
CLOX: Common Lisp Objects for XEmacs

Didier Verna
(Epita Research and Development Laboratory, Paris, France

didier@xemacs.org)

Abstract CLOX is an ongoing attempt to provide a full Emacs Lisp implementation
of the Common Lisp Object System, including its underlying meta-object protocol,
for XEmacs. This paper describes the early development stages of this project. CLOX
currently consists in a port of Closette to Emacs Lisp, with some additional features,
most notably, a deeper integration between types and classes and a comprehensive
test suite. All these aspects are described in the paper, and we also provide a feature
comparison with an alternative project called Eieio.
Key Words: Lisp, Object Orientation, Meta-Object Protocol
Category: D.1.5, D.3.3

1 Introduction

Note: the author is one of the core maintainers of XEmacs. In this paper, the
term Emacs is used in a generic way to denote all flavors of the editor. If a
distinction needs to be made, we use either GNU Emacs or XEmacs where appro-
priate.

1.1 Context

The XEmacs1 project started almost twenty years ago after a split from GNU
Emacs. This is perhaps the most popular “fork” in the whole free software history.
Nowadays, the codebase of XEmacs consists of roughly 400,000 lines of C code
[C, 1999] (including the implementation of the Lisp engine) and 200,000 lines of
Emacs Lisp. In addition to that, the so-called “Sumo” packages, a collection of
widely used third-party libraries distributed separately, amounts to more than
1,700,000 lines of Emacs Lisp code.

Over the years, XEmacs has considerably diverged from GNU Emacs. While
the XEmacs development team tries to maintain compatibility for the common
functions of the Lisp interface, some features, also accessible at the Lisp level, are
exclusive to XEmacs (extents and specifiers are two common examples). Because
of these differences between both editors, writing truly portable code is not easy.
In some cases, the existence of compatibility layers makes the task a bit easier.
For instance, the implementation of overlays (logical parts of text with local
1 http://www.xemacs.org

properties) in XEmacs is in fact designed to wrap around extents, our native and
more or less equivalent feature.

There is one place, however, in which compatibility with GNU Emacs is nei-
ther required nor a problem: the implementation of the editor itself, including
its Lisp dialect. After almost twenty years of independent development, it is safe
to say that the internals of XEmacs have very little left in common with the
original codebase, let alone with the current version of GNU Emacs.

One thing that should immediately strike a newcomer to the internals of
XEmacs is the very high level of abstraction of its design. For instance, many
editor-specific concepts are available at the Lisp layer: windows, buffers, markers,
faces, processes, charsets etc.. In XEmacs, every single one of these concepts is
implemented as an opaque Lisp type with a well-defined interface to manipulate
it. In the current development version, there is 111 such types, 35 of which are
visible at the Lisp level (the rest being used only internally).

The other important point here is that although the core of the editor is
written in C, there is a lot of infrastructure for data abstraction and sometimes
even for object orientation at this level as well. The examples given below should
clarify this.

Polymorphism. Many data structures in XEmacs provide a rudimentary
form of polymorphism and class-like abstraction. For instance, the console type
is a data structure containing general data members, but also a type flag indi-
cating which kind of console it is (X11, Gtk, tty etc.), and a pointer to a set
of type-specific console data. Each console type also comes with a set of type-
specific methods (in a structure of function pointers) . This provides a form of
polymorphism similar to that of record-based object systems [Cardelli, 1988] in
which methods belong to classes.

Accessors. Instead of accessing structure members directly, every data type
comes with a set of pre-processor macros that abstract away the underlying
implementation. For instance, the macro CONSOLE_NAME returns the name of the
console, whatever the underlying implementation. This might be considered as
more typical of data abstraction in general than object-orientation though.

Dynamic method lookup. There is even an embryonic form of dynamic
method lookup which looks very much like Objective-C’s informal protocols,
or (as of version 2.0 of the language), formal protocols with optional methods
[Apple, 2009]. For instance, in order to “mark” a console, without knowing if
it even makes sense for that particular console type, one would try to call the
mark_console method like this:

MAYBE_CONMETH (console, mark_console, ...);

The XEmacs internals are in fact so much object-oriented that the author
has raised the idea of rewriting the core in C++ [C++, 1998] directly several
times in the past. However, this issue is still controversial.

1.2 Motivation

It is interesting to note that contrary to the internals of XEmacs, there seem to
be much less trace of object-oriented design at the Lisp level (whether in the
kernel or in the distributed packages), and when there is, it is also much less
apparent. Several hypothesis come to mind, although it could be argued that
this is only speculation.

