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ABSTRACT

In traditional object-oriented languages, the dynamic dispatch al-
gorithm is hardwired: for every polymorphic call, only the most
speci�c method is used. Clos, the Common Lisp Object System,
goes beyond the traditional approach by providing an abstraction
known as method combinations: when several methods are applica-
ble, it is possible to select several of them, decide in which order
they will be called, and how to combine their results, essentially
making the dynamic dispatch algorithm user-programmable.

Although a powerful abstraction,method combinations are under-
speci�ed in the Common Lisp standard, and the Mop, the Meta-
Object Protocol underlying many implementations of Clos, wors-
ens the situation by either contradicting it or providing unclear pro-
tocols. As a consequence, too much freedom is granted to conform-
ing implementations. The exact or intended behavior of method
combinations is unclear and not necessarily coherent with the rest
of Clos.

In this paper, we provide a detailed analysis of the problems
posed by method combinations, the consequences of their lack of
proper speci�cation in one particular implementation, and a Mop-
based extension called method combinators, aiming at correcting
these problems and possibly o�er new functionality.
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1 INTRODUCTION

Common Lisp was the �rst programming language equipped with
an object-oriented (OO) layer to be standardized [16]. Although
in the lineage of traditional class-based OO languages such as
Smalltalk and later C++ and Java, Clos, the Common Lisp Ob-
ject System [2, 5, 7, 9], departs from those in several important
ways.

First of all, Clos o�ers native support for multiple dispatch [3, 4].
Multiple dispatch is a generalization of single dispatch a.k.a. inclu-
sion polymorphism [12]. In the classic message-passing style of
single dispatch, the appropriate method is selected according to the
type of the receiver (the object through which the method is called).
In multiple dispatch however, the method selection algorithm may
use as many arguments as requested in the generic call. Because this
kind of polymorphism doesn’t grant any object argument a particu-
lar status (message receiver), methods (herein calledmulti-methods)
are naturally decoupled from classes and generic function calls
look like ordinary function calls. The existence of multi-methods
thus pushes dynamic dispatch one step further in the direction of
separation of concerns: polymorphism and inheritance are clearly
separated.

Next, Clos itself is written on top of a meta-object protocol, the
Clos Mop [10, 13]. Although not part of the ANSI speci�cation,
the Clos Mop is a de facto standard well supported by many imple-
mentations. In supporting implementations, the Mop layer not only
allows for Clos to be implemented in itself (classes being instances
of their meta-classes etc.), but also lets the programmer extend or
modify its very semantics, hence providing a form of homogeneous
behavioral re�ection [11, 14, 15].

Yet another improvement over the classical OO approach lies
in the concept of method combination. In the traditional approach,
the dynamic dispatch algorithm is hardwired: every polymorphic
call ends up executing the most speci�c method available (appli-
cable) and using other, less speci�c ones requires explicit calls to
them. In Clos however, a generic function can be programmed to
implicitly call several applicable methods (possibly all of them), not
necessarily by order of speci�city, and combine their results (not
necessarily all of them) in a particular way. Along with multiple
dispatch, method combinations constitute one more step towards
orthogonality [8, chapter 8]: a generic function can now be seen as
a 2D concept: 1. a set of methods and 2. a speci�c way of combin-
ing them. As usual with this language, method combinations are
also fully programmable, essentially turning the dynamic dispatch
algorithm into a user-level facility.

Richard P. Gabriel reports1 that at the time Common Lisp was
standardized, the standardization committee didn’t believe that

1in a private conversation
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(defgeneric details (human)
(:method-combination append :most-specific-last))

(defmethod details append ((human human)) ...)
(defmethod details append ((employee employee)) ...))

Figure 1: Short Method Combination Usage Example

method combinations were mature enough to make people im-
plement them in one particular way (the only industrial-strength
implementation available back then was in Flavors on Lisp Ma-
chines). Consequently, they intentionally under-speci�ed them in
order to leave room for experimentation. At the time, the Mop was
not ready either, and only added later, sometimes with unclear or
contradictory protocols. The purpose of this paper is to provide a
detailed analysis of the current status of method combinations, and
also to o�er possible improvements over them.

Section 2 provides a detailed analysis of the speci�cation for
method combinations (both Clos and the Mop) and points out
its caveats. Section 3 describes how Sbcl2 implements method
combinations, and exhibits some of their inconsistent or unfor-
tunate (although conformant) behavior. Sections 4 and 5 provide
an extension to method combinations, called method combinators,
aimed at �xing the problems previously described. Finally, Section 6
demonstrates an additional feature made possible with method com-
binators, which increases yet again the orthogonality of generic
functions in Common Lisp.

2 METHOD COMBINATIONS ISSUES

In this section, we provide an analysis of how method combina-
tions are speci�ed and point out a set of important caveats. This
analysis is not only based on what the Common Lisp standard
claims, but also on the additional requirements imposed by the
Clos Mop. In the remainder of this paper, some basic knowledge
on method combinations is expected, notably on how to de�ne
them in both short and long forms. The reader unfamiliar with
define-method-combination is invited to look at the examples
provided in the Common Lisp standard �rst3.

2.1 Lack of Orthogonality

As already mentioned, method combinations help increase the sep-
aration of concerns in Common Lisp’s view on generic functions.
The orthogonality of the concept goes only so far however, and
even seems to be hindered by the standard itself occasionally. This
is particularly true in the case of method combinations de�ned in
short form (or built-in ones, which obey the same semantics).

