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Abstract
In biology, evolution is usually seen as a tinkering process,
different from what an engineer does when he plans the
development of his systems. Recently, studies have shown
that even in biology, there is a part of good engineering. As
computer scientists, we have much more difficulty to admit
that there is also a great deal of tinkering in what we do,
and that our software systems behave more and more like
biological realms every day. This essay relates my personal
experience about this discovery.

Categories and Subject Descriptors C.m [Computer Sys-
tems Organization]: Miscellaneous; D.2.10 [Software En-
gineering]: Design; H.1.2 [Information Systems/Models
and Principles]: User/Machine Systems – Human Factors

General Terms Design, Human Factors, Languages, Reli-
ability

Keywords Trans-disciplinary models, software evolution,
LATEX

Prologue

I
t was in 2004, we were having an echography of our first child,

and we were excited to see our little baby for the first time.
The echographist was very nice and, something rare in the medical
field, she was actually talking to us. Probably out of a wish to get us
involved as parents, she started to explain things and enumerate all
the good points as they were coming: you can see that your baby has
the correct number of fingers, [. . . ] the heart is well formed, [. . . ] the
neck is not too fat, so she’s probably not a trisomic, [. . . ] the vertebrae
are all here, etc. etc.

And the funny thing is, as she was enumerating all the things
that were okay, what I was actually hearing was all the things that
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could have gone wrong. So in the end, what was supposed to be a
joyful moment turned out to be one of the scariest events in my whole
life. . .

Part I

Origins
1. Transversality

T
RANSVERSALITY. Thinking horizontal. Drawing
bridges between apparently unrelated disciplines.

What makes this so much fun? Why is it that so many
people, especially in sciences, enroll in the Holy Quest of
the Common Pattern?

As a researcher, I know that I have always loved to learn.
A researcher, before anything else, is an eternal student. But
from my own experience however, it seems that the simple
joy of learning from your own discipline is nothing com-
pared to that of learning from outside your world, especially
when this learning process leads to new transversal connec-
tions. So it appears that there has got to be more to transver-
sality than a simple thirst for knowledge.

The keys to transversality and its importance to human-
ity are probably understanding and unification. Religion, as
well as Science, aim at explaining the universe as a whole.
Fraņois Jacob [1977] puts it like this:

It is a requirement to the human brain to put order in
the universe. [. . . ] One may disagree with the

explanatory systems offered by myths or magic, but one
cannot deny them unity and coherence. [. . . ] Actually,

despite their differences, whether mythic,magic or
scientific, all explanatory systems operate on a common

principle. In the words of the physicist Jean Perrin
[1914], the heart of the problem is always “to explain

the complicated visible by some simple invisible”.

He further explains the importance of imagination in the
process (whether mythic or scientific), but notes that in Sci-
ence:

imagination is only a part of the game. At every step,
it has to meet with experimentation and criticism.



The interesting thing in this need to confront the possible
with the actual is that experimentation leads to parceling:
one can only test for the validity of a theory on very specific
and localized behaviors.

Actually, the beginning of modern science can be
dated from the time when such general questions as

“How was the universe created?” [. . . ] were replaced
by such limited questions as “How does a stone fall?”

[. . . ]
Scientific knowledge thus appears to consist of isolated
islands. In the history of sciences, important advances

often come from bridging the gaps. They result from the
recognition that two hitherto separate observations can

be viewed from a new angle and seen to represent
nothing but different facets of one phenomenon.

This is one particularly brilliant way of explaining under-
standing, as a means to unification. The same idea is under-
scored by Antoine Danchin [2009b] who sees in it a measure
of scientific progress:

As Science progresses, there is a steady decrease in
the number of postulates on which it has to rely for its

development.

Finally, as a reaction to Fraņois Jacob’s argument, Uri
Alon [2003] draws an explicit bridge between biology and
engineering-based disciplines by noting a “fundamental sci-
entific challenge: understanding the laws of nature that unite
evolved and engineered systems”.

2. Transversal models

I
T so appears that transversality, as a response to a very
profound urge of humanity, is a very old concern.