– Most of our Lisp interface is still compatible with that of GNU Emacs, and
maintaining this compatibility is an important requirement. This situation
is completely different from that of the core, which we are completely free
to rewrite as we please.

– The need for object orientation in the Lisp layer might be less pressing than
in the core. Indeed, many of the fundamental concepts implemented by the
editor are grounded in the C layer, and the Lisp level merely provides user-
level interfaces for them.

– The Lisp packages, for an important part, are only a collection of smaller,
standalone utilities written by many different people in order to fulfill specific
needs, and are arguably of a lower general quality than the editor’s core.
Emacs Lisp contributors are numerous and not necessarily skilled computer
scientists, as they are primarily Emacs users, trying to extend their editor of
choice, and often learning Emacs Lisp on the occasion. Besides, it wouldn’t be
their job to provide a language-level feature such as a proper object system.

– Finally, it can also be argued that Lisp is so expressive that an object system
(whether proper or emulated) is not even necessary for most packages, as
similar features can be hacked away in a few lines of code. In other words,
it is a well-known fact that good quality code requires more discipline from
the programmer, and that the “quick’n dirty” programming paradigm is on
the other hand very affordable, and unfortunately widely used.

These remarks make up for the first motivation in favor of a true object sys-
tem: the author believes that if provided with such a tool, the general quality,
extensibility and maintainability of the Lisp code would improve. More specifi-
cally:

– Existing C-based features could provide a true object-oriented interface to
the user, in coherence with what they are at the C level.

– Lisp-based features would also greatly benefit from a true object-oriented
implementation. The author can think of several ones, such as the custom
interface, the widget code, the support for editing mode and fontification
etc.

– Finally, the potential gain is also very clear for some already existing third-
party packages. The author thinks especially of Gnus2, a widely used mail and
news reader that he also helps maintaining. This package is almost as large
as the whole XEmacs Lisp layer, and provides concepts (such as backends)
that are object-oriented almost by definition.

Once the gain from having a true Emacs Lisp object system asserted, the
next question is obviously which one. We are far from pretending that there
is only one answer to this question. Emacs Lisp being an independent Lisp
dialect, we could even consider designing a brand new object system for it.
However, the author has several arguments that would go in favor of Clos
[Bobrow et al., 1988, Keene, 1989], the object system of the Common Lisp lan-
guage [Ansi, 1994].

– Emacs Lisp is a dialect of Lisp mostly inspired from MacLISP [Moon, 1974,
Pitman, 1983] but also by Common Lisp. There are many similarities be-
tween Emacs Lisp and Common Lisp, and because of that, a number of
Emacs Lisp developers are in fact familiar with both (the author is one of
them). Emacs provides a Common Lisp emulation package known as cl. A
quick survey of the Sumo packages shows that 16% of the distributed files
require cl to work. In terms of actual lines of code, the ratio amounts to
27%. Given that these numbers don’t even count indirect dependencies, this
is far from negligible.

– At least in the subjective view of the author, Clos is one of the most ex-
pressive object system available today, and there is freely available code on
which to ground the work.

– There is one Emacs Lisp package that already uses a Clos-like object system
(see section 1.3 on the following page). This package is rather large, as it sums
up to almost 70,000 lines of code.

– Having Clos in Emacs Lisp would considerably simplify the porting of ex-
isting Common Lisp libraries that could be potentially useful in Emacs. It
could also be a way to attract more Common Lisp programmers to Emacs
Lisp development.

– Clos is already very well documented (books, tutorials etc.) and we can
take advantage of that.

– Last but not least, the author is interested in gaining expertise in the design
and implementation of Clos and its accompanying meta-object protocol
[Paepcke, 1993, Kiczales et al., 1991] (Mop for short). Implementing one is
a very good way to achieve this goal.

2 http://www.gnus.org

1.3 Alternatives

The author is aware of two alternative object systems for Emacs Lisp.

– The first one is called Eoops [Houser and Kalter, 1992] (Emacs Object-
Oriented Programming System). It implements a class-based, single inheri-
tance, object system with explicit message passing in the vein of Smaltalk-80
[Goldberg and Robson, 1983]. This system dates back to 1992 and the code
doesn’t seem to have evolved since then. None of the Sumo packages use it
and we are not aware of any other Emacs Lisp library using it either.

– The second one is called Eieio (Enhanced Implementation of Emacs In-
terpreted Objects). It is part of the Cedet3 package (Collection of Emacs
Development Environment Tools). Eieio is more interesting to us because
our goals are similar: it is designed to be a Clos-like object system. Eieio
provides interesting additional features like debugging support for methods,
but apparently, it doesn’t aim at being fully Clos-compliant.