Figure 1 demonstrates the use of the append built-in combina-
tion, concatenating the results of all applicable methods. In this
particular example, and given that employees are humans, calling
details on an employee would collect the results of both methods.
Short combinations require methods to have exactly one quali�er:
either the combination’s name for primary methods (append in our
example), or the :around tag4. This means that one cannot change
a generic function’s (short) method combination in a practical way,
2http://www.sbcl.org
3http://www.lispworks.com/documentation/lw70/CLHS/Body/m_de�_4.htm
4http://www.lispworks.com/documentation/lw70/CLHS/Body/07_�d.htm

as it would basically render every primary method unusable (the
standard also mandates that an error be signaled if methods without
a quali�er, or a di�erent one are found). Hence, method combina-
tions are not completely orthogonal to generic functions. On the
other hand, :around methods remain valid after a combination
change, a behavior inconsistent with that of primary methods.

Perhaps the original intent was to improve readability or safety:
when adding a new method to a generic function using a short
method combination, it may be nice to be reminded of the com-
bination’s name, or make sure that the programmer remembers
that it’s a non-standard one. If such is the case, it also fails to do so
in a consistent way. Indeed, short method combinations support
an option a�ecting the order in which the methods are called, and
passed to the :method-combination option of a defgeneric call
(:most-specific-first/last, also illustrated in Figure 1). Thus,
if one is bound to restate the combination’s name anyway, why not
restate the potential option as well? Finally, one may also wonder
why short method combinations didn’t get support for :before
and :after methods as well as :around ones.

Because short method combinations were added to enshrine
common, simple cases in a shorter de�nition form, orthogonality
was not really a concern. Fortunately, short method combinations
can easily be implemented as long ones, without the limitations
exhibited in this section (see Appendix A).

2.2 Lack of Structure

The Common Lisp standard provides a number of concepts related
to object-orientation, such as objects, classes, generic functions, and
methods. Such concepts are usually gracefully integrated into the
type system through a set of classes called system classes. Generic
functions, classes, and methods are equipped with two classes: a
class named C serving as the root for the whole concept hierarchy,
and a class named standard-C serving as the default class for ob-
jects created programmatically. In every case, the standard explicitly
names the APIs leading to the creation of objects of such standard
classes. For example, standard-method is a subclass of method
and is “the default class of methods de�ned by the defmethod and
defgeneric forms”5.

Method combinations, on the other hand, only get one standard-
ized class, the method-combination class. The Mop further states
that this class should be abstract (not meant to be instantiated), and
also explicitly states that it “does not specify the structure of method
combination metaobjects”[10, p. 140]. Yet, because the standard also
requires that method combination objects be “indirect instances”
of the method-combination class6, it is mandatory that subclasses
are provided by conforming implementations (although no pro-
visions are made for a standard-method-combination class for
instance). Although this design may seem inconsistent with the
rest of Clos, the idea, again, was to leave room for experimen-
tation. For example, knowing that method combinations come in
two forms, short and long, and that short combinations may be
implemented as long ones, implementations can choose whether
to represent short and long combinations in a single or as separate
hierarchies. The unfortunate consequence, however, is that it is

5http://www.lispworks.com/documentation/lw70/CLHS/Body/t_std_me.htm
6http://www.lispworks.com/documentation/lw70/CLHS/Body/t_meth_1.htm

http://www.sbcl.org
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http://www.lispworks.com/documentation/lw70/CLHS/Body/07_ffd.htm
http://www.lispworks.com/documentation/lw70/CLHS/Body/t_std_me.htm
http://www.lispworks.com/documentation/lw70/CLHS/Body/t_meth_1.htm
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impossible to specialize method combinations in a portable way,
because implementation-dependent knowledge of the exact method
combination classes is needed in order to subclass them.

Yet another unfortunate consequence of this under-speci�cation
lies in whether method combinations should be objects or classes
to be instantiated, although the original intent was to consider
them as some kind of macros involved in method de�nition. The
Common Lisp standard consistently talks of “method combina-
tion types”, and in particular, this is what is supposed to be cre-
ated by define-method-combination7. This seems to suggest
the creation of classes. On the other hand, method combina-
tions can be parametrized when they are used. The long form
allows a full ordinary lambda-list to be used when generic func-
tions are created. The short form supports one option called
:identity-with-one-argument, in�uencing the combination’s
behavior at creation-time (originally out of a concern for e�ciency),
and another one, the optional order argument, to be used by generic
functions themselves. The long form also has several creation-time
options for method groups such as :order and :required, but it
turns out that these options can also be set at use-time, through
the lambda-list.

2.3 Unclear Protocols

The third and �nal issue we see with method combinations is that
the Mop, instead of clarifying the situation, worsens it by providing
unclear or inconsistent protocols.

2.3.1 find-method-combination. In Common Lisp, most
global objects can be retrieved by name one way or another. For
example, symbol-function and symbol-value give you access to
the Lisp-2 namespaces [6], and other operators perform a similar
task for other categories of objects (compiler-macro-function
being an example). The Common Lisp standard de�nes a num-
ber of find-* operators for retrieving objects. Amongst those are
find-method and find-class which belong to the Clos part of
the standard, but there is no equivalent for method combinations.

