Binary Methods Programming: the Clos Perspective

Didier Verna
(Ep1TA Research and Development Laboratory, Paris, France
didier@lrde.epita.fr)

Abstract: Implementing binary methods in traditional object-oriented languages is
difficult: numerous problems arise regarding the relationship between types and classes
in the context of inheritance, or the need for privileged access to the internal repre-
sentation of objects. Most of these problems occur in the context of statically typed
languages that lack multi-methods (polymorphism on multiple arguments). The pur-
pose of this paper is twofold: first, we show why some of these problems are either
non-issues, or easily solved in Common Lisp. Then, we demonstrate how the Com-
mon Lisp Object System (CLOS) allows us not only to implement binary methods in
a straightforward way, but also to support the concept directly, and even enforce it at
different levels (usage and implementation).

Key Words: Binary methods, Common Lisp, object orientation, meta-programming
Category: D.1.5, D.3.3

1 Introduction

Binary operations work on two arguments of the same type. Common examples
include arithmetic operations (=, +, — etc.) and ordering relations (=, <, >
etc.). In the context of object-oriented programming, it is often desirable to
implement binary operations as methods applied on two objects of the same
class in order to benefit from polymorphism. Such methods are hence called
“binary methods”.

Implementing binary methods in many traditional object-oriented languages
is a difficult task: the relationship between types and classes in the context of
inheritance and the need for privileged access to the internal representation of
objects are the two most prominent problems. In this paper, we approach the
concept of binary method from the perspective of Common Lisp.

The paper is composed of two main parts. In section 2, we show how two
problems mentioned above are either non-issues, or easily solved. In section 3, we
show how to support the concept of binary methods directly into the language,
and demonstrate how to ensure not only a correct usage of it, but also a correct
implementation of it.

2 Binary methods non-issues

In this section, we describe the two major problems with binary methods in a
traditional object-oriented context, as pointed out by [Bruce et al., 1995]: mixing



types and classes within an inheritance scheme, and the need for privileged access
to the internal representation of objects. We show why the former is a non-issue
in Common Lisp, and how the latter can be solved. In order to illustrate our
matter, we take the same examples as used by [Bruce et al., 1995], and provide
excerpts from a sample implementation in C++ for comparison.

2.1 Types, classes, inheritance

Consider a Point class representing 2D points from an image, equipped with an
equality operation. Consider further a ColorPoint class representing a Point
associated with a color. A natural implementation would be to inherit from the
Point class, as shown in listing 1 (C++ version, details omitted).

class Point class ColorPoint : public Point
{ {

int x, y; std::string color;

bool equal (Point& p) bool equal (ColorPoint& cp)

{ return x = p.x & y = p.y; }
}; return color == cp.color

&& Point::equal (cp);
}
s

Listing 1: Excerpt from the Point class

However, this implementation does not behave as expected because what
we have done in the ColorPoint class is simply overload the equal method:
ColorPoint objects manipulated as Point ones will only see the definition for
equal from the base class, as demonstrated in listing 2.

bool foo (Point& pl, Point& p2) ColorPoint pl (1, 2, "red”);
ColorPoint p2 (1, 2, ”"blue”);
// Point::equal is called
return pl.equal (p2); foo (pl, p2); // = true. Wrong!

}

Listing 2: Method overloading

In order to find the proper method definition at run-time in C++, one needs
virtual methods (obtained by simply prefixing the methods declarations in figure
1 with the keyword virtual). Unfortunately, such an implementation doesn’t
behave as expected. Indeed, C++ does not allow the arguments of a virtual



method to change type as in figure 1, because this would not statically type
check.

2.1.1 The static type safety problem

By definition of inheritance, a ColorPoint is a Point, so it should be possible to
use a ColorPoint where a Point is expected. Consider the situation described
in listing 3. The function foo expects two Point arguments, but actually gets a
ColorPoint as the first one. Assuming that the equal method from the ezact
class is called (hence ColorPoint::equal), we see that this method could try
to access the color field in a Point, which does not exist. Therefore, if we want
to preserve static type safety, this code should not compile.

bool foo (Point& cp, Point& p) ColorPoint cp (1, 2,
Point p (1, )

foo (cp, p); // = ?%°?

