithms, C Versions

demonstrate the importance of hardware considerations like the
size of the level 2 cache: one has to realize that given the size of
our images (800 * 800) and the chosen offset for pseudo-random
access (509), we hardly jump from one image line to the next, and
it already suffices to degrade the performance by a factor of 30.
This consideration is all the more important that it is not only a
technical matter: for instance, |Lesage et al.| (2006) observe that for
a certain class of morphological operators implemented as queue-
based algorithms, there is a relation between the image entropy (for
instance the number of grey levels) and the amount of cache misses.

4. Li1SP Programs and Benchmarks

In this section, we study the behavior and performance of LISP
implementations of our algorithms, and establish a first batch of
comparisons with the C code previously examined.

For testing LISP code, we used the experimental conditions
described in section [2] on page [I] with some LISP specificities
described below.

4.1 Experimental Conditions

Compilers We took the opportunity to try several LISP compilers.
We tested CMU-CL E| (version 19¢), SBCLﬂ(version 0.9.9) and
ACLD(Allegro 7.0 trial version). Our desire to add LispWorksﬁ
to the benchmarks was foiled by the fact that the personal
edition lacks the usual load and eval command line options
used with the other compilers to automate the tests.

Array Types Both 1D and 2D array types were tested, but with a
total of 7 access methods: apart from the usual aref method for
both 1D and 2D arrays, we also experimented row-ma jor-aref
access for 2D arrays and simple-vector / svref storage / ac-
cess for fixnums. See section [£.3] on the next page for further
discussion on this.

These new parameters increased the number of tests to 252 per
algorithm, making a total of 1008 individual test cases. Again, only
especially interesting comparisons are shown.

Also, following the advice of /Anderson and Rettig|(1994), care
has been taken to use truncate instead of / for fixnum division in
order to avoid unwanted ratio manipulation.

Shttp://www.cons.org/cmucl
Shttp://www.sbcl.org
"http://wuww.franz.com
8http://www.lispworks.com

http://www.cons.org/cmucl
http://www.sbcl.org
http://www.franz.com
http://www.lispworks.com

Finally, it should be noted that none of the tested programs
triggered any garbage collection (GC) during timing measurement,
apart from a few unoptimized (hence unimportant) cases, and a
“special occasion” with ACL described later. This is a good thing
because it demonstrates that for low-level operations such as the
ones we are studying, the language design does not get in the way
of performance, and the compilers are able to avoid costly memroy
management when it is theoretically possible. See also section
on page[TT]for more remarks on GC.

4.2 LISP code tuning

For the reader unfamiliar with LISP, it should be mentionned that
requesting optimization is not achieved by passing flags to the com-
piler as in C, but by “annotating” the source code directly with so-
called declarations, specifying the expected type of variables, the
level of required optimization, and even compiler-specific informa-
tion. Examples are given below.

Unoptimized code is obtained with (safety 3) and all other
qualities set to 0, while fully optimized code is obtained with
(speed 3) and all other qualities set to 0. Providing the type dec-
larations needed by LISP compilers in order to optimize was more
difficult than expected however. The process and the difficulties are
explained below.

First, we compiled untyped LISP code with full optimiza-
tion and examined the compilation logs. The Python compiler
(MacLachlan, [1992) from CMU-CL (or SBCL for that matter) has
a very nice way to throw a compilation note each time it is unable
to optimize an operation. This makes it very easy to provide it with
the strictly required type declarations without cluttering the code
too much.

After that, we used the somewhat less ergonomic (:explain
:boxing) declaration of ACL in order to check that these mini-
mal type declarations were also enough for the Allegro compiler
to avoid number consing. This is not however sufficient to avoid
suboptimal type declaration in ACL, because even without any sig-
nalled number boxing, the compiler might be unable to open-code
some of its internal functions. Thus, we had to use yet another ACL-
specific declaration to get that information; namely (:explain
:calls :types). Some typing issues with ACL are still remain-
ing; they will be described in section[d.3]

As a result of this typing process, two code examples are pro-
vided in listings [6] and [7] These are the LISP equivalent of the C
examples shown in listings[T]and 2] on page

(defun add (to from op)
(declare (type (simple—array single—float (%)) to))
(declare (type (simple—array single—float (%)) from))
(declare (type single—float op))
(let ((size (array—dimension to 0)))
(dotimes (i size)
(setf (aref to i) (+ (aref from i) op)))))

Listing 6. Linear single-float Pixel Addition, LISP Version

These two code samples should also be credited for illustrating
one particular typing annoyance: note that adding two fixnums
might produce something bigger than a fixnum, hence the risk
of number boxing. This means that in principle, we should have
written the addition like this:

(the fixnum (+ (aref from i) op))

or used a macro to do so. Surprisingly however, none of the tested
compilers complained about this missing declaration. After some
investigation, it appears that they don’t need this declaration, but
for different reasons:

(defun add (to from op)
(declare (type (simple—array single—float (%)) to))
(declare (type (simple—array single—float (%)) from))
(declare (type single—float op))
(let ((size (array—dimension to 0))
(offset 0)
pos)
(declare (type fixnum offset))
(dotimes (i size)
(setf offset (+ offset +offset+)
pos (rem offset size)
(aref to pos) (+ (aref from pos) op)))))

Listing 7. Pseudo-Random single-float Pixel Addition, LISP
Version

e Python’s type inference system is relatively clever: if you setf
the result of an addition of two fixnums to a variable also
declared as a fixnum (the to array in our case), then it is
deduced that no arithmetic overflow is expected in the code,
hence it is not necessary to declare (neither to check) the type
the addition’s result. Note that this is also true for multiplication
for instance.

e On the other hand, ACL’s type inference system does not go
that far, but has a “hidden” switch automatically turned on in
our full optimization settings, and which assumes the result
of fixnum addition to remain a fixnum. This is not true for
multiplication however. Hence, the same code skeleton might
(surprisingly) behave differently, depending on the arithmetic
operation involved.

As a last example of typing difficulty, CMU-CL’s type infer-
ence (or compiler note generation) system seems to have prob-
lems with dotimes loops: declaring the type of a dotimes loop
index is normally not needed to get inlined arithmetics (and SBCL
doesn’t require it either). However, when two dotimes loops are
nested, CMU-CL issues a note requesting an explicit declaration for
the first index. Macro-expanding the resulting code shows that two
consecutive declarations are actually issued: the one present in the
dotimes macro, and the user-provided one. On the other hand, no
declaration is requested for the second loop’s index. The reason for
this behavior is currently unknown (even by the CMU-CL maintain-
ers we contacted). As a consequence, it is difficult to figure out if
we can really trust the compilation notes or if there is a missed op-
timization opportunity: we had to disassemble the code in question
in order to make sure that inlined fixnum arithmetics was indeed
used.

All of this demonstrates that trying to provide the strictly nec-
essary and correct type declarations only is almost impossible be-
cause compilers may behave quite differently with respect to type
inference, and the typing process can lead to surprising behaviors,
unless you have been “wading through many pages of technical
documentation”, to put it like |[Fischbacher| (2003)), and finally ac-
quired an in-depth knowledge of each compiler specificities.

4.3 Array types

In LISP just as in C, one could envision to represent 2D images
as 1D or 2D arrays. In section on page 3] we showed that
the chosen C representation does not make much difference for
optimized code.

In LiSP, the choice is actually larger than just 1 or 2D: in
addition to choosing between single or multidimensional array, the
following opportunities also arise:

e It is possible to treat multi-dimensional arrays as linear ones
thanks to the standard function row-major-aref.

e At some point in LISP history (Anderson and Rettig, [1994),
it was considered a better choice to use an unspecialized
simple-vector for storing fixnums along with its accompany-
ing accessor svref, because using a specialized simple-array
might involve shifting in order to represent them as machine in-
tegers. On the other hand, fixnums are immediate objects so
they are stored as-is in a simple-vector.

The combination of element type / array type / access method
amounts to a total of 7 cases that are worth studying.

From Rear to Front: 2D / 2D ROW-MAJOR/ 1D Array

. I Fixnum p

25— |1 Single Float]

[|EE Fixnum SVREF []

& L _ __]
‘§ 2r ol]
T L]
E 15 -
s []
2 I]
81]
)i [H [H ;

o]

Assignment Addition Multiplication Division

Chart 8. Linear Optimized Algorithms, CMU-CL Versions

Chart[8] shows the CMU-CL timings for all linear optimized al-
gorithms, with (from rear to front), 2D, 2D row-major accessed,
1D, and fixnum simple-vector implementations. This chart en-
tails several remarks:

e Contrary to C, using a plain 2D access method gives poor
performance: the algorithms perform between 2.8 (for single-
float images) and 4.5 (for fixnum images) times slower than the
1D version. This performance loss is much less important on the
integer division though: the 1D fixnum version performs “only”
1.35 times faster than the 2D one, and the single-float versions
perform at exactly the same speed.

The performance gap is more pronounced for fixnum images
than for single-float ones: while the performance for fixnum
and single-float is equivalent in the case of 1D access, fixnum
algorithms are roughly 1.5 times slower than their single-float
counterpart in plain 2D access.

Altogether, the timings for 2D row-major access, and 1D aref
access methods are practically the same, although there is a
small noticeable difference for integer division. This brings an
interesting remark: it seems that while 2D access optimiza-
tion is performed at the compiler level in C, it is available
at the language level in COMMON-LISP, through the use of
row-major-aref.

Finally, using of a simple-vector to store fixnum images does
not bring anything compared to the traditional simple-array ap-
proach. This is in contradiction to|Anderson and Rettig| (1994),
but the reason is that nowadays, LISP compilers use efficient
representations for properly specialized arrays, so for instance,
fixnums are stored unshifted, just as in a simple-vector. Actu-
ally, if one wants machine integers, the (signed-byte 32)
type is available.