The Mop, on the other hand, provides a generic function called
find-method-combination [10, p. 191]. However, this protocol
only adds to the confusion. First of all, the arguments to this func-
tion are a generic function, a method combination type name, and
some method combination options. From this prototype, we can
deduce that contrary to find-class for example, it is not meant to
retrieve a globally de�ned method combination by name. Indeed,
the description of this function says that it is “called to determine
the method combination object used by a generic function”. Exactly
who calls it and when is unspeci�ed however, and if the purpose
is to retrieve the method combination used by a generic function,
then one can wonder what the second and third arguments (method
combination type and options) are for, and what happens if the
requested type is not the type actually used by the generic func-
tion. In fact, the Mop already provides a more straightforward
way of inquiring a generic function about its method combina-
tion. generic-function-method-combination is an accessor do-
ing just that.

7http://www.lispworks.com/documentation/lw70/CLHS/Body/m_de�_4.htm

2.3.2 compute-effective-method. Another oddity of method
combinations lies in the design of the generic function invocation
protocol. This protocol is more or less a two steps process. The
�rst step consists in determining the set of applicable methods for
a particular call, based on the arguments (or their classes). The
Common Lisp standard speci�es a function (which the Mop later
re�nes), compute-applicable-methods, which unsurprisingly ac-
cepts two arguments: a generic function and its arguments for
this speci�c call. The second step consists in computing (and then
calling) the e�ective method, that is, the combination of applicable
methods, precisely combined in a manner speci�ed by the generic
function’s method combination. While the Common Lisp standard
doesn’t specify how this is done, the Mop does, via a function called
compute-effective-method. Unsurprisingly again, this function
accepts two arguments: a generic function and a set of (applicable)
methods that should be combined together. More surprisingly how-
ever, it takes a method combination as a third (middle) argument.
One can’t help but wonder why such an argument exists, as the
generic function’s method combination can be retrieved through
its accessor which, as we saw earlier, is standardized. Here again,
we may be facing a aborted attempt at more orthogonality. Indeed,
this protocol makes it possible to compute an e�ective method
for any method combination, not just the one currently in use by
the generic function (note also that the Mop explicitly mentions
that compute-effective-method may be called by the user [10,
p. 176]). However, the rest of Clos or theMop doesn’t support using
compute-effective-method in this extended way. It is, however,
an incentive for more functionality (see Section 6).

2.3.3 Memoization. One �nal remark in the area of protocols
is about the care they take for performance. The Mop describes
precisely how and when a discriminating function is allowed to
cache lists of applicable methods [10, p. 175]. Note that nothing
is said about the location of such a cache however (within the
discriminating function, in a lexical closure over it, globally for
every generic function etc.), but it doesn’t really matter. On the other
hand, the Mop says nothing about caching of e�ective methods.
This means that conforming implementations are free to do what
they want (provided that the semantics of Clos is preserved). In
particular, if caching of e�ective methods is done, whether such a
cache is maintained once for every generic function, or once for
every generic function/method combination pair is unspeci�ed.
This is rather unfortunate, both for separation of concerns, and also
for the extension that we propose in Section 6.

3 THE CASE OF SBCL

In this section, we analyse Sbcl’s implementation of Clos, and
speci�cally the consequences of the issues described in the previous
section. Note that with one exception, the analysis below also stands
for Cmucl8 from which Sbcl is derived, and which in turn derives
its implementation of Clos from Pcl [1].

3.1 Classes

The Sbcl method combination classes hierarchy is depicted in Fig-
ure 2. It provides the standard-method-combination class that

8https://www.cons.org/cmucl/
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standard-method-combination

type-name
options

short-method-combination

operator
identity-with-one-argument

long-method-combination

function
args-lambda-list

Figure 2: Sbcl Method Combination Classes Hierarchy

was missing from the standard (see Section 2.2), although this class
doesn’t serve as the default implementation for method combina-
tions, as two subclasses are provided for that, one for each com-
bination form. The options slot in the base class stores the use-
time options (the ones passed to the :method-combination option
to a defgeneric call). New method combination de�nitions are
not represented by new classes; only by instances of either the
short or long-method-combination ones. As a result, method
combinations retrieved later on are objects containing a mix of
de�nition-time and use-time options.

3.2 Short Method Combinations

Investigating how short method combinations are created in Sbcl
uncovers a very peculiar behavior. define-method-combination
expands to a call to load-short-defcombin, which in turn creates
a method on find-method-combination, eql-specialized on the
combination’s name and ignoring its �rst argument (the generic
function). This method is encapsulated in a closure containing the
method combination’s parameters, and recreates and returns a new
method combination object on the �y every time it is called.

This has at least three important consequences.

(1) Short method combinations never actually globally exist
per se (they don’t have a namespace proper). Indeed, what is
de�ned is not a method combination object (not even a class),
but a means to create one on-demand. In particular, every
generic function gets its own brand new object representing
its method combination.

(2) find-method-combination neither does what its name sug-
gests, nor what the Mop seems to imply. Indeed, because the
generic function argument is ignored, it doesn’t “determine
the method combination object used by a generic function”,
but just creates whatever method combination instance you
wish, of whichever known type and use-time option you
like.

(3) It also turns out that rede�ning a short method combina-
tion (for example by calling define-method-combination
again) doesn’t a�ect the existing generic functions using it
(each have a local object representing it). This is in contradic-
tion with how every other Clos component behaves (class
changes are propagated to live instances, method rede�ni-
tions update their respective generic functions etc.).