2, 7red”);
2

return cp.equal (p);

Listing 3: The static type safety problem

In order to prevent this situation from happening, we see that the
ColorPoint: :equal method should not expect to get anything more specific
than a Point object. More precisely, maintaining static type safety in a context
of inheritance implies that polymorphic methods must follow a contravariance
[Castagna, 1995] rule on their arguments: a derived method in a subclass can be
prototyped as accepting arguments of the same class or of a superclass of the
original arguments only.

2.1.2 A non-issue in Common Lisp

In languages such as C++, methods belong to classes and the polymorphic
dispatch depends only on one parameter: the class of the object through which
the method is called. The Common Lisp Object System (CLOS [Keene, 1989]),
on the other hand, differs in two important ways.

1. Firstly, methods do not belong to classes: a polymorphic call appears in
the code like an ordinary function call. Functions the behavior of which are
provided by such methods are called generic functions.

2. Secondly, and more importantly, CLOS supports multi-methods, that is, poly-
morphic dispatch based on any number of arguments, not only the first one
(this in C4+).



(defclass point () (defclass color—point (point)
(Ex :reager point—x%)) ((color :reader point—color)))
y :reader point—y

(defmethod point= (defmethod point=
((a point) (b point)) ((a color—point) (b color—point))
(and (= (point—x a) (point—x b)) (and (string= (point—color a)
(= (point—y a) (point—y b)))) (point—color b))

(call—next—method)))

Listing 4: The Point hierarchy in Common Lisp

In order to clarify this, listing 4 provides a sample implementation of the
Point hierarchy in Common Lisp (details omitted). As you can see, point and
color-point classes are defined with only data members (called slots in the
CLos jargon). Instead of being class members, two methods on the generic
function point= are defined by calls to defmethod. As you can see, a special ar-
gument syntax lets you specify the expected class of each: we provide a method
for comparing two point objects, and one for comparing two color-point ones.
Testing for equality between two points is now simply a matter of calling the
generic function as follows:

(point= pl p2)

According to the ezxact classes of both of the objects, the correct method is
used. The case where the generic function would be called with two arguments
of different classes (for example, point and color-point) will be addressed in
section 3.2.

2.2 Privileged access to objects internals

The second problem exposed by [Bruce et al., 1995] involves more complex sit-
uations in which the need for accessing the objects internals (normally hidden
from public view) is required.

Consider a type IntergerSet, representing sets of integers, with an interface
providing methods such as the following (their purpose should be obvious):

add (i: Integer): Unit
member (i: Integer): Boolean

and also a binary method like the one below:
superSet (a: IntegerSet, b: IntegerSet): Boolean

Consider further that several implementations are available (for instance, for
efficiency reasons), effectively storing the set as a list or array of integers, as a



bitstring or whatever else. While implementing add and member is not an issue
at all, the binary method is problematic. Indeed, this method needs to access
the individual elements of the sets. It is possible to enrich the above interface
with a method returning the sets elements in a single format (for instance, a list),
but the concern expressed by [Bruce et al., 1995] is that it might be preferable to
work directly on the internal representation for efficiency reasons. The conclusion
they draw from this example is twofold:

1. a mechanism is needed for constraining both arguments of the binary method
to be not only of the same type, but also of the same implementation,

2. another mechanism is also needed to allow access to this internal represen-
tation while keeping it hidden from general public view.

2.2.1 Types vs. implementation

It would be slightly abusive to claim that point 1 above is a “non-issue” in
Common Lisp because the question does not arise exactly in the same terms.
When considering constraining both type and implementation to be the same,
the authors are silently assuming that there is (or should be) a clear distinction
between them. As a matter of fact, CLOS does not explicitly provide any such
distinction.