A similar chart for the inlined versions (not presented here)
teaches us that inlining has a bad influence on the 2D row-major
access versions: they take about twice the time to execute, which is
a strong point in favor of choosing a 1D implementation.

Similar chars (not presented here) were also made for pseudo-
random access (both in optimized and inlined versions). There is
no clear distinction between the different implementation choices
however. The plain 2D method is behind the others in most cases
(but not all), the 2D row-major choice would seem to be better
most of the time, but the performance differences hardly reach 10%
which is not enough to lead to any definitive conclusion.

The case of SBCL is very similar to that of CMU-CL, hence will
not be discussed further. Let us just mention that some differences
are noticed on inlined versions, which seems to indicate that inlin-
ing is still a “hot” topic in LISP compilers (probably because of its
tight relationship to register allocation policies).

From Rear to Front: 2D / 2D ROW-MAJOR/ 1D Array
25

B3 Fixnum
[single Float

20 [Fixnum SVREF —

15

10

Execution time (seconds)

Assignment Addition Multiplication Division

Chart 9. Linear Optimized Algorithms, ACL Versions

The case of ACL is peculiar enough to be presented here how-
ever (see chart E) The most surprising behavior is the incredibly
poor performance of the row-major access method in general, and
for single-float images in particular (note that the timing goes up to
22 seconds, not even including GC time, whereas CMU-CL hardly
reaches 2.5 seconds). A verbose compilation log examination leads
us to the following assumptions:

e ACL indicates that it is unable to open-code the calls to
array-total-size and, more importantly, row-major-aref,
so it has to use a generic (polymorphic ?) one. This might ex-
plain why the performance is so poor.

¢ In the case of floating point images, ACL also indicates that it
is generating a single-float box for every arithmetic operation.
This might further explain why floating point images perform
even poorer than fixnum ones.

As of now, we are still unable to explain this behavior, so it is
unknown whether we missed an optimization opportunity (that
would have required additional code trickery or intimate knowledge
of the compiler anyway), or whether we are facing an inherent
limitation in ACL.

Final remark on plain 2D representation In our experiments, the
size of the images are not known at compile time, so arrays are
declared as follows in the 2D case:

(simple-array <type> (* *))

Out of curiosity, and motivated by the fact that ACL is unable
to inline calls to array-dimension in this situation, we wanted
to know the impact of a more precise type declaration on the
performance.

To that aim, we ran experiments with hard-wired image sizes in
the declarations. Arrays were hence declared as follows:

(simple-array <type> (800 800))

We observed a performance gain of approximately 30% (for CMU-
CL) and 20% (for ACL) in plain 2D access (still worse than the
1D version), and no gain at all for row-major access. This is
interesting because even when using the full expressiveness of
the language (in that case, generating and compiling dedicated
functions with full knowledge of the array types on the fly), we
gain nothing compared to using a standardized access facility.

To conclude, the choice between 2D (even with row-major
access because of ACL) and 1D array representation does matter
a bit more than in C, but also tends towards the 1D choice. In the
remainder of this section, we will consider only 1D simple array.

4.4 The Assignment Algorithm

Chart [T0] shows comparative results for the 3 tested compilers on
the optimized versions of the 1D pixel assignment algorithm. Ad-
ditionally, the inlined versions are shown on the right side of each
bar group for CMU-CL and SBCL (note that ACL doesn’t support
user function inlining). Timings are displayed on a logarithmic
scale. Following are several observations worth mentioning from
this chart.

From Rear to Front: ACL / CMU-CL / SBCL
10

I3 Optimized |
L 1 Inlined]
g E
3]
£ 5]
=
S r 1
g
P 0.1 =
0.01 l 11
Int/ Rand Int/ Linear Float / Rand Float / Linear

Chart 10. Pixel Assignment, Optimized LISP Versions

4.4.1 Lisp Compilers

In pseudo-random access, all compilers are in competition, al-
though ACL seems a bit slower. However, this is not significant
enough to draw any conclusion. On the other hand, the difference
in performance is significant for linear access: both CMU-CL and
SBCL run twice as fast.

4.4.2 Access Types

The impact of the access type on performance is exactly the same
as in the C case: both CMU-CL and SBCL perform 30 times faster in
linear access mode. For ACL, this factor falls down to 13 though.
Further investigation on the impact of the additional arithmetics
only is provided in sectionf-6]on the facing page.

4.4.3 Optimization levels

It would not make any sense to compare unoptimized versions of
LISP code and C code (neither across LISP compilers actually) be-
cause the semantics of “unoptimized” may vary across languages
and compilers: for instance, Python compilers may treat type decla-
rations as assertions and perform type verification for unoptimized
code, which never happens in C. We are not interested in bench-
marking this process.