3.3 Long Combinations

The case of long method combinations is very similar, although
with one additional oddity. Originally in Pcl (and still the case in
Cmucl), long method combinations are compiled into so-called
combination functions, which are in turn called in order to com-
pute e�ective methods. In both Pcl and Cmucl, these functions
are stored in the function slot of the long method combination
objects (see Figure 2). In Sbcl however, this slot is not used any-
more. Instead, Sbcl stores those functions in a global hash table
named *long-method-combination-functions* (the hash keys
being the combination names). The result is that long method com-
binations are represented half-locally (local objects in generic func-
tions), half-globally with this hash table.

Now suppose that one particular long method combination is re-
de�ned while some generic functions are using it. As for the short
ones, this rede�nition will not (immediately) a�ect the generic
functions in question, because each one has its own local object rep-
resenting it. However, the combination function in the global hash
table will be updated. As a result, if any concerned generic function
ever needs to recompute its e�ectivemethod(s) (for instance, if some
methods are added or removed, if the set of applicable methods
changes from one call to another, or simply if the generic function
needs to be reinitialized), then the updated hash table entry will be
used and the generic function’s behavior will indeed change accord-
ing to the updated method combination. With e�ective methods
caching (as is the case in Sbcl) and a little (bad) luck, one may even
end upwith a generic function using di�erent method combinations
for di�erent calls at the same time (see Appendix B).

4 METHOD COMBINATORS

In this section, we propose an extension to method combinations
called method combinators, aiming at correcting the problems de-
scribed in Sections 2 and 3. Most importantly, method combinators
have a global namespace and generic functions using them are
sensitive to their modi�cation. Method combinators come with a
set of new protocols inspired from what already exists in Clos, thus
making them more consistent with it. As an extension to method
combinations, they are designed to work on top of them, in a non-
intrusive way (regular method combinations continue to work as
before). Finally, their implementation tries to be as portable as pos-
sible (although, as we have already seen, some vendor-speci�c bits
are unavoidable).

4.1 Method Combinator Classes

Figure 3 depicts the implementation of method combinators in Sbcl.
We provide two classes, short/long-method-combinator, them-
selves subclasses of their corresponding, implementation-dependent,
method combination classes. A method-combinator-mixin is also
added as a superclass for both, maintaining additional information
(the clients slot will be explained in Section 5.3) and serving as
a means to specialize on both kinds of method combinators at the
same time.

4.2 Method Combinators Namespace

Method combinators are stored globally in a hash table and accessed
by name. This hash table is manipulated through an accessor called
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method-combinator-mixin

clients

short-method-combination long-method-combination

short-method-combinator long-method-combinator

Figure 3: Method Combinator Classes Hierarchy

find-method-combinator (and its accompanying setf function).
This accessor can be seen as the equivalent of find-class for
method combinators, and has the same prototype. It thus consid-
erably departs from the original Mop protocol, but is much more
consistent with Clos itself.

4.3 Method Combinators Management

4.3.1 Protocols. The short method combinator protocol is de-
signed in the same layered fashion as the rest of the Mop. First,
we provide a macro called define-short-method-combinator be-
having as the short form of define-method-combination, and
mostly taking care of quoting. This macro expands to a call to
ensure-short-method-combinator. In turn, this (regular) func-
tion calls the ensure-short-method-combinator-using-class
generic function. Unsurprisingly, this generic function takes a
method combinator as its �rst argument, either null when a new
combinator is created, or an existing one in case of a rede�ni-
tion. Note that the Mop is not always clear or consistent with its
ensure-* family of functions, and their relation to the macro layer.
In method combinators, we adopt a simple policy: while the func-
tional layer may default some optional or keyword arguments, the
macro layer only passes down those arguments which have been
explicitly given in the macro call.

The same protocol is put in place for long method combinators.
Note that it is currently undecided whether we want to keep dis-
tinct interfaces and protocols for short and long forms. The current
choice of separation simply comes from the fact that Pcl imple-
ments them separately. Another yet undecided feature is how to
handle de�nition-time vs. use-time options. Currently, in order to
simplify the matter as a proof of concept, the (normally) use-time
option :most-specific-first/last is handled when a short com-
binator is de�ned rather thanwhen it is used, and the lambda-list for
long forms is deactivated. In other words, use-time options are not
supported. Note that this is of little consequence in practice: instead
of using the same combination with di�erent use-time arguments,
one would just need to de�ne di�erent (yet similar) combinations
with those arguments hard-wired in the code.

4.3.2 Creation. A new method combinator is created in 3 steps.

(1) define-method-combination is bypassed. Because regu-
lar method combinations do not have any other protocol
speci�ed, we use Sbcl’s internal functions directly. Recall
that the e�ect of these functions is to add a new method to
find-method-combination.

standard-generic-function funcallable-standard-class

combined-generic-function

functions

«instanceof»

Figure 4: Combined Generic Functions

(2) We subsequently call this new method in order to retrieve
an actual combination object, and upgrade it to a combinator
by calling change-class.

(3) Finally, this upgraded object is stored in the global combina-
tors hash table by calling (setf find-method-combinator).

All of this is done in layer 3 of the protocols, except that in the case
of long combinators, the combination function is computed at the
macro level (this is how Sbcl does it). Additionally, as Cmucl still
does, but contrary to Sbcl, we update the function slot in the long
combinator objects.

The advantage of this process is that de�ning a combinator also
inserts a regular method combination in the system. Regular generic
functions may thus use the new combination without any of the
combinator extensions.