In dynamic languages such as Common Lisp however, we might think of
solutions in which this distinction is intentionally blurred. For instance, we can
define a single integer-set class equipped with a set slot, and let different
instances of this class use different set types (lists, arrays, bitstrings etc.) at
run-time. In such a case, the super-set function need not be generic anymore
(since we have only one class to deal with), but will in turn involve a generic call
to effectively compare sets, once their actual type is known.

Also, note that contrary to the first conclusion drawn by [Bruce et al., 1995],
the multiple dispatch offered by Common Lisp generic functions will allow us to
implement this comparison even for different kinds of sets (however, this cannot
be considered a “binary” operation anymore).

2.2.2 Data encapsulation

The last problem we have to address is the need for accessing the internal rep-
resentation of objects while still following the general principle of information
hiding. The assumption is that in the general case, only the type (or the inter-
face) of an object should be public. Common Lisp itself does not provide any
functionality for data encapsulation, but the package system is perfectly suited
to this task.



Back to our original example (the point class), we now roughly describe
how one would use the package system to perform implementation hiding. Many
important aspects of Common Lisp packages are omitted because our point is
not to describe them thoroughly.

(defpackage :point (in—package :point)
(:use :cl)
(:export :point (defclass point ()
:point—x ((x :reader point—x)
:point—y)) (y :reader point—y)))

Listing 5: The point class package

The right side of listing 5 shows a definition of the point class, which is
no different from the one in listing 4; there is nothing in the class definition
to separate interface from implementation. Only the first line of code is new:
it merely tells Common Lisp that the current package should be a certain one
named point. When Common Lisp encounters, at read-time, a name for a sym-
bol which is not found, it automatically creates the corresponding symbol and
adds it to the current package. In our case, the effect is to add 5 new symbols
into the point package: point, x, y, point-x and point-y. Note that we are
only talking about symbols here. Associated variables or functions do not belong
to packages.

In order to effectively declare what is “public” and “private” in a package,
one has to provide a package definition such as the one depicted on the left
side of listing 5. The :use clause specifies that while in the point package,
all public symbols from the c1 package (the one that provides the Common
Lisp standard) are also directly accessible. Consider that if this clause had been
missing, we could not have accessed the macro definition associated with the
symbol defclass. The :export clause specifies which symbols are public. As
you can see, the class name and the accessors are made so, but the slot names
remain private.

Now, in order to access the public (exported) symbols of the point pack-
age, one has two options. The first one is to use symbol names qualified by the
package name, such as point:point-x. The second option is to :use the pack-
age, in which case all exported symbols become directly accessible, without any
qualification. Hence, the point= method in listing 4 can be used as-is.

As for the question of accessing private information, this is where the surprise
is the most striking for people accustomed to other package systems or infor-
mation hiding mechanisms: any private (not exported) symbol from a package
can be accessed with a double-colon qualified name from anywhere. Thus, one



could access the slot values in the point class at any place in the code using the
symbol names point: :x and point::y.

Accessing a package’s private symbols should be considered bad programming
style, and used with caution because it effectively breaks modularity. But it is
nevertheless easy to do so, and although maybe surprising, is typical of the
Lisp philosophy: be very permissive in the language and put more trust on the
programmer’s skills.

One important design consideration here is that the package system and the
object-oriented layer are completely orthogonal: compare this with languages
such as C++ in which information hiding is done by the object-oriented layer
itself (public, protected and private members). Also, note that no additional
mechanism is needed for privileged access either. One simply uses an additional
colon when one really wants to. Again, compare this with languages such as
C++ in which an additional machinery is needed (friend functions, methods
or classes).

For the record, note that Common Lisp allows for completely hiding symbols
(they are said to be uninterned), but doing that is definitely not the “Lisp way”.

3 Binary methods enforcement

While the previous section demonstrated how straightforward it is to implement
binary methods, there is no explicit support for them in the language. In the re-
mainder of this paper, we gradually add support for the concept itself, thanks to
the expressiveness of CLOS and the flexibility of the CLOS Meta-Object Protocol
(MopP). From now on, we will use the term “binary function” as a shorthand for
“binary generic function”.

