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Abstract—Statistical anomaly detection is critical across various
domains, including healthcare, finance, industry, and cybersecurity.
While supervised methods often achieve high performance, the
limited availability of labeled data requires effective unsupervised
techniques. In this paper, we introduce Dataset Sampling Iterative
Learning (DSIL), a novel iterative learning framework for unsu-
pervised anomaly detection leveraging generative modeling with
diffusion. Our approach progressively refines an unlabeled dataset
by identifying and removing anomalies, effectively approximating
a semi-supervised setup. We demonstrate the efficiency of our
framework with Diffusion Time Estimation (DTE). Furthermore,
it enables better explainability through a novel approach of noised-
feature discovery. Extensive experiments against unsupervised
methods on both synthetic and real-world datasets demonstrate
improved state-of-the-art performance. Finally, we suggest a novel
usage of existing metrics to evaluate the explainability of anomaly
detection models.

Index Terms—Diffusion model, unsupervised anomaly detection,
explainable model, XAI

I. INTRODUCTION

Anomaly detection is a fundamental challenge in machine
learning, aimed at identifying rare and irregular patterns
within datasets [1]. Depending on the context, anomalies may
correspond to fraudulent transactions, equipment malfunctions,
or critical health issues. As a result, anomaly detection is a
key component in various fields such as healthcare, finance,
insurance, industrial monitoring, and cybersecurity [2]. The
ability to detect subtle deviations from normal behavior makes
this task both a theoretical and practical priority in machine
learning research.

Over the years, anomaly detection methods have evolved,
ranging from supervised to semi-supervised and unsupervised
paradigms. Supervised approaches treat anomaly detection as
a classification problem but require labeled datasets, which are
often costly and impractical to obtain at scale. Semi-supervised
methods attempt to mitigate this limitation by utilizing partially
labeled data or by training exclusively on normal instances, thus
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balancing labeling effort and model performance. In contrast,
unsupervised methods, which assume a mixture of normal
and anomalous instances, offer the most scalable solution
as they do not rely on labeled data. However, despite their
flexibility, unsupervised methods typically lag behind semi-
supervised approaches in terms of performance. As shown
in [3], unsupervised anomaly detection methods exhibit an
average AUC-ROC performance deficit compared to semi-
supervised models leveraging a small amount of labeled data.
This underscores the need for novel strategies to enhance
unsupervised approaches while maintaining their advantages
of scalability and generality.

Recent advancements in iterative unsupervised learning have
shown promise in improving anomaly detection. These methods
focus on refining the training dataset by iteratively identifying
and removing anomalies, thereby enhancing the model’s ability
to learn normal patterns more effectively. For instance, an
iterative method for unsupervised robust anomaly detection
under data contamination has been proposed, which updates
sample-wise normality as an importance weight during training.
This approach has demonstrated improved performance on
various contaminated datasets, highlighting the potential of
iterative learning in anomaly detection [4].

Since unsupervised learning remains the most prevalent
approach for anomaly detection, this paper proposes an iterative
learning framework to enhance its performance and bridge the
gap with semi-supervised methods. Our approach progressively
refines the training dataset by iteratively removing detected
anomalies, effectively shifting the training process toward
a semi-supervised setting where only normal instances are
utilized. This strategy improves the effectiveness of diffusion
models in anomaly detection while retaining the scalability and
generality of unsupervised learning. Furthermore, we emphasize
the interpretability of diffusion-based models, making them
more transparent and practical for real-world applications.
Through this work, we aim to advance both the theoretical
understanding and practical deployment of diffusion models in
anomaly detection.

In this paper, we introduce an iterative learning framework



designed to enhance the performance of unsupervised anomaly
detection methods, particularly focusing on diffusion models.
By progressively refining the training dataset through the
iterative removal of detected anomalies, we achieve perfor-
mance levels comparable to semi-supervised approaches while
maintaining the scalability and generality of unsupervised
learning. Through extensive experiments, we show that our
framework improves the effectiveness of diffusion models in
anomaly detection and highlights their interpretability.

II. RELATED WORK

Unsupervised anomaly detection methods can be cat-
egorized into shallow and deep learning-based techniques.
Traditional shallow methods include One-Class SVM, Local
Outlier Factor (LOF), and Isolation Forest (iForest), which
rely on decision boundaries or density estimation to detect
anomalies. While these approaches are computationally efficient
and interpretable, they often struggle with complex, high-
dimensional data. Deep learning methods, such as Varia-
tional Autoencoders (VAEs) [5], Deep Autoencoding Gaussian
Mixture Models (DAGMM), and Deep Support Vector Data
Description (DeepSVDD), leverage neural networks to capture
intricate data structures, significantly improving detection
performance. These deep models utilize techniques such as
probabilistic reconstruction, joint optimization, and hypersphere
embedding to identify anomalies more effectively.

Diffusion Models (DMs) are a powerful class of generative
models capable of synthesizing samples across various data
modalities [6]. Unlike generative adversarial networks (GANs)
and variational autoencoders (VAEs), which can suffer from
training instability or produce less detailed outputs [7], DMs
generate sharper and more realistic samples through a gradual,
iterative denoising process [8]. By learning the probability
distributions of normal data, DMs effectively reconstruct
typical patterns while capturing the underlying manifold
structures, enabling anomaly detection through reconstruction
error analysis and probability density estimation.

Diffusion Models for Anomaly detection have also emerged
as a promising solution for anomaly detection tasks, starting
with medical data [9], [10]. One approach involves training in a
semi-supervised setting and guiding the diffusion process with
a classifier, while another works in an unsupervised setup with
specific noise. Diffusion models have since been developed for
other data types beyond images [11], [12], extending anomaly
detection to tabular data, time series, videos, and graphs. [6]
presents an overview of diffusion models used in anomaly
detection. Most of these methods need to reconstruct input
data to estimate an anomaly score.

DMs can be categorized based on their approach to anomaly
detection: reconstruction-based, density-based, or hybrid meth-
ods. Among reconstruction-based methods, denoising diffusion
probabilistic models (DDPMs) [13] progressively add Gaussian
noise to the data over multiple time steps using a Markov
chain. A trained neural network reverses this process, learning
complex data distributions and making DDPMs particularly ef-
fective for anomaly detection [10]. However, sample generation

can be computationally intensive. Diffusion Time Estimation
(DTE) [14], a density-based method, offers an alternative
approach by estimating the distribution over diffusion times for
a given input. The anomaly score is derived from the mode or
mean of this distribution, with longer diffusion times indicating
anomalies due to their greater distance from the learned
distribution. This novel approach reduces the reliance on direct
reconstruction while maintaining robust anomaly detection
capabilities. Diffusion Time Estimation (DTE) achieves faster
inference and better performance than DDPM, but this comes
at the cost of reduced interpretability of the model’s decisions.

