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ABSTRACT

The problem of configuring model variability is widespread in many

different domains. Renault, a leading french automobile manufac-

turer, has developed its technology internally to model vehicle

diversity. This technology relies on the approach known as knowl-

edge compilation. Since its inception, continuous progress has been

made in the tool while monitoring the latest developments from

the software field and academia. However, the growing number of

vehicle models brings potential risks and higher requirements for

the tool. This paper presents a short reminder of Renault’s tech-

nology principles and the improvements we intend to achieve by

analyzing and leveraging notable data features of Renault problem

instances. In particular, the aim is to exploit symmetry properties.

CCS CONCEPTS

· Software and its engineering → Software product lines; · The-

ory of computation → Automated reasoning.
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1 INTRODUCTION

Variability modeling problems (VMP)[4] are pervasive in real life.

In the car industry, this problem is even crucial, as it touches all

business activities. These range from the design (by engineers)

to the manufacturing (by technical staff), passing by the vehicles’

documentation and marketing forecasts.

As a simple example of such a VMP, consider the fuel type and

the number of place for a car. Let us take as a definition domain for

the fuel type the set {petrol, diesel, LPG} and the set {4,5,7 } for the

number of place. We end up by having nine possible combinations

that form the different configurations for the chosen car. Then,

we must impose between these features dependency relationships

that describe activity-related constraints (business, technical, legal

requirements, and many others) to complete the picture. Therefore,

we can easily perceive here the complexity of real-life VMPs, and

the hardness of their solving: some ranges of vehicles of Renault

count around 1021 possible configurations [2]. In the following, we

call such a VMP the basic problem.

Besides the problem mentioned above, an essential business

requirement is to rapidly respond to customers’ online vehicle

configuration. For example, during online shopping on Renault’s

website, customers can choose the car model, the motor type or

manipulate the other possible options provided online. Renault

needs to respond to those customers’ requests within less than a

second with the satisfying cars. The choices the customer has made

include a chain of specific values for each option. For example,

{model = Clio, color = Red, motor = Diesel} is a set of choices the

customer could have made during the online shopping. We call

such a set a configuration.

From the theoretical point of view, the basic problem, as well

as the configuration problem are typical Constraint Satisfaction

Problems (CSP). Since the domains of all variables are discrete and

finite, one can straightforwardly encode these CSPs as (Boolean)

Satisfiability problems (SAT)[8].

If we focus on solving the online configuration problem, one can

think of two possible solutions. The first, the natural one, is to solve

a CSP/SAT problem at every request. As the user inputs a configura-

tion online, it is taken as a new set of constraints and combined with

the basic problem to form a new CSP/SAT problem. We then feed
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the resulting problem to a CSP/SAT solver. This solution is simple

but is costly in general. Indeed, one has to solve an NP-complete

problem at each request [6]. If, however, the underlying problem

falls into a polynomial category (e.g., 2-SAT [11], Horn-SAT [7]), or

the basic problem is too easy to solve (less than a second), it can then

be solved many times costless. When evaluating the benchmarks

of Renault, it turns out that none of the above statements is true.

In particular, testing state-of-the-art SAT solvers (e.g., kissat [5],

glucose [3]) on the basic problem, without adding any configuration

request, reveals that around 30 % of the instances are solved in more

than 5 seconds to get only one solution. So this is not an option for

our configuration problem.

The second possible solution is to build, once and for all, the con-

figurations space, a solution known as knowledge compilation [13].

Hence, the customer’s online configuration requests can be easily

checked in polynomial time. Of course, building the configurations

space is more difficult than finding just one solution. However, since

this procedure can run offline and the configuration engine can

reuse such a compiled knowledge for all requests, the approach

seems to be a good compromise.

Actually, for its VMP system, the second solution is the one

Renault has retained, implemented, and is being used for a long time

[12]. Though, it is subject to a critical limit, the memory size. Indeed,

the computed configurations reside in memory, and all requests

are operated from there. Otherwise, the whole approach becomes

meaningless. Of course, Renault can easily increase the machine

memory facing the memory shortage, but the configuration space

size could be exponential due to the problem complexity [13], so

we can’t always guarantee the memory is enough. So far, several

heuristics and optimizations control the pressure on the memory.

Here we want to go further and continue the improvement process

of this solution by exploring new tracks.

Hence, we discuss in this paper the ins and outs of a possi-

ble direction to lighten the memory pressure when constructing

the configuration space, namely by exploiting symmetry properties.

When present, symmetries can be very helpful for compressing the

underlying structure at hand and thus optimize memory usage.

The remainder of the paper is organized as follows. Section 2

briefly presents the configuration system of Renault and its un-

derlying data structure. Section 3 introduces symmetries, shows

how we have figured them out from a sample of Renault’s problem

instances and explains howwe plan to apply them. Finally, section 4

hints at other possible directions to explore for solving the memory

pressure issue, while section 5 ends this paper.