3.1 Method combinations

When calling point= with two color-point objects, both of the methods we
defined are applicable because a color-point object can be seen as a point
one. More generally, for each generic function call, several methods might fit the
classes of the arguments. These methods are called “applicable methods”.

When a generic function is called, CLOS computes the list of applicable meth-
ods and sorts it from the most to the least specific one. Within the body of a
method, a call to call-next-method triggers the execution of the next most
specific applicable method. In our example (listing 4), when calling point= with
two color-point objects, the most specific method is the second one, which
specializes on the color-point class, and call-next-method within it triggers
the execution of the other, hence completing the equality test (this is roughly
the equivalent of calling Point: :equal in the C++ version).



An interesting feature of CLOS is that, contrary to other object-oriented
languages where only one method is applied (this is also the default behavior in
CLOS), it is possible to use all, or some of the applicable methods to form the
global execution of the generic function (resulting in what is called an effective
method).

This concept is known as method combination: a way to combine the results
of all or some of the applicable methods in order to form the result of the generic
function call itself. CLOS provides several predefined method combinations, as
well as the possibility for the programmer to define his own.

In our example, one particular (predefined, for that matter) method combi-
nation is of interest to us: our equality concept is actually defined as the logical
and of all local equalities in each class. Indeed, two color-point objects are
equal if their color-point-specific parts are equal and if their point-specific
parts are also equal.

This can be directly implemented by using the and method combination, as
shown in listing 6.

(defgeneric point= (a b) (defmethod point= and
(: method—combination and)) ((a point) (b point))
(and (= (point—x a) (point—x b))
(= (point—y a) (point—y b))))

(defmethod point= and
((a color—point) (b color—point))
(string= (point—color a) (point—color b)))

Listing 6: The and method combination

As you can see, the call to defgeneric (otherwise optional) specifies the
method combination we want to use, and both calls to defmethod are modified
accordingly. The advantage of this new scheme is that each method can now con-
centrate on the local behavior only: there is no more call to (call-next-method),
as the logical and combination is performed automatically. This also has the ad-
vantage of preventing possible bugs resulting from an unintentional omission of
this very same call.

Note that what we have done here is actually modify the semantics of the
dynamic dispatch mechanism. While other object-oriented languages offer one
single, hard-wired, dispatch procedure, CLOS lets you (re)program it.

3.2 Enforcing a correct usage of binary functions

In this section, we start providing explicit support for the concept of binary
function itself by addressing another problem from our previous implementa-



tion. Our equality concept requires that only two objects of the same exact
class be compared. However, nothing prevents one from using the point= binary
function for comparing a color-point with a point for instance. Our current
implementation of point= is unsafe because such a comparison is perfectly valid
code and the error would go unnoticed. Indeed, since a color-point is a point
by definition of inheritance, the first specialization (the one on the point class)
is an applicable method, so the comparison will work, but only check for point
coordinates.

3.2.1 Introspection in Clos

We can solve this problem by using the introspection capabilities of CLOS: it is
possible to retrieve the class of a particular object at run-time. Consequently,
it is also very simple to check that two objects have the same exact class, an
trigger an error otherwise. In listing 7, we show a new implementation of point=
making use of the function class-of to retrieve the exact class of an object, in
order to perform such a check.

(defmethod point= and ((a point) (b point))
(assert (eq (class—of a) (class—of b)))
(and (= (point—x a) (point—x b))

(= (point—y a) (point—y b))))

Listing 7: Introspection example in CLOS

We chose to perform this check only in the least specific method in order to
avoid code duplication, because we know that this method will be used for all
point objects, including instances of subclasses. One drawback of this approach
is that since this method is always called last, it is a bit unsatisfactory to perform
the check in the end, after all more specific methods have been applied, possibly
for nothing.

