Clos solutions to binary methods

Didier Verna*

Abstract—Implementing binary methods in tradi-
tional object-oriented languages is difficult: numerous
problems arise, such as typing (covariance vs. contra-
variance of the arguments), polymorphism on multi-
ple arguments (lack of multi-methods) etc. The pur-
pose of this paper is to demonstrate how those prob-
lems are either solved, or nonexistent in the Com-
mon Lisp Object System (Clos). Several solutions
for implementing binary methods in Clos are pro-
posed. They mainly consist in re-programming a bi-
nary method specific object system through the Clos
meta-object protocol (mop).

Keywords: Binary methods,
Meta-Object Protocol

Common Lisp, Clos,

1 Introduction

Binary operations work on two arguments of the same
type (regardless of the return type). Common examples
include arithmetic operations (=, 4+, — etc.) and order-
ing relations (=, <, > etc.). In the context of object-
oriented programming, it is often desirable to implement
binary operations as methods applying to two objects of
the same class in order to benefit from polymorphism.
Such methods are hence called binary methods .

However, implementing binary methods in many tradi-
tional object-oriented languages is a difficult task, most
of the difficulty having to do with the relationship be-
tween types and classes in the context of inheritance. In
this paper, we approach the concept of binary method
from the object-oriented perspective of Common Lisp.

In section [2| we present a vain attempt in C++, explain
why it is actually not possible to implement binary meth-
ods in such a language, and why the issue does not exist
in Common Lisp. Section [3| refines the initial Common
Lisp implementation by presenting a first customization
feature of CLOS. In section [4) we delve a bit more into
CLOs and present ways to make sure that binary meth-
ods are used properly. In section [5] we delve even more
into the CLOS MOP and present ways to make sure that
binary methods are defined properly.

Throughout this paper, only simplified code excerpts are
presented, for the sake of conciseness and clarity. How-

14-16 rue
Email: di-

*EPITA Research and Development Laboratory,
Voltaire, F-94276 Le Kremlin-Bictre, France.
dier@Irde.epita.fr

ever, fully functional Common Lisp code is available for
download at the author’s website’.

2 Types, classes, inheritance

In this section, we describe the major problem of binary
methods in a traditional object-oriented context: mix-
ing types and classes with an inheritance scheme[3]. We
also explain why this problem simply does not exist in
Common Lisp [I, B]. In order to illustrate our matter,
we take the same example as used by [3], and provide
excerpts from a sample implementation in C++ [2].

2.1 A C++ implementation attempt

Consider a Point class representing 2D points from an
image, equipped with an equality operation. A sample
implementation is given in listing [I] (details omitted).

class Point

{

int x, y;

bool equal (Point& p)
{ return x = p.x & y = p.y; }

3

Listing 1: Excerpt from the Point class

Now, consider a ColorPoint class representing a Point
associated with a color. A natural implementation would
be to inherit from the Point class, as shown in listing
(details omitted).

class ColorPoint
public Point
{

std::string color;

bool equal (ColorPoint& cp)

return color == cp.color
&& Point ::equal (cp);

Listing 2: Excerpt from the ColorPoint class

Unfortunately, this implementation doesn’t work: if
you happen to manipulate objects of class ColorPoint
through pointers to Point (which is perfectly legal by
definition of inheritance), only definition for equal from
the base class will be seen. That is because the definition

Thttp://www.lrde.epita.fr/~didier/

mailto:didier@lrde.epita.fr
mailto:didier@lrde.epita.fr
http://www.lrde.epita.fr/~didier/

in the derived class simply overloads the one in the base
class.

What is actually needed is that the definition pertaining
to the exact class of the object be used. This is, in the
C++ jargon, exactly what wvirtual methods are for. A
proper implementation would then be to make the equal
method virtual, as shown in listing

// In the Point class:
virtual bool equal (Point& p)
{ return x = p.x & y = p.y; }

/o

// In the ColorPoint class:
virtual bool equal (ColorPoint& cp)

{

return color == cp.color
&& Point :: equal (cp);

Listing 3: The equal virtual method

Unfortunately again, this implementation doesn’t behave
as expected. Indeed, C++ does not allow the arguments
of a virtual method to change type in this fashion, be-
cause this would break typing.