The remainder of this paper is as follows. In section 2, we describe the first
stage of this project, consisting in a port of Closette to Emacs Lisp. An overview
of the differences between Common Lisp and Emacs Lisp is provided, as well
as a more detailed description of how the most problematic issues are solved.
In section 3 on page 9, we describe how a deeper integration between types
and classes is achieved, with respect to what Closette originally offers. Finally,
section 4 on page 13 provides an overview of the features available in CLOX, and
compares the project with Eieio.

2 Closette in Emacs Lisp

In order to combine the goals of providing Clos in XEmacs and learning more
about its internals at the same time, starting from “Closette” seemed like a good
compromise. Closette is an operational subset of Clos described in “The Art
of the Meta-Object Protocol” [Kiczales et al., 1991] (Amop for short) and for
which source code is available. Consequently, Closette constitutes a convenient
base on which to ground the work, without starting completely from scratch.
The first step of this project was hence to port Closette to Emacs Lisp. This
section describes the most interesting aspects of the porting phase.

2.1 Emacs Lisp vs. Common Lisp

While both dialects are similar in many ways, there are some important differ-
ences that can make the porting somewhat tricky at times.
3 http://cedet.sourceforge.net/eieio.shtml

2.1.1 Fundamental differences

“Fundamental” differences are obvious ones that might require deep changes in
the code. The following differences are considered fundamental: Emacs Lisp is
dynamically scoped instead of lexically scoped, has no package system, a dif-
ferent condition system, a limited lambda-list syntax, a different and reduced
formating and printing facility, and also a different set of types.

2.1.2 Subtle differences

“Subtle” differences are less important ones, but which on the other hand might
be less obvious to spot. For instance, some functions (like special-operator-p
vs. special-form-p) have different names in the two dialects (this particular
case is now fixed in XEmacs). Some others like defconst vs. defconstant have
similar names but in fact different semantics. Some functions (like mapcar) have
the same name but behave differently.

Another example is the function special operator which returns a functional
value in Common Lisp but simply returns its argument unevaluated in Emacs
Lisp. In fact, in Emacs Lisp, function is just like quote except that the byte-
compiler may compile an expression quoted with function.

The fact that function in Emacs Lisp behaves like quote might be puzzling
for a Common Lisp programmer, but this is because Emacs Lisp accepts a list
beginning with lambda as a function designator. For instance, the following two
lines are equivalent and valid for an Emacs Lisp interpreter, whereas the first
one would fail in Common Lisp:

(funcall ’(lambda (x) x) 1)
(funcall #’(lambda (x) x) 1)

2.1.3 Historical differences

In addition to that, Emacs Lisp is still evolving (this appears to be the case
in both GNU Emacs and XEmacs) and the changes are not always clearly doc-
umented, if at all. For instance, Emacs Lisp keywords were not self-evaluating
before 1996, the #’ syntax exists since XEmacs 19.8 only, characters were not
a primitive type until XEmacs 20, and until August 2009, Common Lisp style
multiple values were emulated with lists (they are now built-in). CLOX is not in-
terested in maintaining backward compatibility with legacy versions of XEmacs
or Emacs Lisp, and to be on the safe side, running it typically requires a recent
checkout of the 21.5 Mercurial repository4 (no later than beta 29).
4 http://xemacs.org/Develop/hgaccess.html

2.2 The cl package

Emacs provides a Common Lisp emulation package called “cl”, which is of a
tremendous help for porting code from Common Lisp to Emacs Lisp. For the
most part, this package provides a number of utility functions or macros that
belong to the Common Lisp standard but are not available in raw Emacs Lisp
(the almighty loopmacro is one of them). A number of already existing (but lim-
ited) functions are extended to the full Common Lisp power, in which case their
names are suffixed with a star (e.g. mapcar*). cl provides defun*, defmacro*
etc. to enable the full Common Lisp lambda-list syntax, a version of typep and
generalized variables via setf, defsetf etc. (cl, however, does not support more
modern “setf functions”).

The remainder of this section provides more details on a couple of interesting
porting issues.

2.2.1 Dynamic vs. lexical scoping

Perhaps the most important difference between Common Lisp and Emacs Lisp
is the scoping policy. Emacs Lisp is dynamically scoped while Common Lisp
has lexical scope by default. cl provides a construct named lexical-let (and
its corresponding starred version) that simulates Common Lisp’s lexical binding
policy via gensym’ed global variables. While a brutal replacement of every single
let construct in Closette would have been simpler, a careful study of the code
reveals that this is unnecessary for the most part.