4.3.3 Modification. An existing method combinator may be up-
dated by the user via the �rst two protocol layers (the define-*
macro layer or the ensure-* functional one). The updating process
is quite simple: it merely involves a call to reinitialize-instance
or to change-class if we are switching combinator forms. The
de�nition change is also propagated to the regular combination
layer, and in the case of the long form, care is taken to update
not only the function slot of the combinator object, but Sbcl’s
*long-method-combination-functions* hash table as well.

4.3.4 Built-in Combinators. Finally, we provide new versions
of the standard and built-in method combinations as combinators.
These combinators are named with keywords, so as to both co-exist
gracefully with the original Common Lisp ones, and still be easily
accessible by name. On top of that, the built-in method combinators
are de�ned in long forms, so as to provide support for :before
and :after methods, and also avoid requiring the combinator’s
name as a quali�er to primary methods. In fact, a user-level macro
called define-long-short-method-combinator is provided for
de�ning such “pseudo-short” combinators easily.

5 COMBINED GENERIC FUNCTIONS

At that point, generic functions can seamlessly use method com-
binators as regular combinations, although with not much bene�t
(apart from the extended versions of the built-in ones). Our next
goal is to ensure that the global method combinator namespace is
functioning properly.

5.1 Generic Functions Subclassing

As usual, in order to remain unobtrusive with standard Clos, we
specialize the behavior of generic functions with a subclass han-
dling method combinators in the desired way. This class, called
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combined-generic-function, is depicted in Figure 4 (an explana-
tion for the functions slot will be provided in Section 6.2.2). For
convenience, a macro called defcombined is provided as a wrapper
around defgeneric. This macro takes care of setting the generic
function class to combined-generic-function (unless otherwise
speci�ed). Also for convenience, a new :method-combinator op-
tion is provided to replace the regular :method-combination one,
but ultimately transformed back into

Finally, the (not portable) method-combination slot of generic
functions is extended to recognize a :method-combinator initarg,
and a method-combinator accessor.

5.2 Method Combinator Management

5.2.1 Initialization. In the absence of an explicit method com-
binator option, new combined generic functions should use the
:standard one. This is easily done by providing a default initarg for
:method-combinator to the combined-generic-function class,
with a value of (find-method-combinator :standard).

The case of a provided method combinator name is more in-
teresting. Normally, we would wrap ensure-generic-function/-
using-class with specialized versions to look up a combinator
instead of a combination. However, at the expense of portability
(a necessity anyway), we can do a little simpler. As it turns out,
Sbcl initializes a generic function’s method combination by calling
find-method-combination on the generic function’s class proto-
type. Consequently, we can simply specialize this function with an
eql specializer on the combined-generic-function class proto-
type, and look up for the appropriate global method combinator
object there. Note that in order to specialize on a class prototype,
the class needs to have been �nalized already. Because of that, we
need to call finalize-inheritance explicitly and very early on
the class combined-generic-function.

5.2.2 Sanitation. This is also a good opportunity for us to sani-
tize the find-method-combination protocol for combined generic
functions. A new method specialized on such functions is provided.
Contrary to the default behavior, this method ensures that the re-
quested method combinator is indeed the one in use by the function,
and then returns it (recall that this is a global object). Otherwise,
an error is signaled.

5.2.3 Updating. In order to change a combined generic func-
tion’s method combinator, we provide a convenience function called
change-method-combinator. This function accepts a combined
generic function (to be modi�ed) and a method combinator desig-
nator (either a name, or directly an object) which it canonicalizes.
In the ideal case, this function should be able to only invalidate
the generic function’s e�ective method cache. Unfortunately, this
cannot be done in a portable way. Thus, the only thing we can do
portably is to call reinitialize-instance with the new method
combinator.

5.3 Client Maintenance

The last thing we need to do is make sure that method combinator
updates are correctly propagated to relevant combined generic
functions. A combined generic function using a method combinator

is called its client. Every method combinator maintains a list of
clients, thanks to the the clients slot of the mixin (see Figure 3).

5.3.1 Registration. Registering a combined generic function as
a method combinator client is implemented via two methods. One,
on initialize-instance, adds a new combined generic func-
tion to its method combinator’s clients slot. The other one, on
reinitialize-instance, checks whether an existing combined
generic function’s combinator has changed, and performs the up-
dating accordingly (recall that reinitializing the instance is the only
portable way to change a generic function’s method combination).

Note that while the Common Lisp standard allows a generic func-
tion’s class to change, provided that both classes are “compatible”
(a term which remains unde�ned)9, the Mop seems to imply that
meta-classes are only compatible with themselves (it is forbidden to
change a generic function’s meta-class [10, p. 187]). This restriction
makes the client registration process simpler, as a regular generic
function cannot become a combined one, or vice versa.

5.3.2 Updating. When a method combinator is rede�ned, it can
either remain in the same form, or switch from short to long and
vice versa. These two situations can be easily detected by special-
izing reinitialize-instance and u-i-f-d-c10 (we could also
use shared-initialize). Two such :aftermethods are provided,
which trigger updating of all the method combinator’s clients.

Client updating is implemented thanks to a new protocol inspired
from the instance updating one: we provide a generic function
called make-clients-obsolete, which starts the updating process.
During updating, the generic function u-c-g-f-f-r-m-c11 is called
on every client. As mentioned previously, there is no portable way
to invalidate an e�ective methods cache in the Clos Mop, so the
only thing we can do safely is to completely reinitialize the generic
function.