2.2 The typing problem

Here, we describe informally the problem that we face
when typing binary methods in presence of inheritance.
For a more theoretical description, see [3].

When subclassing the Point class, we expect to get a
subtype of it: any object of type ColorPoint can be seen
as an object of type Point, and thus used where a Point
is expected. This has the implication that our equal
method must also satisfy a subtyping relationship across
the hierarchy. So we must understand the semantics of
subtyping for functions: if we are to allow the use of
ColorPoint::equal where Point::equal is expected what
are the implications ?

The most important one is that we are then likely to
give a real Point object (which would not be an actual
ColorPoint one) to the method. In other words, Color-
Point::equal cannot assume to get anything more specific
than a Point object, and in particular, not a ColorPoint
one. This is precisely the opposite of what we are trying
to achieve.

We see that in order to maintain static type safety, the
arguments of a polymorphic method must be contravari-
ant[d]: subtyping a function implies supertyping the ar-
guments. C++ actually imposes an even stronger con-
straint: the arguments of a virtual method must be in-
variant. Other languages such as Eiffel[7] allow the argu-
ments to behave in a covariant[4] manner; however, this
leads to executable code that may trigger typing errors
at runtime.

Things are getting even worse in C++ since the sam-
ple implementation presented in listing [3]is actually valid
C++ code. However, the contravariance constraint be-
ing unsatisfied, the behavior is that of overloading (not
polymorphism), regardless of the presence of the virtual
keyword, which can be very confusing.

2.3 A non-issue in Common Lisp

We saw that because of static type safety constraints, it
is not possible to implement binary methods in C++. In
CLos, the Common Lisp Object System[5] however, the
issue simply does not exist. The crucial point here is that
the object model for polymorphism in CLOS is quite dif-
ferent from that of traditional object-oriented languages
such as C++.

In C++, methods belong to classes. The polymorphic
dispatch depends on one parameter only: the object
through which the method is called (represented by the
“hidden” pointer this in C++; sometimes referred to as
self in other languages).

In CLoOSs, on the other hand, methods do not belong to
classes (classes merely contain only data): calls to meth-
ods appear like ordinary function calls. The support for
polymorphism is implemented with what is called multi-
methods (in the CLOS jargon: generic functions). A
generic function looks like an ordinary one, except for
the fact that the actual body to be executed is dynami-
cally selected according to the type of one or more of the
function’s arguments. A generic function can provide a
default implementation, and can be specialized by writ-
ing methods on it (the meaning of which is quite different
from that of a C++ method).

In order to clarify this, listing [4] provides a sample imple-
mentation of the Point hierarchy in Common Lisp.

(defclass point ()
((x :initarg :x
(y :initarg :y

:reader point—x)
:reader point—y)))

(defclass color—point (point)
((color :initarg :color :reader point—color)))

(defgeneric point= (a b))

(defmethod point= ((a point) (b point))
(and (= (point—x a) (point—x b))
(= (point—y a) (point—y b))))

(defmethod point= ((a color—point) (b color—point))
(and (string= (point—color a) (point—color b))
(call—next—method)))

Listing 4: The Point hierarchy in Common Lisp

As you can see, a point class is defined, but only with
data members (called slots in the CrLOS jargon) and
names for their accessors. The color-point class is then
defined to inherit from point and adds a color slot.

And now comes the interesting part: the generic func-
tion point= is defined by a call to defgeneric. This call
is actually optional, but you may provide a default be-
havior here. Two specializations of the generic function
are subsequently provided by calls to defmethod. As you
can see, a special argument syntax lets you precise the ex-
pected class of the arguments: we provide a method to be
used when both arguments are of class point, and one to
be used when both arguments are of class color-point.