First of all, in the majority of the cases, function arguments or let bindings
are used only locally. In particular, they are not propagated outside of their
binding construct through a lambda expression. Consequently, there is no risk
of variable capture and Emacs Lisp’s built-in dynamically scoped let form is
sufficient (it also happens to be more efficient than lexical-let).

Secondly, many cases where a true lexical closure is normally used actually
occur in so-called “downward funarg” situations. In such situations, the closure is
used only during the extent of the bindings it refers to. Listing 1 on the following
page gives such an example. The extent of the variable required-classes is
that of the function. However, the lambda expression that uses it (as a free
variable) only exists within this extent. Note that this situation is not completely
safe, as accidental variable capture could still occur in remove-if-not. With a
proper naming policy for variables, this risk is considerably reduced, although
not completely avoided. In particular, the cl package adopts a consistent naming
convention (it uses a cl- prefix) so that true lexical bindings are unnecessary in
practice.

There is a third case in which true lexical bindings can still be avoided, al-
though the situation is an “upward funarg” one: a function that is being returned

(defun compute-applicable-methods-using-classes (gf required-classes)
#| . . . |#

(remove-if-not #’(lambda (method)
(every #’subclassp

required-classes
(method-specializers method)))

(generic-function-methods gf))
#| . . . |#)

Listing 1: Downward funarg example

and hence might be used outside of the (dynamic) extent of the bindings it refers
to. Listing 2 on the next page shows three different versions of the same function.

1. The first one is the original one from Closette. You can see that the returned
function has a closure over two variables, which are lexically scoped and have
indefinite extent: methods and next-emfun.

2. The second one follows the logical course of action in Emacs Lisp, using
cl’s lexical-let construct. Recall that function arguments are dynamically
bound as well, so we also need to lexically rebind the methods variable.
Bindings established by lexical-let are garbage-collected when the last
reference to them disappears, so they indeed get indefinite extent.

3. It turns out, however, that we can still avoid lexical bindings here, by par-
tially evaluating the lambda expression before returning it, as demonstrated
in the third version. Remember that in Emacs Lisp, a lambda expression is in
fact a self-quoting form, and simply returns a list with the symbol lambda in
its car. Since methods and next-emfun happen to be constants here, we can
pre-evaluate them before returning the lambda expression, hence getting rid
of their names which should have been lexically scoped. Finally, note that it
is not possible to use function or #’ on a quasiquote’ed form, so one might
want to call byte-compile explicitely on the resulting anonymous function.

Given these particular cases, it turns out that there are only half a dozen places
where true lexical bindings are necessary.

2.2.2 Full blown Common Lisp lambda-lists

Because Emacs Lisp is restricted to mandatory, &optional and &rest argu-
ments, the cl package provides replacements for defun, defmacro etc. CLOX
uses these wrappers extensively for its own code, but the question of lambda-
lists for generic functions and methods arise. By digging into the internals of cl,
we are able to provide that at little development cost.

(defun compute-primary-emfun (methods)
(if (null methods)

nil

; ; Common Lisp version :
(let ((next-emfun (compute-primary-emfun (cdr methods))))

#’(lambda (args)
(funcall (method-function (car methods)) args next-emfun)))

; ; Lexical ly scoped Emacs Lisp version :
(lexical-let ((methods methods)

(next-emfun (compute-primary-emfun (cdr methods))))
#’(lambda (args)

(funcall (method-function (car methods)) args next-emfun)))

; ; Part ia l ly evaluated Emacs Lisp version :
(let ((next-emfun (compute-primary-emfun (cdr methods))))

‘(lambda (args)
(funcall (method-function ’,(car methods)) args ’,next-emfun)))

Listing 2: Upward funarg example

Internally, cl uses a function named cl-transform-lambda to both reduce a
full blown Common Lisp lambda-list into what Emacs Lisp can understand, and
provide the machinery needed for binding the original arguments. Listing 3 on
the following page shows an example of lambda-list transformation. Note that
the purpose of the second let form is to check for the validity of keyword argu-
ments, and disappears if &allow-other-keys is provided. In the CLOX function
compute-method-function, we take care of wrapping method bodies into a call
to cl-transform-lambda, hereby providing generic functions with full blown
Common Lisp lambda-lists.

Internally (for efficiency reasons), cl-transform-lambda uses memq to re-
trieve keyword arguments and hence looks for them at odd-numbered locations
as well as even-numbered ones. The drawback of this approach is that a keyword
parameter cannot be passed as data to another keyword. Since this does not ap-
pear to be much of a problem, we didn’t do anything to fix this. This could
change in the future, under the condition that the performance of keyword pro-
cessing in CLOX does not turn out to be critical.

Also, note that we don’t want generic calls to behave differently from normal
function calls, so the bindings established by methods remain dynamic.

