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Abstract. In the field of medical imaging, many different image modal-
ities contain different information, helping practitionners to make diag-
nostic, follow-up, etc. To better analyze images, mixing multi-modalities
information has become a trend. This paper provides one cascaded UNet
framework and uses three different modalities (the late gadolinium en-
hancement (LGE) CMR sequence,the balanced- Steady State Free Pre-
cession (bSSFP) cine sequence and the T2-weighted CMR) to complete
the segmentation of the myocardium, scar and edema in the context of
the MICCAI 2020 myocardial pathology segmentation combining multi-
sequence CMR Challenge dataset (MyoPS 2020). We evaluate the pro-
posed method with 5-fold-cross-validation on the MyoPS 2020 dataset.

Keywords: Deep Learning · Myocardial Pathology · Segmentation ·
UNet.

1 Introduction

The assessment of myocardial viability is essential for diagnosis and follow-up of
patients suffering from myocardial infarction (MI) [17, 16]. However, many differ-
ent images modalities in the field of medical imaging are available and are com-
plementary. Late gadolinium enhancement (LGE) cardiac magnetic resonance
(CMR) sequence which visualizes MI, T2-weighted CMR (imaging the acute in-
jury and ischemic regions) and balanced-Steady State Free Precession (bSSFP)
cine sequence (which captures cardiac motions and presents clear boundaries)
are examples of such imaging modalities. Therefore, making a better use of the
information in these different modalities has become a research focus. In recent
years, many semi-automated and automated methods have been proposed for
multi-modal medical image segmentation using deep learning-based methods,
such as convolutional neural networks (CNNs) [8] and fully convolutional net-
works (FCNs) [9] especially the U-Net architecture [11]. For example, Guo [3, 4]
proposed a conceptual image fusion architecture for supervised biomedical image
analysis. They designed and implemented an image segmentation system based
on deep CNNs to contour the lesions of soft tissue sarcomas using multimodal
images by fusing the information derived from different modalities.
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Fig. 1: Myocardial pathology, the picture is from MyoPS2020 challenge 1.

Although we can use multi-modal information to improve the myocardial
pathology segmentation, class imbalance remains a problem to tackle. Network
overfitting is common in the field of medical imagingbecause of the relatively
small size of handled datasets. Data augmentation is classically used in the pre-
processing stage to overcome this limitation, and weighted loss functions are
designed. For example, Zhao et al. [15, 10] used data augmentation by rotating
and flipping the heart segmentations to reduce the impact of overfitting. Zhao
et al. [14] proposed an automated data augmentation method for synthesizing
labeled medical images, which provided significant improvements over state-of-
the-art methods for one-shot biomedical image segmentation. Sudre et al. [13]
proposed the generalized dice to solve the problem of highly unbalanced segmen-
tations. Abraham et al. [1] proposed a generalized focal loss function based on
the Tversky index to address the issue of data imbalance in medical image seg-
mentation. Examples of data augmentation methods to overcome this issue can
be found in [2, 12, 6, 5, 7]. However, datasets obtained through data augmenta-
tion are strongly correlated with the original datasets, Therefore, the proportion
of negative samples remains significantly larger than the proportion of positive
samples after data augmentation. Thus, data augmentation does not reduces the
risk of overfitting. For the proposed improved loss function can effectively reduce
the issues of class imbalance, it does not fundamentally address the problems
caused by the lack of datasets.

Therefore, in this paper, in order to segment myocardial pathology (see
Fig. 1), we begin with a segmentation of the anatomical tissue (left ventricle
(LV), right ventricle (RV), whole heart (WH), myocardium (myo)) around it,
and then let the network learn a relationship between these segmentation re-
sults to obtain the myocardial pathology. Compared with direct segmentation
of myocardial pathology, the effect of class imbalance can be reduced by the
segmentation of surrounding anatomical tissues, because it helps the network to
focus on the small lesions regarding to the surrounding tissues.

2 Methodology

2.1 Overview of Network Architecture

We propose a hybrid network (see Fig. 2) using 5 UNet [11] to segment myocar-
dial pathology. Our network is composed of three UNet named UNet1 and two
named UNet2. The main difference between UNet1 and UNet2 is number of
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Fig. 2: Global overview of the proposed method.

Table 1: The structural configuration of UNet.

Layers
Input size

Operation Kernel Stride Regul.
Output size

UNet1 UNet2 UNet1 UNet2
Input image (240,240,2) (240,240,4) - - - - (240,240,2) (240,240,4)

C1 (240,240,2) (240,240,4) [Conv2d+relu]*2 3 1 L2 (240,240,64) (240,240,8)
C2 (240,240,64) (240,240,8) Maxpooling2d 2 - - (120,120,64) (120,120,8)
C3 (120,120,64) (120,120,8) [Conv2d+relu]*2 3 1 L2 (120,120,128) (120,120,16)
C4 (120,120,128) (120,120,16) Maxpooling2d 2 - - (60,60,128) (60,60,16)
C5 (60,60,128) (60,60,16) [Conv2d+relu]*2 3 1 L2 (60,60,256) (60,60,32)
C6 (60,60,256) (60,60,32) Maxpooling2d 2 - - (30,30,256) (30,30,32)
C7 (30,30,256) (30,30,32) [Conv2d+relu]*2+Dropout 3 1 L2 (30,30,512) (30,30,64)
C8 (30,30,512) (30,30,64) Maxpooling2d 2 - - (15,15,512) (15,15,64)
C9 (15,15,512) (15,15,64) [Conv2d+relu]*2+Dropout 3 1 L2 (15,15,1024) (15,15,128)
O1 (240,240,2) (240,240,2) Sigmoid - - - (240,240,1) (240,240,1)