3.2.2 Before-methods

CLos has a feature perfectly suited to (actually, even designed for) this kind
of problem. The methods we have seen so far are called primary methods. They
resemble methods from traditional object-oriented languages (with the exception
that they can be combined together). CLOS also provides other kinds of methods,
such as before and after-methods. As there name suggests, these methods are
executed before or after the primary ones, and are typically used for side-effects.

Unfortunately, before and after-methods cannot be used with the and method
combination described in section 3.1. Thus, assuming that we are back to the



initial implementation described in listing 4, listing 8 demonstrates how to prop-
erly place the check for class equality. Note the presence of the :before keyword
in the method definition.

(defmethod point= ((a point) (b point)) :before
(assert (eq (class—of a) (class—of b))))

Listing 8: Using before-methods

We want this check to be performed for all point objects, including instances
of subclasses, so this method is specialized only on point, and hence applica-
ble to the whole potential point hierarchy. But note that even when passing
color-point objects to point=, the before-method is executed before the pri-
mary ones, so an occasional usage error is signaled as soon as possible. This
scheme effectively removes the need to perform the check in the first method
itself, which is much cleaner at the conceptual level.

3.2.3 A meta-class for binary functions

There is still something conceptually wrong with the solutions proposed in the
previous sections: the fact that it makes no sense to compare objects of differ-
ent classes belongs to the concept of binary function itself, not to the point=
operation. In other words, if we ever add a new binary function to the point
hierarchy, we don’t want do duplicate the code from listings 7 or 8 yet again.

What we really need is to be able to express the concept of binary function
directly. A binary function is a generic function with a special, constrained
behavior (taking only two arguments of the same class). In other words, it is a
specialization of the general concept of generic function. This strongly suggests
an object-oriented model, in which binary functions are subclasses of generic
functions. This conceptual model happens to be accessible if we delve a bit more
into the CLOS internals.

CLos itself is written on top of a Meta Object Protocol, simply known as the
CLos Mop [Paepcke, 1993, Kiczales et al., 1991], which architects CrLOs itself
in an object-oriented fashion: classes (the result of calling defclass) are CLOS
(meta-)objects, that is, instances of certain (meta-)classes. Similarly, a user-
defined generic function (the result of calling defgeneric) is a CLOS object
of class standard-generic-function. We are hence able to implement binary
functions by subclassing standard generic functions, as shown in listing 9.

The binary-function class is defined as a subclass of
standard-generic-function, and does not provide any additional slot. Since



(defclass binary—function (standard—generic—function)

0

(:metaclass funcallable—standard—class))

(defmacro defbinary (function—name lambda—list &rest options)
(when (assoc ’:generic—function—class options)
(error
?:generic—function—class_option_prohibited”))
‘(defgeneric ,function—name ,lambda—list
(: generic—function—class binary—function)
,@options))

Listing 9: The binary function class

instances of this class are meant to be called as functions, it is also required to
state that the binary function meta-class (the class of the binary-function
class meta-object) is a “funcallable” meta-object. This is done through the
:metaclass option, which is given funcallable-standard-class and not just
standard-class.

Now that we have a proper meta-class for binary functions, we need to
make sure that our binary generic functions are instantiated from it. Nor-
mally, one specifies the class of newly created generic functions by passing a
:generic-function-class argument to defgeneric. If this argument is omit-
ted, generic functions are instantiated from the standard-generic-function
class. With a few lines of macrology, we make this process easier by providing
a defbinary macro that is to be used instead of defgeneric. This macro is
designed as a syntactic clone of defgeneric, but we could also think of all sorts
of modifications, including enforcing the lambda-list (the generic call prototype)
to be of exactly two arguments etc.

3.2.4 Back to introspection

Now that we have an explicit implementation of the binary function concept,
let us get back to our original problem: how and when can we check that only
points of the same class are compared ?