3 Type/classes integration

Aside from the language differences described in the previous section, the next
big challenge to have a working system is to integrate types and classes. This
section provides some insight on how this is currently done.

; ; Original lambda−expression :
(lambda (a &optional (b ’b) &key (key1 ’key1))

BODY)

; ; Transformed lambda−expression :
(lambda (a &rest -- rest--39249)

(let* ((b (if -- rest--39249 (pop -- rest--39249) (quote b)))
(key1 (car (cdr (or (memq :key1 -- rest--39249)

(quote (nil key1)))))))
(let ((-- keys--39250 -- rest--39249))

(while -- keys--39250
(cond ((memq (car -- keys--39250)

(quote (:key1 :allow-other-keys)))
(setq -- keys--39250 (cdr (cdr -- keys--39250))))

((car (cdr (memq :allow-other-keys -- rest--39249)))
(setq -- keys--39250 nil))

(t
(error "Keyword␣argument␣%s␣not␣one␣of␣(:key1)"

(car -- keys--39250))))))
BODY))

Listing 3: Lambda-list transformation example

3.1 Built-in types

As mentioned in the introduction, XEmacs has many opaque Lisp types, some
resembling those of Common Lisp (e.g. numbers), some very editor-specific (e.g.
buffers). In XEmacs, there are two basic Lisp types: integers and characters.
All other types are implemented at the C level using what is called “lrecords”
(Lisp Records). These records include type-specific data and functions (in fact,
function pointers to methods for printing, marking objects etc.) and are all
cataloged in an lrecord_type enumeration. It is hence rather easy to keep track
of them.

Some of these built-in types, however, are used only internally and are not
supposed to be visible at the Lisp layer. Sorting them out is less easy. The current
solution for automatic maintenance of the visible built-in types is to scan the
lrecord_type enumeration and extract those which provide a type predicate
function at the Lisp level (the other ones only have predicate macros at the C
level). Provided that the sources of XEmacs are around, this can be done directly
in a running session in less than 30 lines of code.

3.2 Type predicates

3.2.1 type-of

Emacs Lisp provides a built-in function type-of which works for all built-in
types. Because this function is built-in, it doesn’t work on CLOX (meta-)objects.
It will typically return vector on them, because this is how they are implemented
(Closette uses Common Lisp structures, but these are unavailable in Emacs Lisp

so the cl package simulates them with vectors). In theory, it is possible to wrap
this function and emulate the behavior of Common Lisp, but this has not be
done for the following reasons.

– Firstly, we think it is better not to hide the true nature of the Lisp objects
one manipulates. What would happen, for instance, if a CLOX object was
passed to an external library unware of CLOX and using type-of ?

– Secondly, having a working type-of is not required for a proper type/class
integration (especially for method dispatch).

– Finally, since CLOX is bound to be integrated into the C core at some point,
this problem is likely to disappear eventually.

3.2.2 typep

Having an operational typep is more interesting to us, and in fact, the cl
package already provides it. cl’s typep is defined such as when the requested
type is a symbol, a corresponding predicate function is called. For instance,
(typep obj ’my-type) would translate to (my-type-p obj).

In order to enable calls such as (typep obj ’my-class), we simply need
to construct the appropriate predicate for every defined class. In CLOX, this is
done inside ensure-class. The predicate checks that the class of obj is either
my-class or one of its sub-classes.

In Common Lisp, typep works on class objects as well as class names. This
is a little problematic for us because class objects are implemented as vectors,
so typep won’t work with them. However, we can still make this work in a
not so intrusive way by using the advice Emacs Lisp library. Amongst other
things, this library lets you wrap some code around existing functions (not unlike
:around methods in Clos) without the need for actually modifying the original
code. CLOX wraps around the original type checking infrastructure so that if the
provided type is in fact a vector, it is assumed to be a class object, and the
proper class predicate is used.

3.2.3 Generic functions

Generic functions come with some additional problems of their own. In Common
Lisp, once you have defined a generic function named gf, the generic function
object returned by the call to defgeneric is the functional value itself (a fun-
callable object). In Emacs Lisp, this is problematic for two reasons.

1. Since generic functions are objects, they are implemented as vectors. On the
other hand, the associated functional value is the generic function’s discrim-
inating function, which is different.

2. Moreover, Emacs Lisp’s function behaves more or less like quote, so it will
return something different from symbol-function.

In order to compensate for these problems, CLOX currently does the following.

– A function find-generic-function* is defined to look for a generic function
(in the global generic function hash table) by name (a symbol), functional
value (the discriminating function, either interpreted or byte-compiled), or
directly by generic function object (note that this can be very slow).