Iterative learning strategies have been extensively explored
in various domains, primarily for their ability to refine datasets
and improve model generalization for specific applications [15]–
[17]. These strategies commonly involve iteratively updating the
model based on reweighting or incorporating new data, allowing
the model to adapt and improve over time. In the context
of anomaly detection, iterative learning can be particularly
beneficial as it enables the model to continuously refine
its understanding of normal behavior, thereby enhancing its
ability to detect anomalies more accurately. Recently, a simple
reweighting method has been proposed as an initial approach to
iteratively resample data points for anomaly detection [4]. This
WEIGHTED LOSS iterative learning focuses on adjusting the
importance of individual data points during training to better
capture the underlying data distribution. Building on this initial
idea, we introduce three variants of resampling that allow for
iterative subsampling of the original dataset. By incorporating
these bootstrapping techniques, our framework improves the
model’s ability to detect anomalies and provides a more robust
and adaptive learning process.

Explainable Artificial Intelligence (xAI) encompasses a
range of methods designed to make black-box models more
transparent and interpretable to humans. In addition to detecting
anomalies, insights about the reasons for the anomalies can
be important in many use cases to identify the root cause of
the anomaly. Some methods use the attention mechanism [18],
[19], the gradient [20], or SHAP [21] to provide insights on the
model decision. [22] presents an exhaustive list of explainable
anomaly detection methods.

These methods can broadly be categorized into different
types of explanations, including abductive explanations (pro-
viding the best possible reason for a prediction), adversarial
explanations (finding minimal perturbations that alter the
prediction), feature attribution (quantifying each feature’s
contribution to a specific prediction), global feature importance
(measuring overall relevance of features across a dataset), and
example-based explanations (identifying similar or prototypical
instances from the training set) [23]. In this work, we focus
on feature attribution, which aims to provide localized
explanations by assigning an importance score to each input
feature for a specific instance. These explanations are useful
in high-stakes decision-making contexts, such as healthcare
or finance, where trust and accountability are critical [24].
However, existing attribution methods suffer from several
limitations. SHAP (SHapley Additive exPlanations) [25] offers



theoretically grounded, consistent feature attributions based on
cooperative game theory. Despite its popularity, SHAP can be
computationally expensive, especially with high-dimensional
data or complex models. It also assumes feature independence
or requires access to conditional distributions, which may
be difficult to estimate accurately in practice. Moreover,
recent work [26], discuss the accuracy of SHAP to assign
relevant features scores. LIME (Local Interpretable Model-
agnostic Explanations) [27] explains predictions by training
an interpretable surrogate model around the neighborhood
of a data point. However, LIME is sensitive to the choice of
neighborhood and sampling distribution, and may yield unstable
explanations under slight perturbations of the input. Gradient-
based methods, such as Saliency Maps [28], Integrated
Gradients [29], or SmoothGrad [30], are widely used in
neural networks. These methods exploit model gradients to
identify influential features, but they are often noisy, lack class-
discriminative power, and are sensitive to model non-linearities
and saturation effects. Global feature importance methods,
like permutation importance or Gini importance, summarize the
overall relevance of each feature across the dataset, but do not
provide case-specific explanations. This limits their usefulness
in understanding individual decisions. In this work, we propose
a new explanation method situated within the feature attribution
paradigm, but designed to overcome key limitations of existing
approaches.

III. BACKGROUND

Among generative models, denoising diffusion models have
proven to be highly efficient for data generation. Leveraging
this capability, they are now also used for anomaly detection [6].
A diffusion probabilistic model can be divided into two distinct
phases: a forward diffusion process, which progressively adds
Gaussian noise over T timesteps to input data x0, and a
reverse diffusion process that aims to denoise the data. These
models are particularly effective in handling complex, high-
dimensional, and noisy datasets, making them suitable for
real-world scenarios where data distributions can evolve over
time or include nuanced anomalies.

In the context of anomaly detection, diffusion models
estimate the diffusion time, where anomalies are characterized
by higher diffusion times. This approach has shown promise
in identifying deviations in both compact and high-resolution
datasets, demonstrating the effectiveness of diffusion-based
architectures for anomaly detection. Overall, diffusion models
offer a robust framework for anomaly detection, leveraging their
generative capabilities to identify and reconstruct anomalous
data points effectively.

The forward process, known as the diffusion process,
incrementally introduces noise to the data x0 over T timesteps,
progressively transforming its distribution into an isotropic
Gaussian. More precisely, given a variance list {βt}Tt=1, where
0 < β1 < · · · < βT < 1, this process generates a sequence
of latent variables {x1, . . . , xT } through a Markov chain.

The transition between consecutive states follows a Gaussian
distribution:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

where N (x;µ; Σ) denotes a Gaussian distribution with mean
µ and covariance Σ, and I is the identity matrix. Due to the
Markov property, at any timestep t, the distribution of xt given
x0 follows:

q(xt|x0) = N (xt;
√
ᾱtx0; (1− ᾱt)I), (1)

with x0 the initial value x, αt being the cumulative product
of the noise variance schedule ᾱt = Πt

i=0αi = Πt
i=0(1− βi),

β ∈ (0, 1).
The reverse process in DDPM involves learning to denoise

the data by predicting the noise added at each timestep. The
reverse process is defined by:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I) (2)

where µθ(xt, t) is the predicted mean of the distribution at
timestep t− 1, and σ2

t is the variance. The model θ is trained
to minimize the difference between the predicted noise and
the actual noise added during the forward process.

Denoising Diffusion Probabilistic Models (DDPM) have
demonstrated strong performance on anomaly detection bench-
marks, albeit at a high computational cost. To address this
inefficiency, a simplified alternative known as Diffusion Time
Estimation (DTE) has been introduced. DTE significantly
reduces inference time while achieving superior performance
on benchmarks such as ADBench in both semi-supervised and
unsupervised settings.

In DDPM-based anomaly detection, the reconstruction error
serves as the anomaly score. Given an input data point x, its
reconstructed version after T denoising steps, denoted as x̂T ,
is used to compute the anomaly score ST (x) as follows:

ST
DDPM(x) = ∥x− x̂T ∥. (3)

A higher reconstruction error indicates a greater deviation from
the learned data distribution, suggesting a higher likelihood of
anomaly.

Instead of reconstruction error, DTE relies on estimating the
diffusion time required for a data point to align with the learned
distribution. The estimated diffusion time t∗ for a given data
point x is obtained as t∗ = argmaxt∈T p(t|x), where p(t|x)
represents the probability of diffusion time t given x. Since
anomalies tend to require more denoising steps to reach the
data distribution, they exhibit higher diffusion times.