For each generic function call, we saw that CLOS must calculate the sorted
list of applicable methods for this particular call. In most cases, this can be fig-
ured out from the classes of the arguments to the generic call. The CLos Mop
implements this by calling compute-applicable-methods-using-classes
(c-a-m-u-c for short).

c-a-m-u-c is not an ordinary function, but a generic one, taking two argu-
ments: first, the generic function meta-object involved in the call (in our case,
that would be the point= one created by the call to defgeneric), and the list
of the arguments classes involved in the generic call (in our case, that would be
a list of two element, either point or color-point class meta-objects).



(defmethod c—a—m—u—c :before ((bf binary—function) classes)
(assert (apply #’eq classes)))

Listing 10: Back to introspection

This generic function is interesting to us because, conceptually speaking,
before even calculating the applicable methods given the arguments classes, we
should make sure that these two classes are the same. This strongly suggests a
specialization with a before-method (see section 3.2.2), and this is demonstrated
in listing 10. As you can see, this new method only applies to binary functions,
thanks to the specialization of its first argument on the binary-function class.
The advantage is that the check now belongs to binary function concept itself,
and not anymore to each individual function one might want to implement.

3.3 Enforcing a correct implementation of binary functions

In the previous section, we have made sure that binary functions are used as
intended, and we have made that part of the their implementation. In this sec-
tion, we make sure that binary functions are implemented as intended, and we
also make this requirement part of their implementation.

3.3.1 Properly defined methods

Just as it makes no sense to compare points of different classes, it makes even
less sense to implement methods to do so. The CLOS MOP is expressive enough
to make it possible to implement this constraint directly.

When a call to defmethod is issued, CLOS must register the new method
into the concerned generic function. This is done in the MoP through a call
to add-method. It is not an ordinary function, but a generic one, taking two
arguments: first, the generic function meta-object involved in the call (in our
case, that would be the point= one created by the call to defgeneric), and the
newly created method object.

This generic function is interesting to us because, conceptually speaking,
before registering the new method, we should make sure that it specializes on two
identical classes. This strongly suggests a specialization with a before-method
(see section 3.2.2), and this is demonstrated in listing 11.

Again, this new method only applies to binary functions, thanks to the spe-
cialization of its first argument on the binary-function class. And again, the
advantage is that the check belongs directly to the binary function concept itself,
and not to every individual function one might want to implement. The func-
tion method-specializers returns the list of argument specializations from



(defmethod add—method :before ((bf binary—function) method)
(assert (apply #’eq (method—specializers method))))

Listing 11: Binary method definition check

the method’s prototype. In our examples, that would be (point point) or
(color-point color-point), so all we have to do is check that the members
of this list are actually the same.

3.3.2 Binary completeness

One might realize that our point= concept is not yet completely enforced, if for
instance, the programmer forgets to implement the color-point specialization:
when comparing to points at the same coordinates but with different colors,
only the coordinates would be checked and the test would silently yet mistakenly
succeed. It would be an interesting safety measure to ensure that for each defined
subclass of the point class, there is also a corresponding specialization of the
point= function (we call that binary completeness), and it should be no surprise
that the CLOS MOP lets you do just that.

Remember that the function c-a-m-u-c is used to sort out the list of ap-
plicable methods. Again, this is very interesting to us because the check for
binary completeness involves introspection on exactly this list (to see if some
methods are missing). What we can do is thus specialize on the primary method
this time, retrieve the list in question simply by calling call-next-method, and
then do our own work, as depicted in listing 12. The built-in c-a-m-u-c returns
two values, the first of which is the list of applicable methods. After we perform
our check for completeness (and possibly trigger an error), we simply return the
values we got from the default method.

(defmethod c—a—m—u—c ((bf binary—function) classes)
(multiple—value—bind (methods ok) (call-next—method)
(when ok
;; Check for binary completeness

(values methods ok)))

Listing 12: Binary completeness skeleton

Our check involves two different things: first we have to assert that there
exists a specialization for the exact classes of the objects we are comparing
(otherwise, as previously mentioned, a missing specialization for color-point



would go unnoticed). This is demonstrated in listing 13. The most specialized
applicable method is the first one in the list. The classes on which it specializes
are retrieved by calling method-specializers (it suffices to retrieve the first
one because we already know that both are identical; see listing 11). We then
check that the classes of the arguments involved in the generic call (the classes
parameter) match the most specific specialization.