– Assuming that a generic function is defined like this:

(setq mygf (defgeneric gf #|...|#))
(typep mygf ’some-gf-class) ;; already working correctly

Class predicates (most importantly for generic function classes) are made to
decide whether the given object denotes a generic function in the first place,
allowing for the following calls to work properly as well:

(typep (symbol-function ’gf) ’some-gf-class)
(typep #’gf ’some-gf-class) ;; #’gf is more or less like ’gf

Note that thanks to the advice mechanism described in section 3.2.2 on
the previous page, these calls will also work properly when given a generic
function class object instead of a name.

– find-method is extended in the same way, so that it accepts generic function
objects, discriminating functions or even symbols.

– Finally, CLOX defines a function class. Consequently, in order for
(typep obj ’function) to work properly, a second advice on the type
checking mechanism is defined in order to try the function class predi-
cate first, and then fallback to the original functionp provided by Emacs
Lisp.

Our integration of generic functions into the type system has currently one
major drawback: it is impossible as yet to specialize on functions (either generic,
standard, or even built-in). The reason is a potential circularity in class-of, as
described below.

In order to be able to specialize on functions, we need class-of to call
find-generic-function*. However, find-generic-function* might need to
access a generic function’s discriminating function which is done through
slot-value, which, in turn, calls class-of. This problem is likely to remain
for as long as CLOX generic function objects are different from their functional
values. In other words, it is likely to persist until the core of CLOX is moved to
the C level.

4 Project Status

In this section, we give an overview of the current status of CLOX, and we also
position ourselves in relation to Eieio.

4.1 Available Features

As mentioned earlier, stage one of the project consisted in a port of Closette
to Emacs Lisp. As such, all features available in Closette are available in CLOX.
For more information on the exact subset of Clos that Closette implements,
see section 1.1 of the Amop. In short, the most important features that are still
missing in CLOX are class redefinition, non-standard method combinations, eql
specializers and :class wide slots.

On the other hand, several additional features have been added already. The
most important ones are listed below.

– CLOX understands the :method option in calls to defgeneric.

– Although their handling is still partial, CLOX understands all standard op-
tions to defgeneric calls and slot definitions, and will trigger an error when
the Common Lisp standard requires so (for instance, on multiply defined
slots or slot options, invalid options to defgeneric etc.).

– CLOX supports the slot-unbound protocol and emulates
unbound-slot-instance and cell-error-name. This is because the
condition system in Emacs Lisp differs from that of Common Lisp. In
particular, Emacs Lisp works with condition names associated with data
instead of providing condition objects with slots.

– CLOX supports a slot-missing protocol similar to the slot-unbound one.
In particular, it provides a missing-slot condition which Common Lisp
doesn’t provide. Common Lisp only provides unbound-slot.

– CLOX provides a full-blown set of the upmost classes in the standard
Common Lisp hierarchy, by adding the classes class, built-in-class,
function, generic-function and method. The other basic classes like
standard-object already exist in Closette.

– Finally, CLOX provides an almost complete type/class integration, which has
been described in section 3 on page 9.

Eieio is currently farther away from Clos than CLOX already is. Eieio is
not built on top of the Mop, doesn’t support built-in type/class integration and
misses other things like :around methods, the :method option to defgeneric
calls, and suffers from several syntactic glitches (for instance, it requires slot

definitions to be provided as lists, even if there is no option to them). Eieio
doesn’t handle Common Lisp style lambda-lists properly either.

On the other hand, Eieio provides some additional functionality like a class
browser, automatic generation of TeXinfo5 documentation, and features obvi-
ously inspired from other object systems, such as abstract classes, static methods
(working on classes instead of their instances) or slot protection ala C++. The
lack of a proper Mop probably justifies having these last features implemented
natively if somebody needs them.

4.2 Testing

Given the subtle differences between Common Lisp and Emacs Lisp (especially
with respect to scoping rules), the initial porting phase was expected to be error-
prone. Besides, bugs introduced by scoping problems are extremely difficult to
track down. This explains why a strong emphasis has been put on correctness
from the very beginning of this project. In particular, we consider it very impor-
tant to do regular, complete and frequent testing. This discipline considerably
limits the need for debugging, which is currently not easy for the following rea-
sons.

– CLOX is not equipped (yet) for edebug, the Emacs interactive debugger, so
we can’t step into it.

– CLOX is not (yet) grounded in the C layer of XEmacs, so we have to use
the regular printing facility for displaying (meta-)objects. However, the cir-
cular nature of CLOX requires that we limit the printer’s maximum nesting
level, hereby actually removing potentially useful information from its out-
put. We also have experimented situations in which XEmacs itself crashes
while attempting to print a CLOX object.