Now, for testing equality between two points, one simply
calls the generic function as an ordinary one: (point=
pl p2). According to the exact classes of the objects,
the proper method (in other words function body) is se-
lected and executed automatically. It is worth noting that
in the case of CLOS, the polymorphic dispatch (the ac-
tual method selection) depends on the class of both argu-
ments to the generic function. In other words, a multiple
dispatch is used, whereas in traditional object-oriented
languages where methods belong to classes, the dispatch
occurs only on the first argument. That is the reason for
the name “multi-method”.

2.4 Corollary

It should now be clear why the use of multi-methods
makes the problem with binary methods a non-issue in
Common Lisp. Binary methods can be defined just as
easily as any other kind of polymorphic function. There
is also another advantage that, while being marginal, is
still worth mentioning: with binary methods, objects are
usually treated equally, so there is no reason to priv-
ilege one of them. For instance, in C+4++, should we
call pl.equal(p2) or p2.equal(pl) 7 It is more pleas-
ant aesthetically, and more conformant to the concept to
write (point= pl p2).

In the remainder of this paper, we will gradually improve
our support for the concept of binary methods thanks
to the expressiveness of CLOS and the flexibility of the
Cros mop. For the sake of coherence, we will speak of
“binary functions” instead of “binary methods” when in
the context of Common Lisp.

3 Method combinations

In listing |4} the reader may have noticed an unexplained
call to (call-next-method) in the color-point method
of point=, and may have guessed that it is used to exe-
cute the previous one (hence completing the equality test
by comparing point coordinates).

3.1 Applicable methods

In order to avoid code duplication in the C+4 code
(listing 7 we used a call to Point::equal in order to
complete the equality test by calling the method from
the super-class. In CLOS, things happen somewhat dif-

ferently. Given a generic function call, more than one
method might correspond to the classes of the arguments.
These methods are called the applicable methods. In our
example, when calling point= with two color-point ob-
jects, both our specializations are applicable, because a
color-point object can be seen as a point one.

When a generic function is called, CLOS computes the list
of applicable methods and sorts it from the most to the
least specific one. We are not going to describe precisely
what “specific” means in this context; suffice to say that
specificity is a measure of proximity between the classes
on which a method specializes and the exact classes of
the arguments.

Within the body of a generic function method in CLOS,
a call to (call-next-method) triggers the execution of
the next most specific applicable method. In our exam-
ple, the semantics of this should now be clear: when call-
ing point= with two color-point objects, the most spe-
cific method is the second one, which specializes on the
color-point class, and (call-next-method) within it
triggers the execution of the other, hence completing the
equality test.

3.2 Method combinations

An interesting feature of CLOS is that, contrary to most
other object-oriented languages where only one method
is applied (this is also the default behavior in CLOS), it
is possible to use all the applicable methods to form the
global execution of the generic function (note that CLos
knows the sorted list of all applicable methods anyway).

This concept is known as method combinations: a method
combination is a way to combine the results of all appli-
cable methods in order to form the result of the generic
function call itself. CLOS provides several predefined
method combinations, as well as the possibility for the
programmers to define their own.

In our example, one particular (predefined, as a matter of
fact) method combination is of interest to us: our equality
concept is actually defined as the logical and of all local
equalities in each class. Indeed, two color-point objects
are equal if their color-point-specific parts are equal
and if their point-specific parts are also equal.

This can be directly implemented by using the and
method combination, as shown in listing [5}

As you can see, the call to defgeneric is modified in
order to specify the method combination we want to use,
and both calls to defmethod are modified accordingly.
The advantage of this new scheme is that each method
can now concentrate on the local behavior only: note
that there is no more call to (call-next-method), as
the logical and combination is performed automatically.
This also has the advantage of preventing possible bugs

(defgeneric point= (a b)
(: method—combination and))

(defmethod point= and
((a point) (b point))
(and (= (point—x a) (point—x b))
(= (point—y a) (point—y b))))

(defmethod point= and
((a color—point) (b color—point))
(string= (point—color a) (point—color b)))

Listing 5: The and method combination

resulting from an unintentional omission of this very same
call.

It is important to realize that what we have done here
is actually modify the semantics of the dynamic dispatch
mechanism. While most other object-oriented languages
offer one single, hard-wired dispatch procedure, CLOS lets
you (re)program it.