2 BACKGROUND ON THE CONFIGURATION

SYSTEM OF RENAULT

We consider a vehicle (the product) as a set of variables following

a system of constraints. The left-hand side of Figure 1 shows an

example with a set of seven variables and their four constraints.

Different Renault divisions create these constraints for manufactur-

ing requirements, marketing requests, ecological aims, and many

other purposes. The constraints reduce the product diversity range

but may increase the complexity of its configuration.

2.1 The product modeling system

As explained by B. Pargamin [12], the internal configurator of

Renault is entirely built on the standard compiled representation

of Renault vehicle diversity in the form of a cluster tree. Three

processes formalize the construction and the manipulation of the

cluster tree:

• Construction: A cluster tree is a tree whose nodes are

clusters of the variables (e.g., engine, color). To ensure the

completeness of inference algorithms operating on the clus-

ter tree, a variable shared by two nodes must be present in

every node on the path between the two nodes.

• Implementation: This process first builds the set of all

Boolean variables instantiations consistent with the con-

straints that fit into the cluster. Consistent instantiations

are called logical models. For example, in the matrix on the

right-hand side of Figure 1 each column encodes a logical

model of the vehicle represented with the seven variables x1

to x7.

The process associates to each Boolean variable 𝑥𝑖 (here-

after 𝑏𝑣𝑎𝑟 𝑥𝑖 ) a Boolean vector (VBV) whose 𝑖𝑡ℎ position is

set to TRUE if 𝑥𝑖 is TRUE in the 𝑖𝑡ℎ model, FALSE otherwise.

Each line in the matrix Figure 1 encodes a Boolean vector

for each 𝑏𝑣𝑎𝑟 . Each logical model thus represents a valid

configuration for the vehicle. In Figure 1, the column CSP

solution model encodes such a valid configuration.

The process finally builds a cluster state vector (CSV), a

Boolean vector whose 𝑖𝑡ℎ position is set to TRUE if the 𝑖𝑡ℎ

model is consistent with the current assignment of Boolean

values to the corresponding𝑏𝑣𝑎𝑟𝑠 of the cluster, FALSE other-

wise. Figure 2 shows such as a CSV for the cluster presented

in Figure 1, with the current assignment of values to variables

𝑥1, 𝑥2, and 𝑥3.

• Inference: During this process, whenever a cluster’s state

changes, it propagates the change to all the variables in

the cluster, then to all other clusters of the tree, ensuring a

deductively complete truth maintenance system.

Figure 1: A cluster implementation

2.2 The vehicle sales configuration

During the configuration process, when the customer (indirectly)

instantiates a Boolean variable 𝑥𝑖 , the cluster state vector is re-

evaluated by a Boolean AND operation between the prior CSV and

the VBV or its negation.
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The change then propagates its effect to all other 𝑏𝑣𝑎𝑟𝑠 of the

cluster that thus turn to TRUE (resp. FALSE) if their VBV (resp.

the negation of their VBV) is compatible with the CSV. Figure 2

illustrates such an ongoing configuration process for the cluster of

Figure 1, with the current assignment of values to variables 𝑥1, 𝑥2,

and 𝑥3.

Figure 2: Configuration on a cluster of variables

Now that we have seen how a constraint propagates within a

cluster, we can see the propagation between two clusters within the

cluster tree, in Figure 3. This figure shows a compatibility matrix,

called arc matrix, between the cluster AB and the cluster CD.

Figure 3: Arc between two clusters : propagation

The CSV of each cluster is updated according to this equation:

Figure 4: formula of updating cluster

Figure 5 illustrates the result:

Figure 5: Propagation of choices between two clusters

2.3 Benefits and Challenges

The knowledge compilation, which consists of investing once in

a heavy off-line compilation, provides the benefit of a very high-

performing configurator in requests response time. Therefore, the

challenge is to improve memory usage by the knowledge represen-

tation without degrading response time, neither for the compilation

process nor for the configuration. For this challenge, optimising

the representation structure by profiting the data structure feature

could be a promising direction. The following section will present

how the data feature symmetries could help achieve this challenge.

3 SYMMETRIES TO IMPROVE THE

CONFIGURATION SYSTEM OF RENAULT

An idea to tackle the memory pressure problem that we face when

using knowledge compilation approach could be to exploit com-

pression techniques. These allow the reduction of the size of the

underlying structure while preserving the targeted properties. An

example of such techniques is compressing using symmetries. In this

case, the configurations space is subdivided in parts, called equiva-

lence classes. Each class groups those configurations obtained from

each other just by permuting the identity of the objects. Hence, to

represent the whole configuration space, one has to keep a repre-

sentative from each class, thus drastically reducing memory usage.

The relevance and effectiveness of a symmetry-based approach

depend on several requirements. The most critical ones are the

following:

• Requirement 1: the original problem must exhibit a certain

degree of symmetries;

• Requirement 2: the structure used for representing the con-

figuration space must be formally well defined and suitable

for exploiting symmetries;

• Requirement 3: the operations that one has to perform on

the reduced structure must remain at the same complexity

level as the one on the original structure.