The anomaly score in DTE is therefore defined as:

ST
DTE(x) = t∗, (4)

where larger values of ST
DTE(x) indicate a higher probability

of the data point being an anomaly.
While both models achieved good AUCROC scores, training

DDPM required more computation time than DTE. As a result,
we focus on DTE in this work but it could be extend to other
diffusion model.



IV. METHOD

Our framework, Dataset Sampling Iterative Learning (DSIL)
consists of refining the training dataset to minimize the presence
of anomalies. This iterative process aims to emulate the
benefits of semi-supervised learning, where the model is trained
primarily on normal instances, thereby improving its ability to
distinguish anomalies effectively. Our method involves training
the same model architecture multiple times, with strategic
resampling of the dataset between iterations. This resampling
is guided by anomaly scores computed using the model
from the previous iteration. By progressively reducing the
proportion of anomalies in the training set, we approach a semi-
supervised learning setup, which is particularly advantageous
for diffusion-based models. Additionally, we introduce two
dynamic scheduling strategies to adjust the ratio of data retained
between iterations, further optimizing the learning process.

A. Iterative learning

We refer to iterative learning as the process where the
same model is trained multiple times over successive iterations.
By training the same model architecture multiple times and
strategically resampling the dataset between iterations, we aim
to minimize the presence of anomalies in the training set,
approaching the semi-supervised learning setup. This section
details the core concepts of iterative learning and dataset
sampling, explaining their interplay in the DSIL framework.
We propose an iterative framework to enhance the performance
of diffusion-based models for anomaly detection. Our approach
involves resampling the dataset after each iteration, aiming to
progressively refine the training set by reducing the proportion
of anomalies.

As outlined in Algorithm 1, the proposed framework involves
training the same model multiple times. After each training
phase, anomaly scores are computed for every instance of
the original training dataset using the previously trained
model. These scores are then employed to select which
instances to retain in the dataset for the next iteration. By
systematically removing instances that are most likely to be
anomalies, the ratio of anomalous data points in the training
set is significantly reduced over successive iterations. This
progressive ”purification” of the dataset approximates a semi-
supervised learning setup, which is particularly advantageous
for diffusion-based models. Training on a cleaner dataset
improves the model’s ability to learn the distribution of normal
data, leading to enhanced anomaly detection performance.

B. Data point selection

This iterative framework fosters the effective identification
and exclusion of anomalous instances from the training dataset.
While the ratio of training data retained between iterations
can be a fixed value, it can also be decreased over successive
iterations. Selecting a single fixed ratio that remains constant
throughout the process introduces challenges, particularly
when there is no prior approximation of the anomaly content
within the dataset. A poorly chosen fixed ratio can either risk
retaining too many anomalous instances or discarding valuable

Algorithm 1 DSIL framework
Require: A dataset X , a diffusion model model , the number

of iterations max iter, the ratio of data retained at each
iteration t rt ∈ [0, 1], and the number of anomalies n.

Ensure: The trained diffusion model model and the set of
anomalies A.

1: Xcurrent ← X
2: for t← 0 to max iter do
3: model← train(model,Xcurrent)
4: scores← St

model(X)

5: Xcurrent ← argmaxv∈R
|X[scores>v]|

|X| ≥ rt
6: end for
7: A← argmaxv∈R |X[scores > v]| ≥ n
8: return model, A

normal instances, both of which can negatively impact model
performance.

By adopting a progressively decreasing retention ratio, we
aim to achieve two key benefits: 1) the initial iterations retain a
larger portion of the data, any errors made by the model early
on will have a limited influence on subsequent steps and will
mitigated impact of early mistakes; 2) as the model becomes
increasingly accurate over the iterations, we can discard more
instances with greater confidence, thereby reinforcing and
accelerating the learning process.

Concretely, we define rt, the ratio of data retained from
the original training set at iteration t (retention ratio), using
scheduling strategies inspired by learning rate schedulers [31].
Specifically, we propose two types of schedulers to dynamically
adjust the ratio of training data retained between iterations.
The exponential scheduler adjusts the ratio rt at iteration t
using an exponential decay function. This scheduler is defined
as:

rt =
rT + 1

2
(r0 − rT )

(
1 + exp

(
−t
T

))
where T is the maximum number of iterations, rT is the
final ratio to reach, and r0 is the initial ratio. The exponential
scheduler starts with a higher ratio and decreases it more
rapidly in the initial iterations, slowing down the decrease as
the iterations progress. This approach ensures that the model
initially retains a larger portion of the data, allowing it to learn
from a broader set of examples, and gradually focuses on a
more refined subset as training progresses.

Similarly, the cosine scheduler adjusts the ratio rt at iteration
t using a cosine function. This scheduler is defined as:

rt =
rT + 1

2
(r0 − rT )

(
1 + cos

(
tπ

T

))
where the parameters T , rT , and r0 are defined similarly to
the exponential scheduler. The cosine scheduler provides a
smoother transition compared to the exponential scheduler. It
starts with a higher ratio and gradually decreases it in a more
uniform manner throughout the iterations. This scheduler helps
in maintaining a balanced learning rate, ensuring that the model
neither retains too many anomalous instances nor discards



valuable normal instances too quickly. In our experiments, we
set r0 = 0.8 and rT = 0.5. These values ensure that the initial
ratio of retained data is sufficiently high to capture a wide
range of normal behaviors, while the final ratio is low enough
to focus on the most relevant data points, thereby enhancing
the model’s ability to detect anomalies effectively. By using
these schedulers, we aim to optimize the iterative learning
process, making it more adaptive and robust to the presence
of anomalies in the training data.

C. Explainable Anomaly Detection

Building a model with better performance often comes at
the cost of interpretability. To address this, we employ iterative
learning to enhance model performance without increasing its
complexity. Additionally, we propose a method to improve the
explainability of the model’s predictions.

a) Feature importance score: We introduce a simple
yet effective approach that leverages the forward process of
diffusion models to develop a feature importance method based
on feature perturbation. To assess the importance of each feature
in the model’s decision-making process for a given instance,
we introduce noise at different timesteps of the forward process,
perturbing only one feature at a time. By analyzing how the
model’s decision evolves in response to these perturbations, we
gain insights into the relative importance of individual features:

si(x) = AGGt∈T (S
t
model(x, i)) (5)

with T the set of time-steps in the forward diffusion process
q of a diffusion model applied exclusively to feature i. More
precisely let βt be a vector in Rd where d is the dimension of
x, such that βt[i] ∈ [0, 1] and βt[j] = 0, j ̸= i. We differentiate
the variance scheduling so that only feature i is modified. In
this case, the transition distribution is: q(xt|xt−1) = N (xt; 1−
βt · xt−1, βt)) where · denotes element-wise multiplication.