Transversality is crucial in the scientific domain, to the
point that it can encompass non-scientific disciplines. For
instance, consider the tremendous impact of Design Pat-
terns, originating from the architectural work of Alexander
et al. [1977] on Software Engineering [Buschmann et al.
1996, 2007a,b; Gamma et al. 1994; Kircher and Jain 2004;
Schmidt et al. 2000]. Linda Rising [2009] recently described
how every computer scientist she knew was so excited about
the publication of the GoF book:

We were all so excited we literally rushed to the book
store. When I arrived there, the queue already extended

outside the store, up to the pavement.

Sometimes, a transversality (or trans-disciplinary) con-
cern is so deeply buried in our subconscious that we might
not even realize it is there, or at least not completely grasp
the extent to which it could be applied. With 30 years of ret-
rospect, one might reconsider the work of Lehman [1980],
undoubtedly a pioneer in the study of software evolution,
and remark that his vocabulary is very biology-oriented:
“life cycles”, “evolution”, “hostile environment” are just a

few examples. Interestingly enough, no reference to biologi-
cal studies appear in his founding paper (as we will see later,
biologists had already started to connect with computer sci-
ence at that time). His conclusion seems to indicate some
level of awareness on the transversality of his work, although
maybe not to the extent that would strike us today, as again,
there is no mention of biology:

Many of the concepts and techniques presented in
this paper could find wide applications outside the

specific area of software systems, in other industries,
and to the social and economic systems.

One particularly transversal topic in modern science, to-
day, is the study of networks. Steven H. Strogatz [2001] ex-
plains why:

The current interest in network is part of a broader
movement towards research on complex systems. In the

words of Edward O. Wilson [1998], “The greatest
challenge today, not just in cellular biology and ecology

but in all of science, is the accurate and complete
description of complex systems.

And so he concludes:

In the longer run, network thinking will become
essential to all branches of science as we struggle to

interpret the data pouring in from neurobiology,
genomics, ecology, finance and the World Wide Web.

As a computer scientist, I think I have always been fas-
cinated by transversality, perhaps without completely realiz-
ing it until recently, when I started the work described later
in this essay. My parents being both biologists, I also grew
up in this particular domain and I still feel a specific interest
in the connections between computer science and biology. It
so happens that these connections are both ancient and nu-
merous. This is what we are going to explore now.

3. From computer science to biology

I
N 1972, an interesting connection (not the first one) from
computer science to biology was established in relation

with the work of Alan Turing [1937] as described by Antoine
Danchin [2009b]:

Carl Woese [1972] attempted to associate the
downstream process of translation with the tape-reading

metaphor of the Turing Machine, linking it with the
creation of complexity during evolution.

Since then, many more bridges have been drawn, and bi-
ologists make a constant use of tools from computer science
to gain a better understanding of their research field. This
is particularly true in the recent domain of systems biology
[Alon 2007], in which the study of complex biological sys-
tems, such as a cell’s transcriptional regulatory network, re-
lies heavily on network and graph theories [Yan et al. 2010]:



Over the past decade, the study of networks has
emerged as an interdisciplinary research field [. . . ].

Networks not only serve as backbones to study the
emergent properties of complex systems, but they also

provide an abstract framework that facilitates the
cross-disciplinary comparison of different adaptive

complex systems, ranging from biological systems to
technological ones. Cross-disciplinary comparison

between biological systems and commonplace systems
such as organization hierarchies and engineering
devices should be of particular interest to systems

biologists.

Sometimes, the connections from computer science to bi-
ology bring us to puzzling extremes. For example, Iyer et al.
[2001] demonstrated that in the study of protein functions,
some experimental results might turn out to be less reliable
than computer-based simulations (“in-silico” experiments,
as Antoine Danchin would put it).

4. From biology to computer science

A
S biologists were getting inspiration from computer sci-
ence tools, ideas and models, the same thing happened

the other way around. One very early example of a connec-
tion from biology to computer science lies in the very term
“Object-Oriented”, the origin of which can be attributed to
Alan Kay [Kay 1993; Ram 2003], although its meaning has
largely diverged from its original one today:

It was probably in 1967 when someone asked me
what I was doing, and I said: “It’s object-oriented

programming”. [. . . ] I thought of objects being like
biological cells and/or individual computers on a

network, only able to communicate with messages.