4 Enforcing a correct usage of binary
functions

In this section, we start enforcing the concept of binary
function by addressing another problem from our previ-
ous implementation. Our equality concept requires that
only two objects of the same exact class be compared.
However, nothing prevents a program from comparing a
color-point with a point for instance. Worse, such a
comparison would be perfectly valid code and would go
unnoticed, because the first method (specialized on the
point class) applies.

4.1 Introspection in Clos

We can solve this problem by using the introspection ca-
pabilities of CLOS: it is possible to retrieve the class of
a particular object at run-time (just as it is possible to
retrieve the type of any Lisp object). Consequently, it is
very simple to check that two objects have the same exact
class, an trigger an error otherwise. Listing [6] shows the
use of the function class-of to retrieve the exact class
of an object, in order to perform such a check.

(unless (eq (class—of a) (class—of b))
(error ”Objects_not_of_the_same_class.”))

Listing 6: Introspection example in CLOS

In order to avoid code duplication, we can simply perform
this check in the basic specialization of point=, since
we know that this method will be used for any of its
subclasses. One drawback of this approach is that since
this method is always called last, it is a bit unsatisfactory
to perform the check in the end, after all more specific
methods have been applied.

Another solution would be to perform the check inside

a “before-method” (see section [£.3)), but before-methods
are not available with the and method combination type.
In order to really fix this problem, we would then have to
write our own method combination type. This possible
workaround will not be described here, because there is
a better solution to this problem, explained in the next
section.

4.2 A meta-class for binary functions

There is something conceptually wrong with the solutions
proposed or suggested in the previous section: the fact
that it makes no sense to compare objects of different
classes belongs to the concept of binary function, not to
the point= operation. In other words, if we ever add
a new binary function to the point hierarchy, we don’t
want do duplicate the code from listing [f] yet again.

What we really need is to be able to express the concept
of binary function directly. A binary function is a generic
function with a special, constrained behavior (taking only
two arguments of the same class). In other words, it is a
specialization of the general concept of generic function.
This strongly suggests an object-oriented model, in which
binary functions are subclasses of generic functions. This
model happens to be accessible if we delve a bit more into
the CLOS internals.

CLos itself is written on top of a Meta Object Proto-
col, simply known as the Cros mop [§ [6]. Although
not part of the ANSI specification, the CLOS MOP is
a de facto standard well supported by many Common
Lisp implementations, in which CLOS elements are them-
selves modeled in an object-oriented fashion (one begins
to perceive here the reflexive nature of CLOS): for in-
stance, a call to defgeneric creates a CLOS object of
class standard-generic-function. We are hence able
to implement binary functions by subclassing standard
generic functions, as shown in listing [7]

(defclass binary—function
(standard—generic—function)

(: metaclass funcallable—standard—class))

(defmacro defbinary
(function—name lambda—list &rest options)
‘(defgeneric ,function—name ,lambda—list
(:generic—function—class binary—function)
,@options))

Listing 7: The binary function class

Without going into too many details, remember that a
call to defclass actually creates a (meta-)object of some
(meta-)class. Since instances of class binary-function
are meant to be called as functions, it is required to pre-
cise that the binary function class meta-object is an
instance of a funcallable meta-class. This is done through
the :metaclass option.

The next step is to make sure that generic func-
tions are instantiated from the correct class. (here,
binary-function). This is done by passing a
:generic-function-class argument to defgeneric.
With a few lines of macrology, we make this process eas-
ier by providing a defbinary macro to be used instead
defgeneric.