The function AGG represents an aggregation operation,
which can be either the mean or the maximum. This approach
provides a clearer understanding of which features play a
crucial role in the model’s anomaly detection process, thereby
enhancing interpretability.

b) Evaluating the Quality of the Explainability Method:
Assessing the quality of an explainability method is challenging.
We can leverage the feature importance score to rank the
features. To evaluate the effectiveness of this ranking, we
formulate the assessment as a ranking problem and propose
using the normalized Discounted Cumulative Gain (nDCG), a
widely used metric in recommender systems. However, feature
importance scoring has not previously been treated as a ranking
problem, and nDCG has never been applied to evaluate the
performance of feature importance methods.

Computing nDCG requires a relevance score for each ranked
feature. Let d be the number of feature and rank their order
with respect to the feature importance scores s. Specifically,
rank = [sρ1

· · · sρd
] where ρ is a permutation of {1, · · · , d}

such that ∀i < j, sρi
≤ sρj

. We define the relevance score
rel[i] = 1 if ρi ≤ m, where m is the number of features that
explain the anomalies according to the ground truth. Otherwise

rel[i] = 0. The optimal relevance score rel⋆ is define by
rel⋆[i] = 1, if i is a ground truth feature. Otherwise rel⋆[i] = 0.

The nDCG score is computed as the Discounted Cumulative
Gain (DCG) normalized by the Ideal Discounted Cumulative
Gain (iDCG):

nDCGk =
DCGk

iDCGk
with

DCGk =

k∑
i=1

2rel[i] − 1

log2(i+ 1)
and iDCGk =

k∑
i=1

2rel
∗[i] − 1

log2(i+ 1)

We also define another metric, which is similar but does
not take into account any ranking. Building a mask using
topk features in the feature importance ranking, we define the
accuracy of explanation as:

Accm =
||rel · rel⋆||

m
(6)

Although these two metrics may appear similar, there is a
fundamental distinction between the accuracy we have defined
and the application of normalized Discounted Cumulative
Gain (nDCG). While accuracy quantifies the number of top-m
features that are correctly identified as perturbed according to
the ground truth, nDCG also considers the ranking of errors.
Specifically, if a method assigns the top-1 score to a feature that
is not in the ground truth, it will incur a greater penalty than if
a non-relevant feature is ranked at the bottom of the top-m list.
This nuanced evaluation makes nDCG a more comprehensive
metric for assessing the performance of feature importance
methods, as it not only checks for the presence of correct
features but also evaluates the quality of their ranking.

V. EXPERIMENTS

In this section, we evaluate our proposed method and address
the following key research questions: RQ1 – Can iterative learn-
ing enhance model performance in an unsupervised learning
setting? RQ2 – Can we derive meaningful feature importance
scores for anomalies based on the model’s decisions?

A. Experimental setup

To address the research questions, we use both real-world and
synthetic datasets. Real-world datasets enable us to perform an
extensive performance study against state-of-the-art methods.
However, the ground-truth information on these datasets is
insufficient to thoroughly assess the explanations provided by
our method. To overcome this limitation, we generate synthetic
datasets and a novel version of ADBench, which includes the
full ground truth.
Real-world Datasets. To assess the anomaly detection perfor-
mance of iterative learning in a realistic setting, we conduct
experiments on 46 real-world datasets from ADBench [3]
whose main characteristics are given in supplementary material
The versatility of these datasets in term of application domains
and dimensions offers a wide range of anomaly types and com-
plexities, making them suitable for benchmarking our method
in an unsupervised learning setting. To extract anomalies using
diffusion models that compute an anomaly score, we assume



TABLE I
ANOMALY DETECTION PERFORMANCE, EVALUATED USING THE AUCROC METRIC, IS REPORTED FOR THE DTE DIFFUSION MODEL ACROSS 46 DATASETS.

BOLD VALUES INDICATE THE HIGHEST PERFORMANCE PER DATASET AMONG THE METHODS CONSIDERED: DTE-UNSUPERVISED , DTE-WEIGHTED
LOSS AND THE PROPOSED DSIL WITH ITS VARIANTS. WHEN STANDARD DEVIATIONS SUGGEST OVERLAPPING PERFORMANCE, MULTIPLE METHODS MAY
BE CONSIDERED STATISTICALLY EQUIVALENT. FOR COMPARISON, WE ALSO INCLUDE RESULTS FROM THE DTE-SEMI SUPERVISED MODEL AND THE
BEST PERFORMANCE OBTAINED FROM A SET OF 23 UNSUPERVISED ALGORITHMS. UNDERLINED SCORES HIGHLIGHT DATASETS WHERE DTE INITIALLY

UNDERPERFORMED RELATIVE TO THE ADBENCH BASELINE BUT ACHIEVED TOP PERFORMANCE WHEN TRAINED WITH THE DSIL FRAMEWORK.

Dataset name DSIL Fixed DSIL Cosine DSIL Exponential DTE-unsupervised DTE-weighted loss Best from [14] DTE-semi supervised