However, it can be interesting, for development process, to
figure out the performance gain from non to fully optimized LISP

From Rear to Front: Unoptimized / Optimized / Inlined
10

1
Oll i
0.01

Int/ Rand Int/ Linear Float / Rand Float / Linear

T
Ll

Execution time (seconds)

T
|

Chart 11. CMU-CL Pixel Assignment Performance

code, and also to see its respective impact on pseudo-random and
linear access, just as we did for C.

Chart[TT]shows the performance of CMU-CL on the assignment
algorithm for code fully safe (GC time removed), fully optimized,
and inlined (from rear to front), in the case of 1D aref access.
Timings are displayed on a logarithmic scale. We observe a behav-
ior very similar to that of C (chart [3] on page [3): optimization is
insignificant for pseudo-random access, but quite important for lin-
ear access. This gain is also more important here than in C: while
optimized C versions ran approximately twice as fast as their un-
optimized counterpart, the LISP versions run between 3.8 and 5.3
times faster. In fact, the gain is more important, not because opti-
mized versions are faster, but because unoptimized ones are slower:
in LISP, safety is costly.

Although not presented here, similar charts were made for SBCL
and ACL. The behavior of SBCL is almost identical to that of CMU-
CL, so we will say no more about it. ACL has some differences,
due to the fact that the unoptimized versions are much slower
(sometimes twice as slow) than Python generated code. Again,
it would not be meaningful to compare unoptimized code, even
between LISP compilers. But this just leads to the consequence
that the effect of optimization is significant even in pseudo-random
access mode for Allegro.

From Rear to Front: Unoptimized / Optimized / Inlined

10
1
0.1

Int/ Rand Int/ Linear Float / Rand Float / Linear

T
Lol

T
!

Execution time (seconds)

T
Lol

T
!

T
Ll

Chart 12. CMmU-CL Pixel Addition Performance

With some anticipation on the following section, chart[T2]shows
the impact of optimization on the addition algorithm for CMU-CL
(logarithmic scale), where we learn something new: it appears that
contrary to C, the impact of optimization is much more important

on floating point calculations. More precisely, it is the cost of
safety which is much greater for floating point processing than for
integer calculation: optimized versions run at approximately the
same speed, regardless of the pixel type. However, unoptimized
fixnum assignment goes 1.4 times faster than the floating point
version in the pseudo-random access case, and 8.5 times faster in
linear access mode. This explains why optimization has a more
important impact on the floating point versions.

Similar charts were made for the other algorithms, and the other
compilers. They all confirm the preceding observations. There is
one issue specific to CMU-CL however: as visible on chart [T2] on
the facing page, inlining actually degrades the performances, which
is particularly visible on the pseudo-random access versions.

4.5 Other Algorithms

Performance charts were made for the addition, multiplication and
division algorithms. They are very similar in shape so only the
results for the division one is presented on chart [T3] (the division
was chosen because it has some specificities). As in chart[T0]on the
facing page, the performance of the 3 tested compilers is presented
for the optimized versions, along with the inlined versions of CMU-
CL and SBCL.

From Rear to Front: ACL / CMU-CL / SBCL
30

P]
6L [Optimized|

L 1 Inlined 4

24— -
22— -
- []
§ 2 E
18— =
2 160 _'L.Ll]
E T]
c 14 —
(=} F B
g 12—]
8 of]
81—]
6 -
4]
2 -

of |r'|—"'|—| ||‘|—"'|—|]

Int/ Rand Int/ Linear Float / Rand Float / Linear

Chart 13. Pixel Division, Optimized LISP Versions

The following points can be noticed on this chart:

Globally, we can classify ACL, CMU-CL and finally SBCL by
order of efficiency (from the slowest to the fastest). This is also
the case for the other algorithms.

Specifically to pseudo-random integer division, SBCL seems
quite better than the two others. The reason for this particularity
is currently unknown.

The impact of the access type on performance here is exactly
the same as in the C case: the division, being more costly
reduces the gap between linear and pseudo-random access to
a factor of 9 — 11 (the other algorithms feature a factor of 30,
just like in C).

This chart also confirms that inlining is insignificant at best.
However, CMU-CL seems to have a specific problem with
pseudo-random access (this is true for all algorithms): inlin-
ing degrades the performances by a factor up to 15% in some
cases. Although not presented here, we found at that SBCL
suffers from inlining too, but mostly for linear access. All of
this suggests that inlining is still a “hot” topic in LISP compil-
ers, and can have a serious impact on locality and on register
allocation policies.

Finally, the global insignificance of inlining in this very case
of integer division demonstrates that none of the tested com-

pilers seem to be able to perform the constant integer division
optimization brought to light with C. This hypothesis was con-
firmed by compiling and disassembling a short function of one
argument performing a constant division of this argument: for
both CMU-CL and SBCL, the division is optimized only when
the dividend is a power of 2, whereas GCC is able to optimize
any constant dividend.