The problem we have here is that while the method combinator
has been rede�ned, the object identity is preserved. Still, we need to
trick the implementation into believing that the generic function’s
method combinator object has changed. In order to do that, we �rst
set the combined generic function’s method-combination slot to
nil manually (and directly; bypassing all o�cial protocols), and
then call reinitialize-instance with a :method-combinator
option pointing to the same combinator as before. The implementa-
tion then mistakenly thinks that the combinator has changed, and
e�ectively reinitializes the instance, invalidating previously cached
e�ective methods.

6 ALTERNATIVE COMBINATORS

In Section 4.3.4, we provided new versions of the built-in method
combinations allowing primary methods to remain unquali�ed.
In Section 5.2.3 we o�ered a convenience function to change the
method combinator of a combined generic function more easily
(hence the use for unquali�ed methods). In the spirit of increasing
the separation of concerns yet again, the question of alternative
combinators follows naturally: what about calling a generic function

9http://www.lispworks.com/documentation/lw70/CLHS/Body/f_ensure.htm
10update-instance-for-different-class
11update-combined-generic-function-for-redefined-method-combinator

http://www.lispworks.com/documentation/lw70/CLHS/Body/f_ensure.htm
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with a di�erent, temporary method combinator, or even maintain-
ing several combinators at once in the same generic function?

In the current state of things, we can already change the method
combinator temporarily, call the generic function, and then switch
the combinator back to its original value. Of course, the cost of
doing it this way is prohibitive, as the generic function would need
to be reinitialized as many times as one changes its combinator.
There is however, a way to do it more e�ciently. While highly
experimental, it has been tested and seems to work properly in
Sbcl.

6.1 Protocols

At the lowest level lies a function called call-with-combinator.
This function takes a combinator object, a combined generic func-
tion object and a &rest of arguments. Its purpose is to call the
generic function on the provided arguments, only with the tempo-
rary combinator instead of the original one. On top of this func-
tion, we provide a macro called call/cb (pun intended) accepting
designators (e.g. names) for the combinator and generic function
arguments, instead of actual objects. Finally, it is not di�cult to
extend the Lisp syntax with a reader macro to denote alternative
generic calls in a concise way. For demonstration purposes, a #!
dispatching macro character may be installed and used like this:

#!combinator(func arg1 arg2 ...)

This syntax is transformed into the following macro call:

(call/cb combinator func arg1 arg2 ...)

In turn, this is �nally expanded into:

(call-with-combinator
(find-method-combinator 'combinator)

#'func arg1 arg2 ...)

6.2 Implementation

Method combinations normally only a�ect the computation of ef-
fective methods. Unfortunately, we have already seen that the Clos
Mop doesn’t specify how or when e�ective methods may be cached.
Consequently, the only portable way of changing them is to reini-
tialize a generic function with a di�erent combination. Although
e�ective methods cannot be portably accessed, the generic func-
tion’s discriminating function can, at least in a half-portable fashion.
This gives us an incentive towards a possible implementation.

6.2.1 Discriminating Functions / Funcallable Instances. A generic
function is an instance of a funcallable class (see Figure 4), which
means that generic function objects may be used where functional
values are expected. When a generic function (object) is “called”,
its discriminating function is actually called. The Mop speci�es
that discriminating functions are installed by the (regular) func-
tion set-funcallable-instance-function. This strongly sug-
gests that the discriminating function is stored somewhere in the
generic function object. Unfortunately, the Mop doesn’t specify
a reader for that potential slot, although every implementation
will need one (this is why we said earlier that discriminating func-
tions could be accessed in a half-portable way). In Sbcl, it is called
funcallable-instance-fun.

6.2.2 Discriminating Function Caches. The idea underlying our
implementation of alternative combinators is thus the following.
Every combined generic function maintains a cache of discrimi-
nating functions, one per alternative combinator used (this is the
functions slot seen in Figure 4). When an alternative combinator
is used for the �rst time (via a call to call-with-combinator), the
generic function is reinitialized with this temporary combinator,
called, and the new discriminating function is memoized. The func-
tion is then reinitialized back to its original combinator, and the
values from the call are returned. It is important to actually execute
the call before retrieving the new discriminating function, because
it may not have been calculated before that.

If the alternative combinator was already used before with this
generic function, then the appropriate discriminating function is
retrieved from the cache and called directly. Of course, care is
also taken to call the generic function directly if the alternative
combinator is in fact the generic function’s default one.

6.2.3 Client Maintenance. Alternative combinators complicate
client maintenance (see Section 5.3), but the complication is not
insurmountable. When an alternative combinator is used for the
�rst time, the corresponding generic function is registered as one
of its clients. The client updating protocol (see Section 5.3.2) is
extended so that if the modi�ed combinator is not the generic
function’s original one, then the generic function is not reinitialized.
Instead, only the memoized discriminating function corresponding
to this combinator is invalidated.

6.2.4 Disclaimer. Generic functions were never meant to work
with multiple combinations in parallel, so there is no guarantee on
how or where applicable and e�ective method caches, if any, are
maintained. Our implementation of alternative combinators can
only work if each discriminating function gets its own set of caches,
for example by closing over them. According to both the result
of experimentation and some bits of documentation12, it appears
to be the case in Sbcl. If, on the other hand, an implementation
maintains a cache of e�ective methods outside the discriminating
functions (for instance, directly in the generic function object), then,
this implementation is guaranteed to never work.

7 PERFORMANCE

Because method combinators are implemented in terms of regular
combinations, the cost of a (combined) generic call shouldn’t be
impacted. In Sbcl, only the standard combination is special-cased
for bootstrapping and performance reasons, so some loss could
be noticeable with the :standard combinator. Method combinator
updates or changes do have a cost, as clients need to be reinitialized,
but this is not di�erent from updating a regular generic function
for a new method combination. Again, the only portable way to do
so is also to completely reinitialize the generic function.