http 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.90 ± 0.10 0.99 ± 0.01 1.00 ± 0.00
skin 0.92 ± 0.00 0.78 ± 0.02 0.77 ± 0.01 0.76 ± 0.03 0.86 ± 0.07 0.89 ± 0.00 0.92 ± 0.00
smtp 0.92 ± 0.03 0.94 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.85 ± 0.10 0.96 ± 0.01 0.95 ± 0.02
thyroid 0.98 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.92 ± 0.07 0.99 ± 0.00 0.99 ± 0.00
vertebral 0.35 ± 0.02 0.39 ± 0.06 0.45 ± 0.03 0.41 ± 0.05 0.64 ± 0.22 0.56 ± 0.07 0.68 ± 0.03
Wilt 0.69 ± 0.01 0.77 ± 0.00 0.79 ± 0.01 0.84 ± 0.02 0.80 ± 0.04 0.86 ± 0.00 0.85 ± 0.01
annthyroid 0.85 ± 0.00 0.90 ± 0.00 0.94 ± 0.01 0.96 ± 0.00 0.92 ± 0.03 0.97 ± 0.01 0.98 ± 0.00
mammography 0.80 ± 0.06 0.80 ± 0.01 0.80 ± 0.02 0.80 ± 0.02 0.76 ± 0.04 0.91 ± 0.00 0.87 ± 0.01
glass 0.84 ± 0.02 0.88 ± 0.01 0.88 ± 0.04 0.87 ± 0.02 0.81 ± 0.04 0.87 ± 0.01 0.92 ± 0.02
yeast 0.40 ± 0.00 0.43 ± 0.01 0.43 ± 0.02 0.41 ± 0.01 0.52 ± 0.10 0.52 ± 0.04 0.47 ± 0.02
Pima 0.66 ± 0.01 0.62 ± 0.03 0.62 ± 0.01 0.63 ± 0.01 0.70 ± 0.09 0.72 ± 0.02 0.70 ± 0.02
shuttle 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.98 ± 0.00 0.93 ± 0.07 1.00 ± 0.00 1.00 ± 0.00
Stamps 0.76 ± 0.01 0.77 ± 0.05 0.69 ± 0.09 0.71 ± 0.08 0.72 ± 0.04 0.93 ± 0.01 0.92 ± 0.02
breastw 0.99 ± 0.00 0.93 ± 0.02 0.92 ± 0.02 0.92 ± 0.01 0.82 ± 0.16 0.99 ± 0.00 0.94 ± 0.02
WBC 0.99 ± 0.00 0.94 ± 0.07 0.92 ± 0.06 0.87 ± 0.03 0.72 ± 0.27 1.00 ± 0.00 0.84 ± 0.06
donors 0.71 ± 0.09 0.84 ± 0.08 0.81 ± 0.02 0.78 ± 0.02 0.81 ± 0.07 0.90 ± 0.02 0.98 ± 0.00
cover 0.83 ± 0.02 0.89 ± 0.01 0.92 ± 0.02 0.71 ± 0.04 0.81 ± 0.07 0.95 ± 0.00 0.98 ± 0.00
PageBlocks 0.87 ± 0.01 0.90 ± 0.01 0.92 ± 0.01 0.91 ± 0.01 0.78 ± 0.14 0.92 ± 0.00 0.90 ± 0.01
vowels 0.96 ± 0.01 0.97 ± 0.00 0.97 ± 0.00 0.94 ± 0.03 0.86 ± 0.10 0.95 ± 0.00 0.87 ± 0.02
wine 0.61 ± 0.37 0.52 ± 0.19 0.47 ± 0.17 0.57 ± 0.28 0.71 ± 0.14 0.98 ± 0.02 1.00 ± 0.00
pendigits 0.88 ± 0.06 0.73 ± 0.03 0.72 ± 0.02 0.71 ± 0.04 0.80 ± 0.08 0.95 ± 0.01 0.98 ± 0.01
Lymphography 0.94 ± 0.10 0.98 ± 0.01 0.90 ± 0.15 0.86 ± 0.13 0.86 ± 0.15 1.00 ± 0.00 0.99 ± 0.00
Hepatitis 0.76 ± 0.08 0.67 ± 0.06 0.61 ± 0.11 0.69 ± 0.07 0.73 ± 0.08 0.81 ± 0.01 0.99 ± 0.01
Cardiotocography 0.48 ± 0.01 0.49 ± 0.03 0.53 ± 0.04 0.47 ± 0.02 0.68 ± 0.18 0.78 ± 0.00 0.62 ± 0.03
Waveform 0.62 ± 0.02 0.62 ± 0.01 0.61 ± 0.01 0.60 ± 0.02 0.68 ± 0.11 0.75 ± 0.01 0.65 ± 0.01
cardio 0.72 ± 0.01 0.74 ± 0.02 0.72 ± 0.02 0.71 ± 0.01 0.75 ± 0.03 0.95 ± 0.00 0.88 ± 0.01
ALOI 0.54 ± 0.00 0.53 ± 0.00 0.53 ± 0.00 0.53 ± 0.00 0.63 ± 0.11 0.79 ± 0.01 0.50 ± 0.00
fault 0.63 ± 0.03 0.63 ± 0.02 0.61 ± 0.03 0.59 ± 0.02 0.68 ± 0.08 0.72 ± 0.01 0.59 ± 0.01
fraud 0.93 ± 0.02 0.93 ± 0.02 0.94 ± 0.01 0.94 ± 0.01 0.90 ± 0.03 0.96 ± 0.01 0.94 ± 0.02
WDBC 0.95 ± 0.01 0.92 ± 0.08 0.88 ± 0.03 0.70 ± 0.21 0.86 ± 0.17 0.99 ± 0.00 0.99 ± 0.01
letter 0.85 ± 0.00 0.87 ± 0.01 0.85 ± 0.01 0.81 ± 0.00 0.86 ± 0.04 0.89 ± 0.01 0.37 ± 0.02
WPBC 0.49 ± 0.03 0.49 ± 0.09 0.48 ± 0.06 0.48 ± 0.03 0.64 ± 0.15 0.55 ± 0.03 0.70 ± 0.05
Ionosphere 0.95 ± 0.01 0.92 ± 0.02 0.92 ± 0.01 0.93 ± 0.01 0.82 ± 0.12 0.95 ± 0.01 0.95 ± 0.03
satimage-2 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.94 ± 0.02 0.93 ± 0.02 1.00 ± 0.00 0.99 ± 0.00
satellite 0.79 ± 0.00 0.77 ± 0.01 0.77 ± 0.00 0.73 ± 0.01 0.81 ± 0.09 0.80 ± 0.00 0.79 ± 0.01
landsat 0.58 ± 0.00 0.56 ± 0.01 0.56 ± 0.01 0.53 ± 0.02 0.69 ± 0.15 0.67 ± 0.01 0.52 ± 0.02
celeba 0.86 ± 0.01 0.85 ± 0.01 0.84 ± 0.01 0.81 ± 0.00 0.83 ± 0.01 0.80 ± 0.04 0.82 ± 0.02
SpamBase 0.50 ± 0.00 0.50 ± 0.03 0.51 ± 0.02 0.51 ± 0.01 0.60 ± 0.16 0.69 ± 0.00 0.83 ± 0.01
campaign 0.77 ± 0.00 0.78 ± 0.01 0.78 ± 0.02 0.78 ± 0.01 0.81 ± 0.05 0.78 ± 0.00 0.79 ± 0.01
optdigits 0.40 ± 0.11 0.47 ± 0.00 0.48 ± 0.12 0.56 ± 0.18 0.69 ± 0.19 0.87 ± 0.00 0.85 ± 0.02
mnist 0.88 ± 0.01 0.80 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.87 ± 0.02 0.87 ± 0.01 0.89 ± 0.01
musk 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.01 0.95 ± 0.05 1.00 ± 0.00 1.00 ± 0.00
backdoor 0.90 ± 0.00 0.90 ± 0.01 0.90 ± 0.01 0.87 ± 0.03 0.86 ± 0.04 0.94 ± 0.01 0.91 ± 0.01
speech 0.51 ± 0.04 0.54 ± 0.05 0.49 ± 0.03 0.51 ± 0.07 0.59 ± 0.08 0.52 ± 0.04 0.38 ± 0.02
census 0.66 ± 0.00 0.66 ± 0.01 0.65 ± 0.00 0.66 ± 0.01 0.77 ± 0.13 0.73 ± 0.02 0.69 ± 0.01
InternetAds 0.64 ± 0.02 0.65 ± 0.00 0.65 ± 0.02 0.66 ± 0.02 0.68 ± 0.04 0.70 ± 0.00 0.79 ± 0.02

# Best performance 18 14 10 7 19
Mean rank 2.60 2.41 2.70 3.32 2.72

that the total number of anomalies is known. Based on this
assumption, we select the top n instances with the highest
anomaly scores St

model assigned by the model.