4.6 Caching

As in the C case, we noticed a factor of 30 in performance between
linear a pseudo-random access. In order to evaluate the impact of
the additional arithmetic operations only, we ran tests equivalent
to those described in section[3.5] on page [(linear access, but still
performing pseudo-random access related arithmetics). Listing [§]
shows the alternative assignment algorithm for single-float images
used in this aim.

(defun assign (image value)
(declare (type (simple—array fixnum (%)) image))
(declare (type fixnum value))
(let ((size (array—dimension image 0))
(offset 0))
(declare (type fixnum offset))
(dotimes (i size)
(setf offset (+ offset +offset+)
(aref image i) (rem offset size)))))

Listing 8. Alternative single-float Pixel Assignment, LISP
Version

Here again, comparing the performances of these versions and
the real linear ones shows that the performances degrade only by
approximately a factor of 5 (just like in C); not 30. Still as in the
C case, comparing performances on big and small images with the
same amount of arithmetic operations leads to charts[T4]and [T5]on
the next page for CMU-CL.

Rear to Front: Big/ Small Image

25
I Integer

[Floating Point
20

15

10

Execution time (seconds)
T T T T T T T T T T T T T T
s b b b b

0

Assignment Addition Multiplication Division

Chart 14. Pseudo-Random Optimized Algorithms, CMU-CL Ver-
sions

These charts are very similar to charts [6] on page 5] and [7] on
page|§| for C: for pseudo-random access, the assignment algorithm
goes 3.8 times faster for the small image (5.5 for C), and the other
algorithms gain roughly a factor of 2.3 (3 for C). In the linear case,
the assignment algorithm gains roughly a factor of 3 (2.6 for C)
instead of 3.8, the addition and multiplication algorithms hardly
reach 1.2 (1.3 n the case of C), and the division algorithm gains
nothing, exactly as in C.

Although not presented here, similar charts were made for SBCL
and, as expected, they exhibit the same behavior as CMU-CL. The
case of ACL is also very similar, although the gain in performance

Rear to Front: Big/ Small Image

I Integer
[Floating Point T |

15

Execution time (seconds)
[

05

~ an B[

Assignment Addition Multiplication

Division

Chart 15. Linear Optimized Algorithms, CMU-CL Versions

from big to small image have a tendency to be globally smaller than
for CMU-CL and SBCL.: in pseudo-random access, the assignment
algorithm runs less than twice as fast on the small image (compare
this to 3.8 in the case of CMU-CL) and the ratio for the other
algorithms is rather of 2.2, almost identical to the case of CMU-CL.
In linear access, the gain is practically nothing however, even for
the assignment algorithm which is surprising since we got a factor
of 3 with Python generated code.

5. Final Comparative Performance

In this section, we draw a final comparison of absolute performance
between the C and LISP versions of our algorithms.

Charts [I6] and [T7] show all the algorithms, respectively in
pseudo-random and linear access mode. From rear to front, exe-
cution times for ACL, SBCL, CMU-CL and C are presented.

Rear to Front: ACL / SBCL /CMU-CL/C
30

I Integer
O Floating Point

25
20
I

15

10

Execution time (seconds)
L L L A B
o b b b b by

Addition Division

Assignment

Multiplication

Chart 16. Pseudo-Random Algorithms, Fastest Versions

Note that these charts compare what we found to be globally
the best implementation solution for performance in every case.
This means that we use a 1D representation in both camps, and
we actually compare inlined C versions with optimized (but not
inlined) LISP versions because inlining makes things worse in LISP
most of the time. Hence, strictly speaking, we are not comparing
exactly the same things.

This is justified by the position we are adopting: that of a pro-
grammer interested in getting the best in each language while not
being an expert in low level optimization. Only general optimiza-
tion flags (-0 in C, standard qualities declarations in LISP) and in-

Rear to Front: ACL / SBCL /CMU-CL /C

2 || Integer o *
[Floating Point

Execution time (seconds)

Addition

Assignment

Multiplication Division

Chart 17. Linear Algorithms, Fastest Versions

lining are used. No compiler-specific local trick has been tested,
either in C or in LISP.
And here comes an enjoyable little surprise:

e For pseudo-random access, the assignment algorithm runs
about 19% faster in LISP than in C. For pixel addition and
multiplication, the performance gap hardly reaches 5%, and is
sometimes in favor of LISP, sometimes in favor of C. So the
differences are completely insignificant.

¢ The only exception to that is the case of integer division where
C is significantly faster, but notice however that even without
knowledge of the constant integer division optimization, SBCL
manages to lose only by 17%.

The linear case also teaches us several things:

e ACL is noticeably slower than both CMU-CL and SBCL: it runs
between 1.4 and 2.2 times slower than its competitors. The case
of division is less pronounced though.

e C code gives performances strictly equivalent to that of CMU-
CL or SBCL, with the exception of division.

e In that case, it clearly wins with integers (because of the op-
timization already mentioned), but lose by 10% with floating
point images.