Nowadays, many ideas and models from biology are used
in computer science. Artificial Intelligence [Norvig 1992],
most notably, is a discipline full of paradigms inspired by bi-
ology. Neural networks [Haykin 1994] get their inspiration
from the way the brain works and are commonly used in ap-
plications such as character recognition. Genetic algorithms
[Banzhaf et al. 1998] make computer programs evolve in
a Darwinian fashion. And of course, computer viruses are
similar to their biological counterparts in several ways, us-
ing hosts to replicate and spread themselves. These are just
a few examples.

5. Discovery vs. invention

A
T this point, it is worth taking a step back to reconsider
the very nature of the connections between computer

science and biology that we have just exhibited. In all cases,
the approach used by the scientist is a voluntary one. As
mentioned earlier, imagination helps a lot, but in the end,
there is always the will to grab a model here, and apply it
there. When biologists use statistical methods, network or

graph theories, they are purposedly applying “foreign” mod-
els to their own domain in order to get a better understanding
of it, and for instance, be able to predict the behavior of com-
plex biological systems. Conversely, when computer scien-
tists use neural networks or genetic algorithms, they are also
purposedly applying “foreign” models to their own domain
in order to be able to solve a problem that would otherwise
be difficult or simply impossible to solve with more conven-
tional means.

These kinds of connections can be seen as intentional
ones. They are made on purpose, with a very practical goal
in mind. But what if connections existed before we even
realized it? What if common, inherent behavioral patterns
were to be found in both computer science and biology? In
other words, are there any bridges to be discovered rather
than invented?

As a matter of fact, there are. Some of them have even
been suspected to exist for quite a while now. The notion of
“genetic program” dates back to the 60s, and the term “pro-
gram” refers explicitly to computer science. At that time,
however, the link between genetic and computer programs
was only seen as a metaphor. In a particularly illuminating
article, Antoine Danchin [2009b] explains that there is much
more to the genetic program than just a metaphor. He men-
tions the early involvement of information and Number The-
ory in biology, through the famous book by Douglas Hofs-
tadter [1979]: “Hofstadter showed that the genetic code [. . . ]
behaves exactly like Gödel’s code”. He further emphasizes
on the separation between the genetic program and the rest
of the cell, just as a computer program is separated from the
computer, hereby following the principles exposed by Tur-
ing [1946] and von Neumann [1958]. Evidence of this actual
separation is provided by several studies. For instance, suc-
cessful transplantation of an entire genome from one species
to another has been achieved [Lartigue et al. 2007]. In the
same vein, it has been experimentally proven possible to
have cells perform logical tasks [Buchler et al. 2003; Elowitz
and Leibler 2000]. Danchin further explains that it is this
very separation between the genetic program and its execu-
tion which allows for DNA molecules to be expressed in for-
eign cells, hence forming the basis of what is called “genetic
engineering”.

Antoine Danchin is not the only one to support the idea
that there is more to biology and computer science than
a simple metaphor. Uri Alon [2003] underscores that the
study of biological networks leads to the discovery of “good-
engineering principles in biochemical circuitry”, those prin-
ciples being modularity [Hartwell et al. 1999], robustness
[Savageau 1971] and “the use of recurring circuit elements”
[Fell 1997]. He also points out that in spite of the torments
of evolution, biological systems, however different, always
converge towards these engineering principles.

All of these points seem indeed to indicate that there
are patterns to be discovered rather than invented, which



link computer science and biology together. Not only those
links result from the will of applying trans-disciplinary mod-
els; some also pre-exist before our own awareness of them.
This is perhaps what is most fascinating about this kind of
transversal research. Discoveries, as opposed to inventions,
give you an even stronger feeling that there is an order in
the universe, far beyond our own comprehension. Every lit-
tle piece of newly acquired understanding makes you real-
ize that there is much more that you actually don’t know.
This idea can also be very scary, because it implicitly means
that in the end, we are not in control of anything. This may
not only explain the existence of myths and magic, but also,
in the scientific domain, the fact that unifying theories are
sometimes difficult to accept. For instance, Antoine Danchin
[2009b] mentions that “few investigators would easily ac-
cept that there is more than a crude metaphor behind the
analogy between cells and computers”.