– Finally, most of the actual code subject to debugging is cluttered with gen-
sym’ed symbols (mostly due to macro expansion from the Common Lisp
emulation package) and is in fact very far from the original code, making it
almost unreadable. See listing 3 on page 10 for an example.

Apart from limiting the need for debugging, a complete test suite also has the
advantage of letting us know exactly where we stand in terms of functionality
with respect to what the standard requires. Indeed, tests can fail because of a
bug, or because the tested feature is simply not provided yet.

When the issue of testing came up, using an existing test suite was considered
preferable to creating a new one, and as a matter of fact, there is a fairly complete
one, written by Paul Dietz [Dietz, 2005]. The Gnu Ansi Common Lisp test
5 http://www.gnu.org/software/texinfo

suite provides almost 800 tests for the “Objects” section of the Common Lisp
standard, but there are also other tests that involve the object system in relation
with the rest of Common Lisp (for instance, there are tests on the type/class
integration). Currently, we have identified more than 900 tests of relevance for
CLOX, and we expect to find some more. Also, note that not all of the original
tests are applicable to CLOX, not because CLOX itself doesn’t comply with the
standard, but because of radical differences between Common Lisp and Emacs
Lisp.

The test suite offered by Paul Dietz is written on top of a Common Lisp
package for regression testing called “rt” [Waters, 1991]. Given the relatively
small size of the package (around 400 lines of code), we decided to port it to
Emacs Lisp. All porting problems described in section 2 on page 5 consequently
apply to rt as well. The result of this port is an Emacs Lisp package of the
same name, which is available at the author’s web site6. The test suite itself also
needed some porting because it contains some infrastructure written in Common
Lisp (and some Common Lisp specific parts), but the result of this work is that
we now have the whole 900 tests available for use with CLOX.

As of this writing, CLOX passes exactly 416 tests, that is, a little more than
50% of the applicable test suite. It is important to mention that the tests that
currently fail are all related to features that are not implemented yet. In other
words, all the tests that should work on the existing feature set actually pass.
Eieio, on the other hand, passes only 115 tests, that is, around 12% of the
applicable test suite. As far as we could see, many of the failures are due the
lack of type/class integration.

4.3 Performance

As mentioned earlier, we are currently giving priority to correctness over speed
and as such, nothing premature has been done about performance issues in
CLOX (in fact, the performance is expected to be just as bad as that of Closette).
Out of curiosity however, we did some rough performance testing in order to
see where we are exactly, especially with respect to Eieio. Figure 1 on the
next page presents the timing results of five simple benchmarks (presented on
a logarithmic scale). These benchmarks are independent from each other and
shouldn’t be compared. They are presented in the same figure merely for the
sake of conciseness. The five benchmarks are as follows.

1. 1000 calls to defclass with two super-classes, each class having one slot.

2. 1000 calls to defgeneric followed by 3 method definitions.

3. 5,000 calls to make-instance initializing 3 slots by :initarg’s.
6 http://www.lrde.epita.fr/~didier/software/xemacs.php

Class def. Method def. Instantiation Slot Access Generic call

1s

10s

100s

EIEIO

CLoX (methods interpreted)

CLoX (methods byte-compiled)

Figure 1: CLOX vs. Eieio performance

4. 5,000 calls to 3 slot accessors as defined above.

5. 5,000 calls to a generic function executing 3 methods via 2 calls to
call-next-method.

These benchmarks have been executed in 3 situations each: once for Eieio, and
twice for CLOX, with method bodies and “upward funargs” either interpreted or
byte-compiled.

As expected, Eieio performs much faster than CLOX in general. Several speci-
ficities of these results can be analyzed as follows.

– Class, generic function and method creation are faster in Eieio by a factor
ranging from 7 to 23. This could be due to the fact that Eieio doesn’t
have a Mop, so these operations go through ordinary functions (classes are
implemented as vectors).

– When method bodies and other lambda expressions are byte-compiled, CLOX
performs the operations above between 2 and 3 times slower. This is precisely
because the results include the time used for byte-compilation.

– On the other hand, the situation is reversed for instantiation, slot access and

generic calls, as they involve executing byte-code instead of interpreting the
original Emacs Lisp code. Here, the gain is roughly a factor of 5.

– Finally, we can see that with method bodies byte-compiled (which is the case
in Eieio), instantiation in CLOX is roughly 10 times slower than in Eieio,
while slot-access and generic calls are about 5 times slower only. Given that
Eieio is already optimized and does not go through a Mop, these results
are better than what the author expected.