3.1 Symmetries in Renault’s variability

modeling problems

The notion of symmetry relies on the concept of permutation. A

permutation is a bijection from a set X to itself. For example, given

a set 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, 𝑔 = (𝑥1, 𝑥2) (𝑥3, 𝑥4) is a permutation that

maps 𝑥1 to 𝑥2, 𝑥3 to 𝑥4 (and vice-versa).

In practice, computing the symmetries of a CSP/SAT problem

boils down to the problem of graph isomorphisms [1]. Indeed, the

problem at hand is encoded as a colored graph from which we ex-

tract the set of automorphisms using classical tools (e.g., saucy3 [10],

bliss [9]). The computed set of automorphisms represents the set

of permutations of our problem, called generators. We call sym-

metries of the problem [14] the group constructed on top of these

generators.

Hence, to assess the first requirements mentioned above, we

first created a benchmark with around 2500 instances of Renault’s

VMPs. We then computed the symmetries of these instances using

bliss [9]. Table 1 summarizes the obtained results.
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number of generators percentage of instances

1-30 57.33%

31-60 23.71%

61-90 13.06%

91-120 4.60%

121-150 0.69%

151-180 0.61%

Table 1: Symmetry measurement results

For instance, we observe that 57.33% of the instances exhibit

between 1 and 30 generators. Overall, 100% of the instances exhibit

symmetries, which is the significant observation here. Therefore,

we can safely conclude that this outcome completely fulfills our

first requirement. Such a first positive result motivates us to go

further and investigate the two remaining requirements.

3.2 Towards an integration of symmetries

As mentioned above, to achieve a complete integration of sym-

metries in Renault’s variability modeling problems, the second

requirement concerns the need to formally define the structure

used for representing the configuration space.

As this requirement has never been considered before within

Renault, and the whole of Renault’s configuration system is already

operational for several years, the difficulty resides in accurately

reproducing this system, i.e., preserving completeness and correct-

ness while defining the formal viewpoint.

As soon as the second requirement is fulfilled, it will be possible

to address the third requirement and derive the theoretical com-

plexities of different operations (e.g., the configuration operation).

At first sight, all needed operations remain in polynomial time, but

this has to be confirmed by a theoretical study.

Once all the requirements are satisfied, it will be time to inte-

grate our new symmetries-based approach in Renault’s product

configuration eco-system. We plan to do that by injecting three

independent modules, as illustrated in Figure 7.

• Symmetry detection: it takes the CSP/SAT instance as

input, detects the symmetries, and outputs the symmetries

along with the original problem.

• Symmetry application: it takes the output data of the Sym-

metry detection module, combines the symmetries with the

data structure used during the compilation, and outputs a

configuration space constructed with clusters of equivalent

classes. Each class contains only one configuration that rep-

resents all the equivalent configurations of the class.

• Solutions restoration: this module restores the original

configurations compressed by the symmetry application

module. We need this module to restore the original solution

for responding to customers’ online configuration requests.

Figure 6 shows the current workflow of Renault’s configuration

system, while Figure 7 shows the resulting workflow after the inte-

gration of the planned symmetry application modules. Unlike the

detection and application modules that are part of the compilation

process, the restoration module is part of the configuration phase

when the customer interacts with Renault’s configurator.

Figure 6: Current compilation system of Renault

Figure 7: Integration of symmetry detection and application

modules in Renault’s compilation system

Another challenge to acknowledge is that the symmetry appli-

cation module may increase the complexity of the configuration

process. Indeed, such an approach may influence the time and mem-

ory requirements of the compilation. However, we cannot rule out

these possible factors before carrying out a theoretical study with

the formalization of the data structure. After all, very possibly, ap-

plying symmetry over the current data structure without increasing

the algorithm complexity will become an important issue to handle.

4 OTHER DIRECTIONS

The current Renault compilation system always needs to take mul-

tiple parameters to control, adjust, and monitor the overall process.

These parameters are directly related to the operations of the data

structure. Therefore, they can directly influence memory usage

during the compilation process. In addition to applying symmetries,

another possible improvement is an automatic determination of

computation parameters during the compilation of the original

CSP problem to the configuration space. The action of decision for

parameters can be static or dynamic:

• Static determination: Set the execution parameters at the

beginning of the compilation process according to the in-

put instance features (e.g., number of variables, number of

constraints.);

• Dynamic determination: Set the parameters at the begin-

ning and continuously adjusting them dynamically during

the compilation process according to memory usage or some
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other technical parameters, which can help further adjust

the execution parameters in real-time.

This work should be suitable for machine learning techniques

considering multiple parameters to configure and internal feed-

backs within Renault.

5 CONCLUSION

This paper presents the background of Renault’s model variability

problem over the vehicle product line and its continuous improve-

ment issues. We mainly focus on the challenge of the memory

pressure for the configuration system. After a short reminder of

Renault’s technology, we introduce our method for this challenge:

improvements based on the existing data structures using sym-

metries. We also discuss some other promising directions, such

as compilation parameters tuning. These directions should have

promising results based on our current progress.
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