Similar charts were made for small images, fitting entirely into
the cache, and are of similar shape, so they are not presented
here. The only different behavior they exhibit is that of ACL for
which the performances are even poorer, especially in the linear
case. This suggests that apart maybe from ACL, low-level hardware
optimization has globally the same impact on L1SP and C code. In
other words, the aspects of locality (both of instructions and data)
are topologically very close.

6. Conclusion

In this paper, we described an ongoing research on the behavior
and performance of LISP in the context of scientific numerical
computing. We tested a few simple image processing algorithms
both in C and LiSP, and also took the opportunity to examine
three different L1SP compilers. With this study, we demonstrated
the following points:

e With respect to parameters external to the languages, such as
hardware optimization via caching, the behavior of equivalent
L1sp and C code is globally the same. This is comforting for
people considering switching language, because they should

not be expecting any unpredictable behavior from anything else
than language transition.

With respect to parameters internal to the languages, we saw
that there can be surprising differences in behavior between C
and Lisp. For instance, we showed that plain 2D array repre-
sentations behave quite differently (slow in LISP), and that per-
formance can depend on the data type in LISP (which does not
happen in C). However, as soon as optimization is at work, and
is the main goal, those differences vanish: we are led to choose
equivalent data structures (namely 1D (simple) arrays), and re-
gain homogeneity on the treatment of different data types. This
is also comforting for considering language transition.

Since [Fateman et al.| (1995); Reid (1996), considerable work
has been done in the L1SP compilers in the fields of efficient nu-
merical computation and data structures, to the point that equiv-
alent L1SP and C code entails strictly equivalent performance,
or even better performance in LISP sometimes. This should fi-
nally help getting C or C++ people’s attention.

We should also emphasize on the fact that these performance
results are obtained without intimate knowledge of either the
languages or the compilers: only standard and / or portable
optimization settings were used.

To be fair, we should mention that with such simple algorithms
as the ones we tested, we are comparing compilers performance
as well as languages performance, but compiler performance is a
critical part of the production chain anyway. Moreover, to be even
fairer, we should also mention that when we speak of “equivalent
C and LISP” code, this is actually quite inaccurate. For instance,
we are comparing a language construct (for) with a programmer
macro (dotimes); we are comparing sealed function calls in C with
calls to functions that may be dynamically redefined in LISP erfc..
This means that it is actually impossible to compare exclusively
either language, or compiler performance. This also means that
given the inherent expressiveness of LISP, compilers have to be
even smarter to reach the efficiency level of C, and this is really
good news for the LISP community.

Lisp still has some weaknesses though. As we saw in sec-
tion [.2] on page [f] it is not completely trivial to type LISP code
both correctly and minimally (without cluttering the code), and a
fortiori portably. Compilers may behave very differently with re-
spect to type declarations, may provide type inference systems of
various quality, and who knows which more or less advertised op-
timization flag of their own (this happens also in C however). The
yet-to-be-explained problem we faced with ACL’s row-major ac-
cess is the perfect example. Maybe the COMMON-LISP standard
leaves too much freedom to the compilers in this area.

Another current weakness of LISP compilers seems to be inlin-
ing technology. ACL simply does not support user function inlining
yet. The poor performance of CMU-CL in this area seems to indi-
cate that inlining defeats its register allocation strategy. It is also
regrettable that none of the tested compilers are aware of the in-
teger constant division optimization brought to light with C, and
from which inlining makes a big difference.

7. Perspectives

The perspectives of this work are numerous. We would like to
emphasize on the ones we think are the most important.

7.1 Further Investigation

The research described in this paper is still ongoing. In particular,
we have outlined several currently unexplained behaviors with re-
spect to typing, performance, or optimization of such or such LISP

compiler. These oddities should be further analyzed, as they prob-
ably would reveal room for improvement in the compilers.

7.2 Vertical Complexity

Benchmarking these very simple algorithms was necessary to iso-
late the parameters we wanted to test (namely pixel access and
arithmetic operations). These algorithms can actually be consid-
ered as the kernel of a special class of image processing ones called
“point-wise algorithms”, involving pixels one by one. It is likely
that our study will remain relevant for all algorithms in this class,
but nevertheless, the same experiments should be conducted on
more complex point-wise treatments, involving more local vari-
ables, function calls efc. for instance in order to spot potential
weaknesses in the register allocation policies of LISP compilers,
as the inlining problem tends to suggest, or in order to evaluate the
cost of function calls.

This is also the place where it would be interesting to measure
the impact of compiler-specific optimization capabilities, including
architecture-aware ones like the presence of SIMD (Single Instruc-
tion, Multiple Data) instruction sets. One should note however that
this leads to comparing compilers more than languages, and that
the performance gain from such optimizations would be very de-
pendant on the algorithms under experimentation (thus, it would be
difficult to draw a general conclusion).