6. Tinkerers or engineers (or both) ?

M
Y personal tale begins here, with this intimate, and
apparently shared conviction that there always was a

deep connection between biology and computer science, but
also, with this weird and frustrating feeling that something
still doesn’t quite add up. Something wrong in the picture. In
retrospect, I think it took me years to finally understand what
that feeling was. To be pedantically precise, it took me years,
one night, one dream, and a Monday morning. In order that
share that experience, we first need to shed some light on two
very interesting personalities: the tinkerer and the engineer.

Fraņois Jacob [1977] describes evolution and natural se-
lection as a tinkering process:

[Natural selection] works like a tinkerer — a
tinkerer who does not know exactly what he is going to

produce. [. . . ] Evolution behaves like a tinkerer who,
during eons upon eons would slowly modify his work

[. . . ] to adapt it progressively to its new use.

Jacob also underscores the fact that this tinkering process
contradicts the idea that Nature achieves perfection:

Evolution is far from perfection. This is a point
which was repeatedly stressed by Darwin who had to

fight against the argument of perfect creation. In Origin
of Species, Darwin [1859] emphasizes over and over

again the structural or functional imperfections of the
living world.

Retrospectively, I think that I did not really understand
what this all meant until that very first echography of my
daughter. It took me that to realize the extent to which
Nature is imperfect. Sometimes, you have to get involved
with your own guts to understand things. To understand
that the simple birth of a viable child is in fact a miracle
of Nature (some old studies [Boue and Boue 1975] have
demonstrated that half of all conceptions are estimated to
result in spontaneous abortion, and usually go unnoticed).

Because of the inherent imperfection of Nature, Fraņois
Jacob [1977] also denies the comparison of natural selection
with that of an engineered process:

The action of natural selection has often been
compared to that of an engineer. This, however, does not

seem to be a suitable comparison [. . . ] because the
engineer works according to a pre-conceived plan [and]
because the objects produced by the engineer, at least by
the good engineer, approach the level of perfection made

possible by the technology of the time.

This point of view doesn’t feel right however. Are we
really engineers, as biologists like to see us, or are we in fact
just tinkerers? Or both? As software developers, do we really
work according to a “pre-conceived plan”? Is our software
really approaching “the level of perfection made possible
by the technology of our time”? The more I thought about
it, the more it sounded unrealistic. On the contrary, as I
grew up as a computer scientist, I realized more and more
every day how imperfect the software I worked on (or with)
was. As one of the core maintainers of the XEmacs1 text
editor, I can tell how imperfect the code-base is, with herds
of developers having followed each other over time, and no-
one understanding the application as a whole anymore. As
a contributor to many other free software projects, I can tell
how the majority of them, however well designed originally,
turn into a collection of layers of patches on top of layers
of patches eventually, making software evolution strangely
resembling that of the human brain: a “superposition of new
structures on old ones” as Jacob puts it.

7. The trigger

O
NE last but particularly striking example is that of the
LATEX typographic system. As a maintainer of several

LATEX packages, I can tell how messy the LATEX world is, but
perhaps I should let David Kastrup do so instead [Walden
2006], in his typically eloquent and picturesque fashion:

It is a wildly inconsistent mishmash and hotchpotch
of ad-hoc primitives and algorithmic solutions without
noticeable streamlining and general concepts. A thing

like a pervasive design or elegance is conspicuously
absent. You can beat it around to make it fit most

purposes, and even some typesetting purposes, but that
is not perfection.

[. . . ] have you taken a look at the complicated mess that
the LATEX core is, all with fragile and robust commands

and encodings and whatever else?

The case of LATEX is important because it is through it
that I eventually came to realize what had been bothering
me for years: there is a common pattern between biology
and computer science which goes the opposite way of what
is most commonly acknowledged.

1 http://www.xemacs.org



Sometimes, we are much more tinkerers than we are
engineers.

Because the LATEX world is composed of thousands of
software components like classes and styles, every LATEX
user faces the “compatibility nightmare” one day or another.
With such great intercession capability at hand (LATEX code
being able to redefine itself at will), a time comes inevitably
when the compilation of a document fails, due to class/style
conflict. I tried several times to come up with a systematic
approach, or at least some general principles on how to
handle class/style cross-compatibility in a smooth and gentle
manner, but ultimately failed, because the situation is just too
complex.