Alternative combinators, on the other hand, do come at a cost,
and it is up to the programmer to decide whether the additional ex-
pressiveness is worth it. Using an alternative combinator for the �rst
time is very costly, as the generic function will be reinitialized twice

12http://www.sbcl.org/sbcl-internals/Discriminating-Functions.html#
Discriminating-Functions
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Figure 5: Benchmarks

(hence a�ecting the next regular call to it as well) and client mainte-
nance will be triggered. Once an alternative discriminating function
has been memoized, an “alternative call” will essentially require
looking it up in a hash table (twice if find-method-combinator is
involved in the call) before calling it.

In order to both con�rm and illustrate those points, some rough
performance measurements have been conducted and are reported
in Figure 5. The �rst batch of timings involve a generic functionwith
4 methods simply returning their (numerical) argument. The second
one involves a generic function with 4 methods printing their argu-
ment on a stream with format. The idea is that the methods in the
numerical case are extremely short, while the ones performing I/O
take much longer to execute. The timings are presented in seconds,
for 108 and 107 consecutive iterations respectively.

The �rst two bars show the timings for a regular generic function
with the standardmethod combination, and an equivalent combined
generic function with the :standard combinator. In the numerical
case, we observe a 45% performance loss, while in the I/O case, the
di�erence is of 5%. This is due to Sbcl optimizing the standard
method combination but not the :standard combinator.

The next two bars show the timings for a built-in method combi-
nation compared to its equivalent combinator (+ for the numerical
case, progn for the I/O one). Recall that short combinators are in fact
implemented as long ones, so the comparison is not necessarily fair.
Nevertheless, the di�erence in either case is not measurable. Again,
this is due to the fact that method combinators are implemented in
terms of regular combinations.

Finally, the last bars show the timings involved in calling a
generic function with an alternative combinator. Recall that this
simply means calling a memoized discriminating function (hence
taking the time displayed by the 4th bars) after having looked it up
in a hash table. The large number of iterations measured ensures
that the overhead of �rst-time memoization is cushioned). In the
�rst (numerical) case, the overhead of using the :+ combinator as
an alternative instead of as the original one is of 90%. The methods
being very short, the impact of an additional has table lookup is
important. In the (longer) I/O case and for the :progn combinator
however, this impact is amortized and falls down to 8%.

8 RELATEDWORK

Greg Pfeil has put up a set of useful method combination utilities on
Github13. These utilities include functions and macros frequently
used in the development of new combinations or helping in the
debugging of their expansion, and also some pre-made ones.

His library addresses some of the orthogonality concerns raised
in Section 2.1. In particular, the append/nconc combination allows
one to switch between the append and nconc operators without
the need for requalifying all the primary methods (they still need
to be quali�ed as append/nconc though, so are short forms de�ned
with the basic combination).

Greg Pfeil’s library does not attempt to address the primary
concern of this paper, namely the overall consistence of the design
of method combinations, and more speci�cally their namespace
behavior. In one particular case, it even takes the opposite direction.
The basic combination implements an interesting idea: it serves
as a unique short form, making the operator a use-time value. In
this way, it is not necessary anymore to de�ne short combinations
globally before using them. Every short combination essentially
becomes local to one generic function.

Note that even though we attempted to do the exact opposite
with method combinators, it is also possible to use them locally.
Indeed, one can always break the link from a name to a combi-
nator by calling (setf (find-method-combinator name) nil).
After this, the combinator will only be shared by combined generic
functions already using it. Again, this behavior is similar to that of
find-class14.

Finally, the basic combination also addresses some of the con-
cerns raised in Section 2.2. On top of allowing :before and :after
methods in short forms, the distinction between de�nition-time
and use-time options is removed. Indeed, since the operator has
become a use-time option itself, the same holds for the option
:identity-with-one-argument. What we have done, on the con-
trary, is to turn the order option into a de�nition-time one (see
Section 4.3.1).

9 CONCLUSION

Method combinations are one of the very powerful features of
Clos, perhaps not used as much as they deserve, due to their ap-
parent complexity and the terse documentation that the standard
provides. The additional expressiveness and orthogonality they aim
at providing is also hindered by several weaknesses in their design.

In this paper, we have provided a detailed analysis of these prob-
lems, and the consequences on their implementation in Sbcl. Ba-
sically, the under-speci�cation or inconsistency of the associated
protocols can lead to non-portable, obscure, or even surprising, yet
conforming behavior.

We have also proposed an extension called method combinators

designed to correct the situation. Method combinators work on
top of regular combinations in a non-intrusive way and behave in
a more consistent fashion, thanks to a set of additional protocols
following some usual patterns in the Clos Mop. The full code is
available on Github15. It has been successfully tested on Sbcl.

13https://github.com/sellout/method-combination-utilities
14http://www.lispworks.com/documentation/lw70/CLHS/Issues/iss304_w.htm
15https://github.com/didierverna/ELS2018-method-combinators

https://github.com/sellout/method-combination-utilities
http://www.lispworks.com/documentation/lw70/CLHS/Issues/iss304_w.htm
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10 PERSPECTIVES

Method combinators are currently provided as a proof of concept.
They still require some work and also raise a number of new is-
sues. First of all, it is our intention to properly package them and
provide them as an actual Asdf system library. Next, we plan on
investigating their implementation for vendors other than Sbcl,
and in particular �guring out whether alternative combinators are
possible or not. As of this writing, the code is in fact already ported
to Cmucl, but surprisingly enough, it doesn’t work as it is. Most of
the tests fail or even trigger crashes of the Lisp engine. It seems that
Cmucl su�ers from many bugs in its implementation of Pcl, and it
is our hope that �xing those bugs would su�ce to get combinators
working.