7.3 Horizontal complexity

Besides point-wise algorithms, there are two other important algo-
rithm classes in image processing: algorithms working with “neigh-
borhoods” (requiring several pixels at once) and algorithms like
front-propagation ones where treatments may begin at several ran-
dom places in the image. Because of their very different nature in
pixel access patterns, it is very likely that their behavior would be
quite different from what we discussed in this paper, so it would be
interesting to examine them too.

Also, because of their inherent complexity, this is where the dif-
ferences in language expressiveness would be taken into account,
and in particular where it would become important to include GC
timings in the comparative tests, because it is part of the language
design (not to mention the fact that different compilers use different
GC techniques which adds even more parameters to compare).

7.4 Benchmarking other compilers / architectures

The benchmarks presented in this paper were obtained on a spe-
cific platform, with specific compilers. It would be interesting to
measure the behavior and performance of the same code on other
platforms, and also with other compilers. The automated bench-
marking infrastructure provided in the source code should make
this process easier for people willing to do so.

7.5 From dedication to genericity

Benchmarking low-level, fully dedicated code was the first step in
order to get C or C++ people’s attention. However, most image
treaters want some degree of genericity: genericity on the image
types (RGB, Gray level etc.), image representation (integers, un-
signed, floats, 16bits, 32bits efc.), and why not on the algorithms
themselves. To this aim, the object oriented approach is a natu-
ral way to go. Image processing libraries with a variable degree
of genericity exist both in C++ and in LISP, using CLOS (Keene,
1989) . As a next step of our research, a study on the cost of dy-
namic genericity in the same context as that of this paper is at work
already. However, given the great flexibility and expressiveness of
CLOs that C++ people might not even feel the need for (classes
can be redefined on the fly, the dispatch mechanism is customiz-
able ezc.), the results are not expected to be in favor of LISP this
time.

7.6 From dynamic to static genericity

Even in the C++ community, some people feel that the cost of dy-
namic genericity is too high. Provided with enough expertise on
the template system and on meta-programming, it is now possible
to write image processing algorithms in an object oriented fashion,
but in such a way that all generic dispatches are resolved at compile
time (Burrus et al.} 2003). Reaching this level of expressiveness in
C++ is a very costly task, however, because template programming
is cumbersome (awkward syntax, obfuscated compiler error mes-
sages etc.). There, the situation is expected to turn dramatically in
favor of LISP. Indeed, given the power of the LISP macro system
(the whole language is available in macros), the ability to generate
function code and compile it on-the-fly, we should be able to auto-
matically produce dedicated hence optimal code in a much easier
way. There, the level of expressiveness of each language becomes
of a capital importance.

Finally, it should be noted that one important aspect of static
generic programming is that the cost of abstraction resides in the
compilation process; not in the execution anymore. In other words,
it will be interesting to compare the performances of LISP and C++
not in terms of execution times, but compilation times.

7.7 From Image Processing to ...

In this paper we put ourselves in the context of image processing
to provide a concrete background to the tests. However, one should
note that the performance results we got do not reduce to this appli-
cation domain in particular. Any kind of application which involves
numerical processing on large sets of contiguous data might be in-
terested to know that LISP has caught up with performance.

Acknowledgments

The author would like to thank Jérome Darbon, Nicolas Pier-
ron, Sylvain Peyronnet, Thierry Géraud and many people on
comp.lang.lisp and some compiler-specific mailing lists for
their help or insight.

References

(2002). Horus User Guide. University of Amsterdam, The Nether-
lands.

Anderson, K. R. and Rettig, D. (1994). Performing LISP:
Analysis of the fannkuch benchmark. ACM SIGPLAN
Lisp Pointers, VII(4):2-12. Downloadable version
at http://www.apl.jhu.edu/"hall/text/Papers/
Lisp-Benchmarking-and-Fannkuch.ps.

Boreczky, J. and Rowe, L. A. (1994). Building COMMON-
Lisp applications with reasonable performance. http:
//bmrc.berkeley.edu/research/publications/1993/
125/Lisp.html.

Burrus, N., Duret-Lutz, A., Géraud, T., Lesage, D., and Poss, R.
(2003). A static C++ object-oriented programming (SCOOP)
paradigm mixing benefits of traditional OOP and generic pro-
gramming. In Proceedings of the Workshop on Multiple
Paradigm with OO Languages (MPOOL), Anaheim, CA, USA.

d’Ornellas, M. (2001). Algorithmic Pattern for Morphological
Image Processing. PhD thesis, University of Amsterdam.

Duret-Lutz, A. (2000). Olena: a component-based platform for
image processing, mixing generic, generative and OO, pro-
gramming. In Proceedings of the 2nd International Sym-
posium on Generative and Component-Based Software En-
gineering (GCSE)—-Young Researchers Workshop; published
in “Net.ObjectDays2000”, pages 653-659, Erfurt, Germany.
http://olena.lrde.epita.fr.