Classes and styles are born, die, interact with each other,
compete or cooperate, very much as living organisms do at
the cellular level. Classes and styles evolve constantly, some-
times even in a backward-incompatible way. Styles may con-
flict not only with classes but with other styles as well. Styles
may be made aware of classes or other styles, but classes
may be made aware of styles as well. Then, there is the influ-
ence of the end-user who will combine all available material
in a rather unpredictable way, possibly with his/her own per-
sonal additions, or even modifications to the available fea-
tures.

This vicious circle basically never ends and leads to a
paradoxical “If it ain’t broke, then fix it” situation in which
complex trickery is added to classes or styles, not to make
them work out of the box, but to prevent potential breakages
resulting from interactions with the outside world. In the
end, the only realistic conclusion is that there is no solution
to this problem, both because the system is too liberal, and
because the human factor is too important. One cannot force
a package author to write good quality (for some definition
of “quality”), non-intrusive or even just bug-free code. One
cannot force a package author to keep track of all potential
conflicts with the rest of the LATEX world, let alone fixing all
of them by anticipation. One simply cannot prevent software
evolution.

Facing this somewhat pessimistic conclusion, it is all the
more intriguing to acknowledge the fact that the system
still globally works (free software works, indeed [Raymond
1999]). Despite the complexity of what happens behind the
curtain, documents are being produced, and in some way,
seeing a freshly compiled document pop up on the screen is
like witnessing a miracle of Nature. When it doesn’t com-
pile, you don’t really know why, but when it does compile,
you really don’t know why. In spite of all the things that
could go wrong, viable LATEX documents can be produced,
just as viable babies can be born. That, was my trigger.

It was after a Sunday evening of struggle with the CurVe
class2 which was conflicting with whatever style at that time.
I was so frustrated to have lost my evening on yet another

2 http://lrde.epita.fr/~didier/software/latex.php

completely idiotic conflict that it pretty much ruined my
night. I probably slept ruminating on the mess that LATEX
is, and the next Monday morning, I woke up after dreaming
about my daughter’s echography and at the same time with
this vision of the LATEX biotope, an emergent phenomenon
whose global behavior cannot be comprehended, because it
is in fact the result of a myriad of “macro”-interactions be-
tween smaller entities, themselves in perpetual evolution. I
literally saw LATEX documents as living beings defined by
some geneTEX material (a term which I coined for the occa-
sion) provided by their class, constantly evolving in order to
survive gazillions of \renewcommand attacks inflicted upon
them by those nasty little viruses called styles.

I also instantly knew that there was more to this vision
than a simple metaphor. So I started to dig. I started to learn
about cells and viruses and as my knowledge was increasing,
I went from discovery to discovery. Ultimately, this research
led to the publication of an article [Verna 2010] at the TEX
Users Group conference, for the 25th (32th) birthday of TEX.
The interested reader may retrieve this article online3.

Part II

Ascension
8. The engineer as a tinkerer

L
ET us take a retrospective tour of what our Holy Quest
of the Common Pattern has brought us. In “Evolution

and Tinkering”, Fraņois Jacob [1977] was arguing that Na-
ture works by tinkering, as opposed to engineering (which
means planning and aiming towards perfection). In “Bio-
logical Networks: The Tinkerer as an Engineer”, Uri Alon
[2003] notes that under this assumption, it is very surprising
to discover good engineering practice in evolved biological
systems. In “Bacteria as Computers Making Computers”,
Antoine Danchin [2009b] goes even farther by exhibiting
a very profound connection between living organisms and
computers, between genetic code and software programs.
What my personal tale has brought me, though, is a com-
pletely opposite vision of those things: some computer sci-
ence systems behave as biological ones, instead of the other
way around. In other words, for as much as the “Tinkerer as
an Engineer” view is valid, so is the “Engineer as a Tinkerer”
one. And I think that we, as computer scientists, should give
much more credit to this view of things than what we are
presently willing to.

How to do so? To quote Alon [2003] again: “The pro-
gram of molecular biology is reverse-engineering on a grand
scale”. Well, if we are to restore the balance, we, as computer
scientists, need to reverse-tinker our software systems on a

3 http://lrde.epita.fr/~didier/research/publis.php#verna.
10.tug



grand scale just as well. Not only for the LATEX world. In do-
ing so, we may very well discover some disturbing evidence
on how our own creation actually works, and by that, hope-
fully sched some new light on software evolution in general
[Brooks 1975; Lehman 1980].