(letx ((method (car methods))
(class (car (method—specializers method))))
(assert (equal (list class class) classes))

’ s

Listing 13: Binary completeness check n.1

Next, we have to check that the whole super-hierarchy has properly spe-
cialized methods (none were forgotten). This is demonstrated in listing 14. We
define a local recursive function find-binary-method that we first apply on
the bottommost class in the hierarchy we are checking (the class binding from
listing 13).

(labels
((find—binary—method (class)
(find—method bf (method—qualifiers method) (list class class))
(dolist
(cls (remove—if
#’(lambda (elt) (eq elt (find—class ’standard—object)))
(class—direct —superclasses class)))
(find—binary—method cls))))
(find—binary—method class))

Listing 14: Binary completeness check n.2

The function find-method retrieves a method meta-object for a particular
generic function satisfying a set of qualifiers and a set of specializers. In our case,
there is one qualifier: the and method combination type (it can be retrieved by
the function method-qualifiers), and the specializers are twice the class of the
objects.

Once we have made sure this method exists (find-method would trigger
an error otherwise), we must perform the same check on the whole super-
hierarchy (the topmost, standard class excepted). As its name suggests, the
function class-direct-superclasses returns a list of direct superclasses for
some class. We can then recursively call our test function on this list.



By hooking the code excerpts from listings 13 and 14 into the skeleton of
listing 12, we have completed our check for the “binary completeness” property.

4 Conclusion

In this paper, we have described why binary methods are a problematic con-
cept in traditional object-oriented languages: the relationship between types and
classes in the context of inheritance, and the need for privileged access to the
internal representation of objects make it difficult to implement.

From the CLOS perspective, we have demonstrated that implementing binary
methods is a straightforward process, for at least the following two reasons.

1. The covariance / contravariance problem does not exist, because CLOS generic
functions natively support multiple dispatch.

2. When privileged access to internal information is needed, the dynamic na-
ture of Common Lisp provides solutions that are unavailable in statically
typed languages. Besides, the package system is completely orthogonal to
the object-oriented layer and is pretty liberal in what you can access and
how (admittedly, at the expense of breaking modularity just as in other
languages).

From the MOP perspective, it is also important to realize that we have not
just made the concept of binary methods accessible; we have implemented it
directly and explicitly: we have shown ways to not only implement it, but also
enforce a correct usage of it, and even a correct implementation of it. To this
aim, we have actually programmed a new object system which behaves quite
differently from the default CLos. CLOS, along with its MoOP, is not only an
object system. It is an object system designed to let you program your own
object systems.

References

[Bruce et al., 1995] Bruce, K. B., Cardelli, L., Castagna, G., Eifrig, J., Smith, S. F.,
Trifonov, V., Leavens, G. T., and Pierce, B. C. (1995). On binary methods. Theory
and Practice of Object Systems, 1(3):221-242.

[Castagna, 1995] Castagna, G. (1995). Covariance and contravariance: conflict without
a cause. ACM Transactions on Programming Languages and Systems, 17(3):431-447.

[Keene, 1989] Keene, S. E. (1989). Object-Oriented Programming in Common Lisp: a
Programmer’s Guide to CLOS. Addison-Wesley.

[Kiczales et al., 1991] Kiczales, G. J., des Rivieres, J., and Bobrow, D. G. (1991). The
Art of the Metaobject Protocol. MIT Press, Cambridge, MA.

[Paepcke, 1993] Paepcke, A. (1993). User-level language crafting — introducing the
CLOS metaobject protocol. In Paepcke, A., editor, Object-Oriented Programming:
The CLOS Perspective, chapter 3, pages 65-99. MIT Press. Downloadable version
at http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps.