In order to improve the performance of CLOX in the future, several paths are
already envisioned.

– First, it is possible to implement a caching mechanism and memoize different
computation results within the Mop. The Amop even describes the exact
conditions under which a memoized value can be used at some places, for in-
stance in the specification for compute-discriminating-function (p. 175).

– Next, there is already abundant litterature on how to improve the efficiency
of Clos (see for example [Kiczales and Rodriguez Jr., 1990]). We can benefit
from that experience and also get inspiration from how modern Common
Lisp compilers optimize their own implementation.

– Finally, when the core of CLOX is moved to the C layer of XEmacs, an im-
portant immediate speedup is also expected.

5 Conclusion

In this paper, we described the early stages of development of CLOX, an attempt
at providing a full Clos implementation for XEmacs. Details on the porting of
Closette to Emacs Lisp have been provided, as well as some insight on type/class
integration and how CLOX compares to Eieio.

In this project, priority has been given to correctness over speed from the
very beginning, which lead us to port rt (a Common Lisp library for regression
testing) to Emacs Lisp, and also import an important part of Paul Dietz’s Gnu
Ansi Common Lisp test suite. This priority will not change until all the features
are implemented properly.

Ultimately, CLOX will need to be grounded at the C level, at least because
this is necessary for a proper integration of generic functions into the evaluator,
but also probably for performance reasons.

Once the system is fully operational, the author hopes to convince the other
XEmacs maintainers to actually use it in the core, hereby improving the existing
code in design, quality, and maintainability. Otherwise, the system will still be
useful for third-party package developers willing to use it.

References

[Apple, 2009] Apple (2009). The Objective-C 2.0 programming language.
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/
ObjectiveC/ObjC.pdf.

[Bobrow et al., 1988] Bobrow, D. G., DeMichiel, L. G., Gabriel, R. P., Keene, S. E.,
Kiczales, G., and Moon, D. A. (1988). Common lisp object system specification.
ACM SIGPLAN Notices, 23(SI):1–142.

[C++, 1998] C++ (1998). International Standard: Programming Language – C++.
ISO/IEC 14882:1998(E).

[C, 1999] C (1999). International Standard: Programming Language – C. ISO/IEC
9899:1999(E).

[Cardelli, 1988] Cardelli, L. (1988). A semantics of multiple inheritance. Information
and Computation, 76(2/3):138–164. A revised version of the paper that appeared in
the 1984 Semantics of Data Types Symposium, LNCS 173, pages 51–66.

[Dietz, 2005] Dietz, P. (2005). The Gnu Ansi Common Lisp test suite. In Interna-
tional Lisp Conference, Stanford, CA, USA. ALU.

[Goldberg and Robson, 1983] Goldberg, A. and Robson, D. (1983). Smalltalk-80: the
language and its implementation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

[Houser and Kalter, 1992] Houser, C. and Kalter, S. D. (1992). Eoops: an object-
oriented programming system for emacs-lisp. SIGPLAN Lisp Pointers, V(3):25–33.

[Keene, 1989] Keene, S. E. (1989). Object-Oriented Programming in Common Lisp: a
Programmer’s Guide to Clos. Addison-Wesley.

[Kiczales et al., 1991] Kiczales, G. J., des Rivières, J., and Bobrow, D. G. (1991). The
Art of the Metaobject Protocol. MIT Press, Cambridge, MA.

[Kiczales and Rodriguez Jr., 1990] Kiczales, G. J. and Rodriguez Jr., L. H. (1990). Ef-
ficient method dispatch in pcl. In ACM Conference on Lisp and Functional Program-
ming, pages 99–105. Downloadable version at http://www2.parc.com/csl/groups/
sda/publications/papers/Kiczales-Andreas-PCL/.

[Moon, 1974] Moon, D. A. (1974). MacLISP Reference Manual. MIT, Cambridge,
Massachusetts.

[Paepcke, 1993] Paepcke, A. (1993). User-level language crafting – introducing the
Clos metaobject protocol. In Paepcke, A., editor, Object-Oriented Programming:
The CLOS Perspective, chapter 3, pages 65–99. MIT Press. Downloadable version at
http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps.

[Pitman, 1983] Pitman, K. M. (1983). The Revised MacLISP Manual. MIT, Cam-
bridge, Massachusetts.

[Ansi, 1994] Ansi (1994). American National Standard: Programming Language –
Common Lisp. ANSI X3.226:1994 (R1999).

[Waters, 1991] Waters, R. C. (1991). Some useful Lisp algorithms: Part 1. Technical
Report 91-04, Mitsubishi Electric Research Laboratories.