4.3 Back to introspection

Now that we have an explicit implementation of the
binary function concept, let us get back to our original
problem: how and when can we check that only points
of the same class are compared 7 As seen before, when
a generic function is called, CLOS must compute the
sorted list of applicable methods for this particular
call. In most cases, this can be figured out from the
classes of the arguments to the generic call. The CLOS
MOP implements this by calling a generic function
called compute-applicable-methods-using-classes
(c-a-m-u-c for short). This function takes the concerned
generic function meta-object as first argument, and the
list of classes derived from the call as the second one.
It is thus possible to specialize its behavior for binary
functions, as demonstrated in listing

(defmethod compute—applicable—methods—using—classes
:before ((bf binary—function) classes)
(assert (equal (car classes) (cadr classes))))

Listing 8: Back to introspection

Here, we introduce a new kind of method from CLOS.
The methods we have seen so far are actually called pri-
mary methods. They resemble methods from traditional
object-oriented languages such as C++. CLOS also pro-
vides other kinds of methods, mainly used for side-effects,
such as before-methods. As there name suggests, these
methods are executed before the primary ones. Listing
show a specialization of c-a-m-u-c for binary functions
as a before-method. The result is that the standard pri-
mary method is used, just as for general generic functions,
but in addition, and beforehand, our introspective check
is performed. This effectively removes the need to per-
form this check in the binary methods themselves, which
is much cleaner at the conceptual level.

5 Enforcing a correct implementation of
binary functions

In the previous section, we have seen how to make sure
that binary functions are used as intended to, and we
have made that part of the their implementation. In this
section, we show how to make sure that binary functions
are implemented as intended to. This is an occasion to
delve even deeper into the CLOS MOP.

5.1 Properly defined methods

Just as it makes no sense to compare points of different
classes, it makes even less sense to implement methods
to do so. The CLOS MOP is expressive enough to make it
possible to implement this constraint directly.

When a call to defmethod is issued, CLOS must regis-
ter this new method into the concerned generic function.
This is done in the MOP through a call to add-method
which takes the generic function and the method as ar-
guments. add-method is itself a generic function, which
means that we can specialize it for our binary functions.
This is demonstrated in listing [9]

(defmethod add—method :before
((bf binary—function) method)
(assert (apply #’equal
(method—specializers method))))

Listing 9: Binary method definition check

We want to preserve the behavior of standard generic
functions, so we let the primary method alone. However,
before it is actually executed, we check that the special-
ization is correct: the function method-specializers
returns the list of argument specializations from the
method’s prototype. In our examples, that would be
(point point) or (color-point color-point), so all
we have to do is check that the members of this list are
actually equal.

5.2 Strong binary functions

One might realize that our point= concept is not yet
completely enforced, if for instance, the programmer for-
gets to implement the color-point specialization: when
comparing to points at the same coordinates but with
different colors, only the coordinates would be checked
and the test would silently yet mistakenly succeed.

It would be an interesting safety measure to ensure that
for each defined subclass of the point class, there is also
a corresponding specialization of the point= function (we
call that a strong binary function), and it should be no
surprise that the CLOS MOP lets you do just that. In order
to sacrifice to the “fully dynamic” tradition of Lisp, we
want to perform this check at the latest possible stage:
this will avoid the need for block compilation, let the
program be executable even if not completed yet etc.

The latest possible stage to perform our consistency
check is actually when the binary function is called,
and we already have seen how this works: the function
c-a-m-u-c is used to sort out the list of applicable meth-
ods. This is precisely the data on which we have to intro-
spect, so we can specialize on the primary method this
time, and retrieve the list in question simply by calling
call-next-method.

Our test involves two different things: first we have to as-
sert that there exists a specialization for the exact classes
of the objects we are comparing. This is demonstrated in
listing[I0} we retrieve the specializers for the first method
in the list (the most specific one) and compare that with
the classes of the arguments given in the binary function
call.

(let* ((method (car methods))
(class (car (method—specializers method))))
(assert (equal (list class class) classes))

bl

Listing 10: Strong binary function check n.1

Next, we have to check that the whole super-hierarchy has
properly specialized methods (none were forgotten). This
is demonstrated in listing [L1] which defines a temporary
recursive function that we start by applying on the class
of the objects passed to the binary function call.

(labels ((find—binary—method (class)
(find—method bf (method—qualifiers method)
(list class class))
(dolist

(cls (remove—if

#’(lambda (elt)
(eq elt (find-—class
’standard—object)))
(class—direct—superclasses class)))
(find—binary —method cls))))
(find—binary—method class))

Listing 11: Strong binary function check n.2

The function find-method retrieves a method meta-
object for a particular generic function satisfying a set
of qualifiers and a set of specializers. In our case, there
is one qualifier: the and method combination type (that
can be retrieved by the function method-qualifiers),
and the specializers are twice the class of the objects.