Fateman, R. J., Broughan, K. A., Willcock, D. K., and Rettig, D.
(1995). Fast floating-point processing in COMMON-LISP. ACM
Transactions on Mathematical Software, 21(1):26—62. Down-
loadable version at http://openmap.bbn.com/ “kanderso/
performance/postscript/lispfloat.ps.

Fischbacher, T. (2003). Making LiSP fast. http://wuw.cip.
physik.uni-muenchen.de/~tf/lambda/aei/lisp.html,

Froment, J. (2000). MegaWave2 System Library. CMLA, Ecole
Normale Supérieure de Cachan, Cachan, France. http://www.
cmla.ens-cachan.fr/Cmla/Megawave,

Gabriel, R. P. (1985). Performance and Evaluation of LISP Sys-
tems. MIT Press.

Ibanez, L., Schroeder, W., Ng, L., and Cates, J. (2003). The
ITK Software Guide: The Insight Segmentation and Registration
Toolkit. Kitware Inc. http://wuw.itk.org.

Keene, S. E. (1989). Object-Oriented Programming in COMMON-
LISP: a Programmer’s Guide to CLOS. Addison-Wesley.

Lesage, D., Darbon, J., and Akgul, C. B. (2006). An efficient al-
gorithm for connected attribute thinnings and thickenings. In
Proceedings of the International Conference on Pattern Recog-
nition, Hong-Kong, China.

MacLachlan, R. A. (1992). The python compiler for CMU-CL. In
ACM Conference on LISP and Functional Programming, pages
235-246. Downloadable version at http://www-2.cs.cmu.
edu/~ram/pub/1fp.ps,

Neuss, N. (2003). On using COMMON-LISP for scientific com-
puting. In CISC Conference, LNCSE. Springer-Verlag. Down-
loadable version at http://wuw.iwr.uni-heidelberg.de/
groups/techsim/people/neuss/publications.html|

Quam, L. H. (2005). Performance beyond expectations. In of LISP
Users, T. A, editor, International L1SP Conference, pages 305—
315, Stanford University, Stanford, CA. The Association of LISP
Users. Downloadable version at http://www.ai.sri.com/
~quam/Public/papers/ILC2005/.

Reid, J. (1996). Remark on “fast floating-point processing in
COMMON-LISP”. In ACM Transactions on Mathematical Soft-
ware, volume 22, pages 496-497. ACM Press.

Steele, G. L. (1990). COMMON-LISP the Language, 2nd edition.
Digital Press. Online and downloadable version at http://
www.cs.cmu.edu/Groups/AI/html/cltl/c1t12.html.

Warren, H. S. (2002). Hacker’s Delight. Addison Wesley Profes-
sional. http://www.hackersdelight.org,

http://www.apl.jhu.edu/~hall/text/Papers/Lisp-Benchmarking-and-Fannkuch.ps
http://www.apl.jhu.edu/~hall/text/Papers/Lisp-Benchmarking-and-Fannkuch.ps
http://bmrc.berkeley.edu/research/publications/1993/125/Lisp.html
http://bmrc.berkeley.edu/research/publications/1993/125/Lisp.html
http://bmrc.berkeley.edu/research/publications/1993/125/Lisp.html
http://olena.lrde.epita.fr
http://openmap.bbn.com/~kanderso/performance/postscript/lispfloat.ps
http://openmap.bbn.com/~kanderso/performance/postscript/lispfloat.ps
http://www.cip.physik.uni-muenchen.de/~tf/lambda/aei/lisp.html
http://www.cip.physik.uni-muenchen.de/~tf/lambda/aei/lisp.html
http://www.cmla.ens-cachan.fr/Cmla/Megawave
http://www.cmla.ens-cachan.fr/Cmla/Megawave
http://www.itk.org
http://www-2.cs.cmu.edu/~ram/pub/lfp.ps
http://www-2.cs.cmu.edu/~ram/pub/lfp.ps
http://www.iwr.uni-heidelberg.de/groups/techsim/people/neuss/publications.html
http://www.iwr.uni-heidelberg.de/groups/techsim/people/neuss/publications.html
http://www.ai.sri.com/~quam/Public/papers/ILC2005/
http://www.ai.sri.com/~quam/Public/papers/ILC2005/
http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
http://www.hackersdelight.org

	Introduction
	Experimental Conditions
	The Protocol
	Note on array types
	Note on access types

	C Programs and Benchmarks
	Array types
	The Assignment algorithm
	Access Types
	Optimization levels

	Addition and Multiplication
	Division
	Caching

	Lisp Programs and Benchmarks
	Experimental Conditions
	Lisp code tuning
	Array types
	The Assignment Algorithm
	Lisp Compilers
	Access Types
	Optimization levels

	Other Algorithms
	Caching

	Final Comparative Performance
	Conclusion
	Perspectives
	Further Investigation
	Vertical Complexity
	Horizontal complexity
	Benchmarking other compilers / architectures
	From dedication to genericity
	From dynamic to static genericity
	From Image Processing to …