Fortunately, the “engineer as a tinkerer” view, in other
words, the biology-oriented perspective on software evolu-
tion seems to be gaining some momentum. Stephanie Forrest
[2010] for instance, seems to acknowledge this perspective:

As programmers, we like to think of software as the
product of our intelligent design, carefully crafted to
meet well-specified goals. In reality, software evolves
inadvertently through the actions of many individual

programmers, often leading to unanticipated
consequences. Large complex software systems are

subject to constraints similar to those faced by evolving
biological systems, and we have much to gain by viewing

software through the lens of evolutionary biology.

But how can we explain that so many people are still
reluctant to embrace this perspective then? How is it that we
still “like to think of software as the product of our intelligent
design”? Probably because there is a widespread confusion
between determinism and predictability.

9. Determinism vs. predictability

C
OMPUTER scientists evolve in an intrinsically determin-
istic environment. The computer is like the Terminator,

blindly and coldly executing the instructions that it has been
given. When the computer does not do what we want, it still
does what the software tells it to do. In turn, the software is
just what we wrote, and sometimes, what we wrote may not
be exactly what we intended to write. But the computer will
still obey the instructions it has been given. When there is
a bug (and there are [Hovemeyerand and Pugh 2004]!), the
bug is not in the computer, but in the computer scientist who
has programmed it.

Yet, we have a tendency to think that because the ma-
chine is so deterministic, its behavior is also completely
predictable. This is unfortunately not true. How can I pre-
dict that my program is going to execute normally when
there is in fact a bug in the compiler that I have used? If I
change the name of one internal macro in my CurVe class for
LATEX 2ε, how can I predict that this new version will not
introduce a clash with one of the 3000+ classes or styles in
the TEXlive distribution4, let alone with every single user’s
internal hacks? Although determinism can certainly help in
explaining behaviors a posteriori, it certainly is no crystal
ball.

In that context, the unpredictability problem is to be seen
in relation with the notion of deterministic chaos (or “butter-
fly effect”, a term attributed to meteorologist Lorentz) [Hey-
lighen 2002]:

4 http://www.tug.org/texlive

In the last few decades, physicists have become
aware that even the systems studied by classical

mechanics can behave in an intrinsically unpredictable
manner. Although such a system may be perfectly

deterministic in principle, its behavior is completely
unpredictable in practice. This phenomenon was called

deterministic chaos.

Because of its non-linear nature, a chaotic system would
require an extensive (possibly infinitely precise) knowledge
of its initial or current conditions in order to be able to pre-
dict its behavior. Unfortunately, this knowledge is often im-
possible to acquire. For instance, it is clearly not possible to
know the exact topology of every LATEX installation on Earth,
in order to predict whether a specific change in a style will
introduce a new clash somewhere. The LATEX ecosystem, in
fact, is currently in a state of deterministic chaos, probably
as are many other complex software systems.

According to Antoine Danchin [2009b], the lack of dis-
tinction between determinism and predictability seems to af-
fect Biology just as well. The reductionists [Lewontin 1993]
deny the possibility of a deterministic molecular biology
because they think it would render Nature completely pre-
dictable. On the contrary, Danchin stipulates that the “lack
of prediction is not due to a lack of determinism, but to a
creative action that results in novel information”, hereby also
arguing that information [Shannon and Weaver 1949] should
be regarded as a first-class ingredient of Nature, along with
energy, matter, space and time. Danchin also underscores
that a key ingredient in creating “novel information” lies
in such controversial topics as adaptive mutations [Cairns
and Miller 1988; Danchin 1988], in essence, genetic pro-
grams resulting in creating new genetic programs or modi-
fying themselves. This is in fact a well known behavior in
high level reflexive programming languages. It is known as
intercession.

10. Predictability vs. control

U
NPREDICTABILITY doesn’t quite answer the question
though. After all, unpredictability can be an achieve-

ment of it own. For instance, the ability of artificial intel-
ligence, through machine learning, to deliver programs that
fulfill their goal in an unpredictable way is considered a suc-
cess. So why is it, really, that we still don’t want to see the
biological realm there is in computer science? Apart from
the tinkering aspect, which is obviously not very shiny, a
deeper reason lies in the notion of control.