Once we have made sure this method exists, we must per-
form the same check on the whole super-hierarchy (the
bottommost, standard class excepted). As its name sug-
gests, the function class-direct-superclasses returns
a list of direct superclasses for some class. We can then
recursively call our test function on this list.

By hooking the code excerpts from listings [I0] and
into a specialization of c-a-m-u-c for binary functions,
we have completed our check for the “strong” property.

6 Conclusion

In this paper we have approached the concept of binary
method which is quite problematic in traditional object-
oriented languages. We have seen that because of con-
flicts between types and classes in the presence of inher-
itance, this concept is not implementable in languages
such as C++. We also have demonstrated that support

for multi-methods renders the problem nonexistent, as in
the case of the Common Lisp Object System. By taking
advantage of the introspective capabilities of CLOS, and
the expressiveness of the CLOS MOP, we have shown that
more than just implementing mere binary methods, it is
possible to enforce a correct usage of them, and even a
correct implementation of them.

Please note that we do not claim that enforcing such or
such behavior is necessarily a good thing. As a matter of
fact, it rather goes against the usual liberal philosophy
of Lisp in which the programmer is allowed to do any-
thing (including writing bugs). Rather, our point was to
demonstrate that your freedom extends to being able to
implement a rigid or even dictatorial (but maybe safer)
concept if you wish to do so.

It is also important to realize that we have not just made
the concept of binary methods available; we have imple-
mented it directly and explicitly. To this aim, we have
actually programmed a new object system which behaves
quite differently from the default CrLos. CLos, along
with its MOP, is not only an object system. It is an ob-
ject system designed to let you program your own object
systems.

Acknowledgments

The author would like to thank Pascal Costanza for his
insight in the CLOS MOP.

References

[1] American National Standard: Programming Lan-
guage — Common Lisp. ANSI X3.226:1994 (R1999),
1994.

[2] International Standard: Programming Language —
C++. ISO/IEC 14882:1998(E), 1998.

[3] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna,
Jonathan Eifrig, Scott F. Smith, Valery Trifonov,
Gary T. Leavens, and Benjamin C. Pierce. On bi-
nary methods. Theory and Practice of Object Sys-
tems, 1(3):221-242, 1995.

[4] Giuseppe Castagna. Covariance and contravariance:
conflict without a cause. ACM Transactions on
Programming Languages and Systems, 17(3):431-447,
1995.

[5] Sonja E. Keene. Object-Oriented Programming in
Common Lisp: a Programmer’s Guide to CLOS.
Addison-Wesley, 1989.

[6] Gregor J. Kiczales, Jim des Riviéres, and Daniel G.
Bobrow. The Art of the Metaobject Protocol. MIT
Press, Cambridge, MA, 1991.

[7]

8]

Bertrand Meyer. Eiffel: the Language. Prentice Hall,
1992.

Andreas Paepcke. User-level language crafting —
introducing the CLOS metaobject protocol. In
Andreas Paepcke, editor, Object-Oriented Program-
ming: The CLOS Perspective, chapter 3, pages
65-99. MIT Press, 1993. Downloadable ver-
sion at http://infolab.stanford.edu/~paepcke/
shared-documents/mopintro.ps|

Guy L. Steele. Common Lisp the Language, 2nd edi-
tion. Digital Press, 1990. Online and download-
able version at http://www.cs.cmu.edu/Groups/
AI/html/cltl/cltl2.htmll

http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps
http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps
http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html

	Introduction
	Types, classes, inheritance
	A C++ implementation attempt
	The typing problem
	A non-issue in Common Lisp
	Corollary

	Method combinations
	Applicable methods
	Method combinations

	Enforcing a correct usage of binary functions
	Introspection in Clos
	A meta-class for binary functions
	Back to introspection

	Enforcing a correct implementation of binary functions
	Properly defined methods
	Strong binary functions

	Conclusion