Synthetic dataset generation. While real-world datasets are
valuable for evaluating detection performance, they often lack
ground-truth explanations for anomalies, making it challenging
to assess the quality of explanations. To address this limitation,
we generate synthetic datasets with varying numbers of
dimensions, introducing controlled anomalies with known
ground truth. Specifically, we construct synthetic datasets based
on arbitrarily generated probabilistic graphical models. We
introduce anomalies into each initial model by altering the
parameters of the initial variable defining the model of a dataset.
For each dataset, each feature corresponds to a variable in the
corresponding graphical model. Each variable can follow one
of the given distributions: Uniform, which is defined by its
minimum and maximum values; Normal, characterized by its
mean and standard deviation; Exponential, determined by its

rate parameter; or Gamma, specified by its shape and scale
parameters. This approach ensures that we have precise ground
truth for the perturbed features corresponding to each anomaly,
enabling a thorough evaluation of our method’s explainability.
We define five types of anomalies:

• Cluster: all the parameters are multiplied by a value α,
defining each initial distribution by xi ∼ Xi(αΘ), with
Xi the distribution governing the ith feature and defined
by its Θ parameter. For a given point, all its features are
affected by this anomaly.

• Global: Features that are affected by this anomaly are
perturbed by redrawing the value of the feature following
a uniform distribution with the minimum and maximum
of the dataset both multiplied by α as parameters of the
distribution: xi ∼ Unif(αmin(Xi), αmax(Xi))

• Local: Features that are affected by a local anomaly
are perturbed by drawing a new value using the co-
variance of the variables scaled by a parameter α:



xM = N (mean(XM ), α× cov(XM ))
• Additive and Multiplicative Noise: Features that are

affected by this anomaly are perturbed by either adding
to or multiplying by a random value: xi = xi + ϵ or
xi = xi × ϵ, where ϵ ∼ N (µ, σ).

TABLE II
CHARACTERISTICS OF THE SYNTHETIC DATASET.

d # Causality Anomalies type

4 2 Global, Cluster
10 4 Global, Cluster, Local
50 12 All
100 30 All
1000 30 All

Creating synthetic anomalies allows us to identify the specific
features responsible for an instance’s abnormality, providing
a well-defined ground truth for explanations. Consequently,
we expect the explanation method to assign higher feature
importance scores to the perturbed features that contributed to
the anomaly. With this ground truth available, we can compute
metrics to systematically evaluate the effectiveness of our
method. Table II presents the size of each dataset used in our
experiments, the number and the types of anomalies introduced.

Each dataset consists of 5,000 samples and is available in two
versions, with anomaly ratios of either 5% or 10%. For each
dataset configuration, we generate five distinct datasets using
different random seeds. Since the ground truth in ADBench is
incomplete (providing labels for anomalous instances but not
the specific features responsible) we introduce a novel version
of ADBench that includes ground truth for both anomalous
instances and the features affected by the anomalies by starting
from the normal samples of an ADBench dataset and injecting
the synthetic anomalies described earlier.
Models. We evaluate several variants of the DSIL framework,
which is controlled by two main parameters: the diffusion
model used and the data retention ratio. Regarding the data
retention strategy, we tested three configurations: a fixed ratio
of 50% (FIXED), as well as two scheduling strategies: COSINE
and EXPONENTIAL, described in Section IV-B (Study of the
fixed ratio parameter in supplementary material). We compare
these DSIL variants with DTE, a fully unsupervised baseline
where the DTE model is trained on the entire dataset, and
DTEweighted loss, where the DTE model is trained using the
loss reweighting strategy proposed by [4] which incorporates
instance-specific weights in the loss function that are updated
during model retraining.

Additionally, we benchmark our method against results from
[14] which includes 23 unsupervised algorithms. We also report
the performance of a semi-supervised DTE variant, DTE-semi
supervised, where the model is trained exclusively on
normal samples, and anomalies are detected as instances that
deviate from the learned normal representations.
Hyperparameters. To determine the optimal hyperparameters
for DTE, we conducted a grid search focusing on the number

of diffusion timesteps, the number of bins, and the size of the
hidden layers in the model. We selected the hyperparameter set
that achieved the highest mean AUC-ROC across all datasets
under study. Consequently, for both unsupervised learning and
our iterative learning methods, the DTE model consistently
uses the following hyperparameters, regardless of the dataset:
7 bins, 400 diffusion timesteps, and hidden layers of sizes
[256, 512, 256]. We chose to maintain these hyperparameters
uniformly across datasets after a preliminary grid search, given
the unsupervised nature of our setup. Models are trained using
a learning rate of 10−4 with Adam optimizer over 400 epochs.
An analysis of the impact of hyperparameters of DSIL is
provided in supplementary material. This section compares
different retention ratio values and examines how performance
evolves over iterations, both with a fixed retention ratio and
when using a scheduling strategy.
Code and reproductibility. Our code and supplementary
results are available in a public repository1. For the imple-
mentation of DTE [14] and ADBench [3], we rely on the
authors’ code2.

B. Performance study

We evaluate the performance of iterative learning on real-
world datasets from ADBench. Since DTE outputs anomaly
scores, we evaluate the results under the hypothesis that the
desired proportion of anomalies to extract from the dataset
is known. Accordingly, we treat instances with the highest
anomaly scores as anomalies and compute the AUC-ROC and
F1 score for assessment.

Figure 1 presents the overall performance of 23 anomaly
detection methods across different algorithmic families in
an unsupervised setting, using datasets from ADBench. The
results highlighted in blue correspond to the DTE model trained
with the DSIL framework and a weighted loss, both of which
involve iterative learning. The figure demonstrates a consis-
tent performance improvement when incorporating iterative
learning, with the DSIL framework also exhibiting reduced
variability. Among the retention strategies, a fixed retention
ratio yields slightly higher average ROCAUC compared to
the schedulers, albeit with increased variance across datasets.
Interestingly, while the fixed retention approach achieves the
highest mean performance, the cosine scheduler leads in mean
rank, suggesting greater robustness across datasets.

Table I summarizes the Area Under the Receiver Operating
Characteristic Curve (AUC-ROC) scores for the ADBench
datasets.