Biologists (in fact, humans in general) knew from the
start that they didn’t have any kind of control on their field
of investigation. How can we possibly control the creation
of Nature when we are in fact part of that very creation?
If we could, we would be Gods. There was a time, on the
other hand, when computers were so limited that the whole
chain, from the program to the electrical signals crossing
the transistors, was under the control of a single person. In



a simple system, determinism leads to predictability which
in turn provides control. And we love to be in control. The
problem is that we still more or less think that this assertion
is valid. To quote Gabriel and Goldman [2006]:

We feel we are in control of our current software
applications because they are the result of a conscious

design process based on explicit specifications and they
undergo rigorous testing.

But at the same time, we have to face the truth: as soft-
ware complexity increases, we lose control over it. The fact
that it can be so frustrating to lose control proves that we
are aware of it already, at least partially. Frustration? Yes, al-
though maybe coupled with a feeling of shame, because con-
trary to the biologists, what we lose control on is a product
of our own creation (or is it?). Gabriel and Goldman [2006]
also quote Weizenbaum [1976] about this:

The programmer moves in a world entirely of his
own making. [. . . ] Indeed, the compulsive programmer’s
excitement rises to a fevered pitch when he is on the trail

of a most recalcitrant error, when everything ought to
work but the computer nevertheless reproaches him by

misbehaving in a number of mysterious, apparently
unrelated ways. It is then that the system the

programmer has created gives every evidence of having
taken on a life of its own, and certainly, of having

slipped from his control. [. . . ] For, under such
circumstances, the misbehaving artifact is, in fact, the

programmer’s own creation.

However frustrated and shameful we might feel, maybe
we should consider the possibility that we will never regain
control on our software. Many examples already show this
trend. In my personal experience, I estimate that 80% of the
time I spent on LATEX recently was devoted, not to actually
develop the software, but to fix conflicts and incompatibili-
ties. In other words, because the software is out of control,
it spends most of its time on the surgeon’s table instead of
growing as a normal “living” being. Therefore it should be
clear that by desperately trying to regain control over it, what
I did was in fact to prevent its development and evolution,
not unlike a overly possessive parent would imprison their
child.

11. Rise of the machines

I
F we are to loose control of our software, then who is
going to control it? The only possible answer to this

question is both fascinating and scary: the software needs to
control itself. Science-fiction authors have been developing
this idea for a long time, and beyond just software, to the ex-
tent of complete autonomous machines (robots). Computers
making computers in some way. Interestingly enough, our
fear of losing control is very apparent in such science-fiction
showpieces as Terminator, Matrix or Battlestar Galactica, as

every time we lose control on our machines, it leads to a
disaster5.

Is our software already in control of itself? Not by a long
shot, and here again, biology precedes us. Antoine Danchin
[2009b] explains that:

the paleome includes a set of genes that are not
essential for life under laboratory growth conditions

[Fang et al. 2005]. Many of these genes code for
maintenance and repair, and may be involved in
perpetuating life by restoring accuracy and even

creating information during the reproduction process
[Danchin 2009a].

Maintenance and repair. This sounds pretty much like
what I’ve been doing 80% of the time on my LATEX pack-
ages recently. The only difference is that whereas I am do-
ing it manually, biological cells seem to do it automatically.
Therefore, we can argue that the machines will have risen for
good when they are able to control themselves, watch over
themselves, maintain and repair themselves, in other words,
recreate themselves perpetually. This vision of reflexive sys-
tems is called autopoiesis by Maturana [1981] and a partic-
ularly fascinating vision of such a future for our software is
given by Gabriel and Goldman [2006] in their essay “Con-
scientious Software”.

12. Darwin’s radio

I
N a way, software has already started to take control
over itself, although in a rather limited fashion yet. Peo-

ple are investigating on using techniques inspired from biol-
ogy in order to provide for automatic program maintenance
and repair [Weimer et al. 2010]. Garbage collection is an
example of a process by which the system “fixes” its own
memory leaks, by removing explicit control over memory
allocation/deallocation from the programmer. The program-
mer loses control, the program gets it. Gabriel and Goldman
[2006] also point out that the notion of garbage collection
actually appeared out of John McCarthy’s desire to not con-
trol the memory explicitly. In other words, his desire to yield
control to the machine [McCarthy 1978].