One still undecided issue is whether to keep long and short forms
implemented separately (as in Pcl), or unify everything under the
long form. We prefer to defer that decision until more information
on how other vendors implement combinations is acquired. The
second issue is on the status of the long form’s lambda-list (currently
deactivated) and consequently whether new combinators should
be represented by new classes or only instances of the general one
(see Section 4.3.1).

As we have seen, the lack of speci�cation makes it impossible to
implement method combinators in a completely portable way, and
having to resort to reinitialize-instance is overkill in many
situations, at least in theory. Getting insight on how exactly the
di�erent vendors handle applicable and e�ective methods caches
could give us hints on how to implement method combinators more
e�ciently, alternative combinators in particular.

Apart from the additional functionality, several aspects ofmethod
combinators and their protocols only �ll gaps left open in the Mop.
Ultimately, these protocols (generic function updating notably)
should belong in the Mop itself, although a revised version of it is
quite unlikely to see the day. It is our hope, however, that this paper
would be an incentive for vendors to re�ne their implementations
of method combinations with our propositions in mind.

Finally, one more step towards full orthogonality in the generic
function design can still be taken. The Common Lisp standard for-
bids methods to belong to several generic functions simultaneously.
By relaxing this constraint, we could reach full 3D separation of
concerns. Method combinators exist as global objects, so would
“�oating” methods, and generic functions simply become muta-
ble sets of shareable methods, independent from the way(s) their
methods are combined.
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A LONG SHORT METHOD COMBINATIONS

The Common Lisp standard provides several examples of built-
in method combinations, and their equivalent de�nition in long
form16. In a similar vein, the macro proposed in Figure 6 de�nes
method combinations similar to those created with the short form,
only with the following di�erences:

(1) the primary methods must not be quali�ed,
(2) :before and :after methods are available.

As in the original short form of define-method-combination,
identity-with-one-argument is available as an optimization avoid-
ing the call to the operator when a single method is invoked. The
long form’s lambda-list is used to de�ne the order optional argu-
ment, directly passed along as the value of the :order keyword to
the primary method group.

B LONG METHOD COMBINATIONWOES

This section demonstrates an inconsistent behavior of generic func-
tions using long method combinations in Sbcl, when the com-
bination is rede�ned. First, we de�ne a progn-like long method
combination, ordering the methods in the default, most speci�c
�rst way.
(define-method-combination my-progn ()

((primary () :order :most-specific-first :required t))
`(progn ,@(mapcar (lambda (method)

16http://www.lispworks.com/documentation/lw70/CLHS/Body/m_de�_4.htm
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(defmacro define-long-short-method-combination
(name &key documentation identity-with-one-argument (operator name))

"Define NAME as a long-short method combination.
OPERATOR will be used to define a combination resembling a short method
combination, with the following differences:
- the primary methods must not be qualified,
- :before and :after methods are available."

(let ((documentation (when documentation (list documentation)))
(single-method-call (if identity-with-one-argument

'`(call-method ,(first primary))
``(,',operator (call-method ,(first primary))))))

`(define-method-combination ,name (&optional (order :most-specific-first))
((around (:around))
(before (:before)) ;; :before methods provided
(primary (#| combination name removed |#) :order order :required t)
(after (:after))) ;; :after methods provided
,@documentation
(flet ((call-methods (methods)

(mapcar (lambda (method) `(call-method ,method)) methods)))
(let* ((primary-form (if (rest primary)

`(,',operator ,@(call-methods primary))
,single-method-call))

(form (if (or before after)
`(multiple-value-prog1

(progn ,@(call-methods before) ,primary-form)
,@(call-methods (reverse after)))

primary-form)))
(if around

`(call-method
,(first around) (,@(rest around) (make-method ,form)))

form))))))

Figure 6: Long Short Method Combinations

`(call-method ,method))
primary)))

Next, we de�ne a generic function using it with two methods.

(defgeneric test (i) (:method-combination my-progn)
(:method ((i number)) (print 'number))
(:method ((i fixnum)) (print 'fixnum)))

Calling it on a fixnum will execute the two methods from most to
least speci�c.

CL-USER> (test 1)
FIXNUM
NUMBER

Next, we rede�ne the combination to reverse the ordering of the
methods.

(define-method-combination my-progn ()
((primary () :order :most-specific-last :required t))
`(progn ,@(mapcar (lambda (method)

`(call-method ,method))
primary)))

This does not (yet) a�ect the generic function.

CL-USER> (test 1)
FIXNUM
NUMBER

We now add a new method on float, which normally reinitializes
the generic function.
(defmethod test ((i float)) (print 'float))

However, a fixnum call is not a�ected, indicating that some caching
of the previous behavior is still going on.
CL-USER> (test 1)
FIXNUM
NUMBER

A �rst float call, however, will notice the new combination func-
tion.
CL-USER> (test 1.5)
NUMBER
FLOAT

Meanwhile, fixnum calls continue to use the old one.
CL-USER> (test 1)
FIXNUM
NUMBER
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