Analysis of the raw scores provide several observations.
DSIL Fixed achieves the best performance on 18 datasets,
demonstrating its robustness across diverse data types, with
particularly strong results on ‘http’, ‘skin’, and ‘breastw’.
DSIL Cosine performs best on 14 datasets, delivering strong
but slightly less consistent results compared to the fixed
variant; representative cases include ‘thyroid’ and ‘glass’. DSIL

1https://github.com/ElouanV/iterative learning for anomaly detection
2https://github.com/vicliv/DTE and https://github.com/Minqi824/ADBench

https://github.com/ElouanV/iterative_learning_for_anomaly_detection
https://github.com/vicliv/DTE
https://github.com/Minqi824/ADBench


TABLE III
nDCGm , Accm , AND TOTAL COMPUTATION TIME REQUIRED TO EXPLAIN ALL ANOMALIES DETECTED USING DSIL WITH DTE AND FIXED STRATEGY ON

SYNTHETIC DATASETS.

Dataset SHAP Gradient DSIL (Mean diffusion) DSIL (Max diffusion)
d % ano. nDCGm Accm Time nDCGm Accm Time nDCGm Accm Time nDCGm Accm Time

4 5 % 0.99± 0.01 0.99± 0.01 2.29± 0.18 0.59± 0.04 0.99± 0.01 0.09± 0.12 0.99± 0.01 0.99± 0.01 0.63± 0.02 0.99± 0.01 0.99± 0.01 1.67± 0.06
4 10 % 0.94± 0.01 0.94± 0.01 4.11± 0.20 0.50± 0.00 0.95± 0.02 0.01± 0.00 0.94± 0.01 0.94± 0.01 3.71± 0.15 0.94± 0.013 0.94± 0.013 2.18± 0.03
10 4 % 0.84± 0.01 0.81± 0.01 10.45± 0.91 0.44± 0.03 0.77± 0.02 0.01± 0.01 0.86± 0.01 0.82± 0.01 7.57± 0.35 0.84± 0.01 0.81± 0.01 4.02± 0.05
10 9 % 0.89± 0.01 0.85± 0.01 34.15± 1.01 0.56± 0.01 0.79± 0.01 0.01± 0.00 0.89± 0.01 0.86± 0.01 11.21± 0.30 0.85± 0.01 0.82± 0.001 6.25± 0.09
50 5 % 0.71± 0.01 0.66± 0.02 14.61± 0.94 0.36± 0.02 0.57± 0.03 0.15± 0.22 0.73± 0.02 0.67± 0.02 12.32± 0.20 0.67± 0.02 0.63± 0.02 19.946± 0.45
50 10 % 0.64± 0.05 0.59± 0.04 72.33± 9.42 0.61± 0.01 0.63± 0.01 0.01± 0.00 0.67± 0.01 0.61± 0.01 60.99± 4.80 0.62± 0.01 0.57± 0.01 39.43± 0.21
100 5 % 0.67± 0.00 0.59± 0.00 29.58± 1.21 0.47± 0.02 0.54± 0.03 0.01± 0.00 0.69± 0.01 0.62± 0.01 27.77± 2.50 0.63± 0.01 0.57± 0.01 43.85± 4.50
100 10 % 0.59± 0.04 0.52± 0.03 55.38± 1.53 0.49± 0.01 0.56± 0.01 0.01± 0.00 0.62± 0.01 0.56± 0.01 47.38± 2.73 0.57± 0.01 0.52± 0.01 73.40± 3.01
1000 5 % 0.51± 0.00 0.48± 0.01 358.91± 10.22 0.35± 0.02 0.45± 0.03 0.07± 0.14 0.48± 0.01 0.47± 0.01 350.66± 5.53 0.47± 0.01 0.46± 0.01 624.95± 64.44
1000 10 % 0.51± 0.00 0.48± 0.00 7948.22± 5082.92 0.42± 0.01 0.48± 0.00 0.01± 0.01 0.54± 0.00 0.52± 0.00 227.26± 69.77 0.55± 0.00 0.52± 0.00 1082.04± 29.49

TABLE IV
nDCGm AND Accm ON 5 DATASETS FROM ADBENCH IN WHICH WE ADDED SYNTHETIC ANOMALIES WITH GROUND TRUTH.

SHAP Gradient DSIL (Mean diffusion) DSIL (Max diffusion)
Dataset nDCGm Accm Time nDCGm Accm Time nDCGm Accm Time nDCGm Accm Time

PageBlocks 0.52± 0.02 0.49± 0.02 12.27± 6.91 0.6± 0.01 0.62± 0.01 0.1± 0.01 0.65± 0.01 0.63± 0.01 4.98± 2.39 0.62± 0.03 0.65± 0.02 5.52± 2.55
Wilt 0.88± 0.03 0.88± 0.03 4.29± 1.39 0.93± 0.01 0.92± 0.01 0.09± 0.01 0.93± 0.00 0.93± 0.00 3.01± 0.82 0.93± 0.00 0.93± 0.00 2.69± 0.64
Campaign 0.47± 0.01 0.40± 0.00 1262.73± 1329.13 0.43± 0.01 0.50± 0.01 0.25± 0.03 0.52± 0.02 0.44± 0.02 664.20± 500.28 0.38± 0.01 0.46± 0.02 707.28± 472.96
Landsat 0.56± 0.00 0.48± 0.00 234.44± 118.73 0.21± 0.04 0.61± 0.03 0.51± 0.03 0.69± 0.00 0.61± 0.00 83.58± 43.86 0.57± 0.01 0.64± 0.00 84.61± 44.86
Vertebral 0.86± 0.01 0.84± 0.01 1.48± 0.46 0.95± 0.01 0.96± 0.01 0.01± 0.01 0.83± 0.06 0.79± 0.08 2.85± 1.08 0.78± 0.06 0.83± 0.04 3.16± 1.10

Exponential leads on 10 datasets, indicating effectiveness,
though with reduced consistency. It performs notably well
on ‘smtp’ and ‘vertebral’. The DTE-unsupervised method
outperforms the others on 7 datasets, suggesting that DSIL does
not universally enhance performance, particularly on datasets
such as ‘Wilt’ and ‘annthyroid’. Meanwhile, the DTE model
with weighted loss achieves the highest AUC-ROC on 19
datasets but exhibits instability, with variances reaching up
to 0.27 on ‘WDBC’. Among the 23 unsupervised methods
benchmarked in [14], top performance is recorded on 44
datasets. However, achieving this level of performance required
combining many different algorithms, reflecting a substantial
variability across methods. Notably, on 8 datasets, underlined
in the “Best from [14]” column, the application of the DSIL
framework allows the DTE model to outperform the best-
performing methods reported in the benchmark. These cases,
where the standalone DTE model was initially outperformed
by existing unsupervised approaches, underscore the effec-
tiveness of iterative learning in improving anomaly detection
performance.