The garbage collection example is interesting because it
reifies the idea of a system watching over itself: when you
deliver a Lisp application for instance, you deliver not only
the part which does the actual work, but also a part which
is supposed to maintain the whole thing in a healthy state
with respect to memory management. We could also argue
that the ability of Lisp to deliver applications embedding a
compiler and even a debugger go more or less along with the
same lines. The global system is delivered with parts that are

5 One notable exception to this rule is the famous character Data in Star
Trek. Data considers himself imperfect because he doesn’t feel emotion,
and only strives for more humanity. It is amusing to realize that his notion
of perfection actually consists in inheriting the flaws of his creator. Being
as imperfect as Nature can be.
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Figure 1. Meta-system transition

devoted to maintenance and repair of the system itself, rather
than just focusing on the task to perform.

A part of a system in charge of controlling the rest of it
can be called a meta-system, which brings an interesting par-
allel with the notion of “meta-system transition”, a concept
originally developed by Valentin Turchin [Heylighen et al.
1995; Turchin 1977]. Starting from a set of systems S (fig-
ure 1), a meta-system transition is the essentially recursive
process by which those systems are agglomerated and col-
lectively supervised by an additional control module, in or-
der to form an upper-level system S′.

The classic example in biology is the emergence of mul-
ticellular organisms, through a process of (cell) duplication,
differentiation and establishment of control. In such a case,
the transition is homogeneous. A case of heterogeneous tran-
sition would be based on the agglomeration of originally dif-
ferent and independent organisms, such as those living in
symbiosis.

The use of the meta-system transitions theory to model
evolution exhibits a process by which systems of increasing
complexity emerge spontaneously:

Most of the time this complexity increase, and
evolution in general, occurs rather slowly or

continuously, but during certain periods evolution
accelerates spectacularly. This results in changes which

from a long term perspective may be viewed as
momentous events, separating discrete types of

organization.

In a fascinating science-fiction (not so much!) novel,
“Darwin’s Radio”, Greg Bear depicts the sudden birth of
a new subspecies of humans, a phenomenon surprisingly
close to a meta-system transition.

I think we have much to gain by regarding software evo-
lution in terms of meta-system transitions. The introduction
of garbage collection, for instance, can be considered as one.
I have the feeling that our software might be on the verge of

a new transition, towards complete autonomy, that is. As we
have seen already, more and more people are starting to work
in that direction. Whereas the “rise of the machines” is still
regarded as science-fiction, it seems that the process has in
fact already started. As our software grows more complex
and less controllable, it looks very much as if new meta-
systems were emerging, only without proper control mod-
ules yet. It’s up to us to invent them.

Epilogue

T
his journey in the transversal world of biology and computer

science has brought me a lot of things. For one, I hadn’t
realized to what extent concepts from engineering are applicable to
biology. More and more biologists seem to acknowledge the intricate
relations between those two worlds. Some of them push the relation
as far as considering cells as computers and claiming that life may
turn out to be understandable, if not predictable. I have also come to
realize that the opposite view is true however. For as much as there’s
computer science in biology, there’s also biology in computer science.
Nature is engineered as much as software is tinkered, and I think we
need to acknowledge that much more than we are currently willing
to.

It may help to eventually realize that the silicon-based world
is much more biological than we ever would have thought, and as
such, maybe we haven’t actually invented it. Only discovered it. A
biological realm we didn’t want to think about before.

It also seems that we are living in an era of paradox. Because
complexity can only increase, we are gradually losing control on
our software, as it grows bigger, more versatile, more reactive, more
expressive. This is to the point, now, that it may be worth considering
not to try and control it anymore, but to program it to control
itself. Software making software to control software. It is a paradox
because we usually like to think that understanding means prediction
and hence control. On the contrary, it appears that the more we
understand the world, whether carbon-based or silicon-based, the
more we realize that we may need to let go of control. But do we
really want to do that? Is it really a good thing? This question alone
is probably worth another complete story. . .
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