Mean rank analysis provides an overview of the relative per-
formance of each method. DSIL Cosine achieves the lowest
mean rank of 2.41, indicating the best average performance
across datasets. It is followed by DSIL Fixed with a mean
rank of 2.60, while DSIL Exponential ranks slightly lower
at 2.72. Interestingly, the Weighted Loss method matches
the mean rank of Exponential (2.72), despite achieving the
highest number of individual best performances. In contrast, the
DTE model trained in an unsupervised fashion has the highest
mean rank of 3.32, reflecting weaker average performance
across the benchmark.

Notably, DSIL significantly enhances DTE on datasets
like ‘pendigits’, where the AUC-ROC improves from 0.71
(unsupervised) to 0.88 (iterative learning). Overall, DSIL,
especially the Fixed and Cosine variants, delivers robust results
across datasets, frequently outperforming unsupervised methods

and nearing benchmark scores. However, the Exponential
scheduler has limited utility, with exceptions like the ‘cover’
dataset. F1 score results are provided in supplementary material

C. Explainability

On synthetic anomalies. The nDCG and Accuracy metrics
used to evaluate feature importance methods require ground
truth information about perturbed features. Therefore, we
employed synthetic anomalies to ensure access to this ground
truth. We define a binary vector where 0 means that the feature
is not involved in the perturbation apply to the data at the
generation, and 1 for a feature which was involved and is
therefore expected to get an important feature score in the
decision process. We use this vector as the relevance for the
nDCG score and the ground truth of the explanation accuracy.
For both methods we set m to be the size of the ground
truth explanation. We compare our method against SHAP as a
primary competitor and use the gradient of the model’s output
as a lower bound for execution time. For our method, we
employ both mean and max aggregation functions (see Eq. 5)
to evaluate its performance comprehensively. To make a fair
comparison between SHAP and our methods, hyperparameters
were chosen so that execution time is similar between methods.
However, for some datasets, reducing the SHAP execution
time too much resulted in a number of coalitions considered
too small, and caused the linear regression to not converge
according to the criteria given by the author of the library.
Thus, in some cases we chose to let SHAP more computation
time by increasing the number of coalition it can use for its
approximation of the feature importance score.

We reported in Table III the nDCG and accuracy obtained
under these conditions. For our methods, we set |T | = 200,
except for the dataset with 1000 features, where we reduced it
to |T | = 40 to limit computation time. For SHAP, we set the
number of coalitions to consider as nsamples = α × d, where
d is the data dimensionality and α ∈ [1.5, 2]. Our method,
using AGG = mean(), consistently outperforms SHAP across



Fig. 1. Mean AUROC (top) and average rank (bottom) across ADBench
datasets, comparing different anomaly detection approaches: classical methods
(purple), deep learning (red), diffusion-based (green), and our proposed model
(blue). The blue bars represent our DTE model trained using the iterative
learning framework (DSIL) and DTE-weighted loss implementation.

all scenarios in terms of both nDCG and Accuracy, even
when SHAP is allocated more computation time for feature
scoring. While SHAP’s execution times remain substantially
higher than those of the gradient-based method, the latter
yields suboptimal results, which highlights the need for more
sophisticated approaches that strike a better balance between
accuracy and efficiency.

Experiments on real-world datasets with injected synthetic
anomalies (Table IV), which provide ground-truth on perturbed
features, support these findings. A notable exception is the
’Vertebral’ dataset, where SHAP performs competitively due to
the dataset’s small size, which allows for exhaustive computa-
tions. In all other cases, DSIL achieves superior performance
with significantly lower computation times. Moreover, using
AGG = mean() generally leads to higher nDCG scores, while

AGG = max() tends to produce better Accuracy.
On real world data. Next, we evaluate our method on
real-world datasets containing naturally occurring anomalies.
Since ground-truth perturbed features are not available in
this setting, we compare different methods using infidelity
as defined in [32] and faithfulness presented in [33], both
of which can be computed without requiring ground-truth
annotations. A faithfulness score close to 1 indicates that the
model’s explanations are highly aligned with its actual behavior.
Figure 2 (top) shows the Faithfulness@k across different values
of k on ADBench datasets with synthetic anomalies, as used
in Table IV. In terms of faithfulness on synthetic data, SHAP
demonstrates marginally superior performance overall, with a
particularly notable advantage in the ’landsat’ dataset where
it consistently outperforms across all values of k. Figure 2
(bottom) illustrates the Faithfulness@k for various values of
k across four real-world datasets of different sizes. When
compared to SHAP, our method excels in achieving better
faithfulness at lower values of k, whereas SHAP performs better
at higher values of k. This indicates that DSIL more effectively
identifies the top-k critical features, though it assigns less
discriminative scores to lower-importance features compared to
SHAP. In real-world applications, anomalies typically manifest
in only a subset of features rather than across all features
simultaneously. Therefore, explanation methods that achieve
high faithfulness with a small number of selected features, low
k, provide more practical value than those requiring a large k
approaching the total feature count in the dataset.

TABLE V
INFIDELITY SCORES ON FOUR REAL-WORLD DATASETS FOR SHAP AND

DSIL USING MEAN AND MAX DIFFUSION (LOWER IS BETTER).

Dataset SHAP DSIL (Mean diffusion) DSIL (Max diffusion)

Ionosphere 1.42× 10−4 1.37× 10−4 1.37× 10−4

WBC 2× 10−6 3× 10−6 3× 10−6

breastw 1.1× 10−5 1.1× 10−5 1.1× 10−5

cardio 6× 10−6 5× 10−6 5× 10−6

Table V summarizes the mean infidelity metrics across all
four benchmark datasets. No statistically significant difference
in infidelity is observed between SHAP and DSIL. Importantly,
our method maintains consistent infidelity values regardless of
the chosen aggregation function, demonstrating the robustness
of our approach to this implementation choice.

VI. CONCLUSION

In this work, we introduced DSIL, an novel framework
that improves unsupervised anomaly detection that leverage
generative diffusion models. Concretely, through iterative
refinement of unlabeled datasets, DSIL effectively narrows
the gap between unsupervised and semi-supervised learning
and achieve superior performance on real-world datasets.
In addition, our experimental results demonstrate DSIL’s
capabilities for interpretability. We illustrate it with a novel
application of metrics commonly used in recommender systems.
Specifically, we use nDCG for evaluating synthetic anomaly
detection, in addition to employing established metrics such



Vertebral PageBlocks Campaign Landsat

Breastw Cardio WBC Ionoshpere

Fig. 2. Mean Faithfulness@k for different value of k on ADBench datasets with synthetic anomalies (top) and for four different datasets of various size
(bottom).

as faithfulness and infidelity for assessing performance on real-
world anomalies. Future work will extend DSIL to dynamic
datasets and integrate domain knowledge for improved anomaly
detection in specialized contexts.
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