filters as shown in Table. 1: the number of filters of UNet1 is [64 128 256 512 256
128 64] and the number of filters of UNet2 is [8 16 32 64 32 16 8]. Their frame-
work is same. It consists of the classical two parts of the UNet network as shown
in Fig. 3: a down-sampling part and an up-sampling part, and shortcut connec-
tions between the two parts to fuse high-level features and low-level features.
UNet1 is used to segment the anatomical tissue around myocardial pathology
and obtain three segmentation results: LV+RV, Myo, and WH. UNet2 is used
to segment myocardial pathology by learning the relationships between the sur-
rounding anatomical tissue and the pathological ones. Since the lesions are very
small and unbalanced, we reduce the number of filters of UNet2 in order to
reduce the impact of overfitting.

3 Experimental Results

Dataset Description. We evaluate our method on the myocardial pathology
segmentation combining multi-sequence CMR 2 dataset (MyoPS 2020). Its aim is
to segment myocardial pathology, especially scar (infarcted) and edema regions.

2 http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/MyoPS20/index.html
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Fig. 3: Architecture of networks.

It contains 45 cases of multi-sequence CMR (25 cases for training and 20 cases
for testing). Each case refers to a patient with three sequence CMR, i.e., LGE,
T2 and bSSFP CMR. The slice spacings of multi-sequence CMR volume range
from 11.999 mm/pixel to 23.000 mm/pixel, while in-plane resolution ranged from
0.729 mm/pixel to 0.762 mm/pixel. The average sizes: 482×479×4 pixels.

Preprocessing and Postprocessing. We cropped each slice to 240× 240
pixels and we do not use data augmentation. The pre-processing begins with a
Gaussian normalization. For post-processing, we pad with zeros to get back a
initial width and height of a slice.

Implementation and Experimental Setup. We implemented our experi-
ments on Keras/TensorFlow using a NVidia Quadro P6000 GPU. We used five
different loss functions for training the network and used sigmoid to get a prob-
ability distribution of the left and right ventricle, myocardium, whole heart, scar
and edema, and scar, respectively (as shown in Fig. 2). Adam optimizer (batch-
size = 1, β1 = 0.9, β2 = 0.999, ε = 0.001, lr = 0.0001) and did not use learning
rate decay. We trained the network during 300 epochs.

Training Step. First, we kept weight of UNet2 unchanged, which means
UNet2 was not trained at the beginning, then we trained UNet1. After finished
the train of UNet1, we kept weight of UNet1 unchanged, then trained UNet2.

Evaluation Methods. One metric is used to evaluate our method: dice coef-
ficient (DC) to evaluate the regions of myocardial pathology.

3.1 Segmentation Results

As shown in Table. 2, we evaluate the proposed method with 5-fold-cross-validation.
We obtain a mean DC of 92.3% on WH, 84.9% on LV+RV, and 84.7% on Myo
by UNet1. Without using data augmentation, based on the original dataset,
we obtain a higher segmentation accuracy, which lays the foundation for the
subsequent segmentation of myocardial pathology. Finally, we obtain a mean
DC of 20.6% on edema, 51% on scar by UNet2. We used the trained network
to predict the testset (20 cases) and received the evaluation of our prediction
results from the MyoPS2020 organizer: the mean DC of 58.6% on scar and the
mean DC of 63.9% on scar and edema.
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Table 2: Evaluation results on 5-fold-cross-validation.

Patient 101-105 106-110 111-115 116-120 121-125 Average Test datasets
Edema 0.284 0.153 0.189 0.122 0.280 0.206 −
Scar 0.473 0.496 0.515 0.464 0.602 0.510 0.586
Myo 0.844 0.852 0.811 0.859 0.869 0.847 −

LV+RV 0.818 0.854 0.812 0.897 0.864 0.849 −
WH 0.925 0.937 0.876 0.918 0.959 0.923 −

As shown in Fig. 4, for the segmentation results of whole heart, left and
right ventricle, and myocardium, as the number of positive samples continues to
decrease, the segmentation accuracy is also decreasing, and false segmentation is
mainly concentrated at the boundary, which is mainly because ambiguities often
appear near the boundaries of the target domains due to tissue similarities. For
the segmentation results of edema and scar, the poorly segmentation result is not
only on the boundary, but also in regions. In the original dataset, edema does not
exist in many slices, which further leads to a reduction in the effective dataset for
edema, therefore, the segmentation network is very difficult to segment edema.

4 Conclusion

In this paper, we propose a way of reverse thinking, not to segment the myocar-
dial pathology directly, but to learn a relationship between the surrounding nor-
mal tissue and it by designing one stacked and parallel UNets with multi-output
framework. We evaluate the proposed method with 5-fold-cross-validation on
the MICCAI 2020 myocardial pathology segmentation combining multi-sequence
CMR Challenge dataset (MyoPS 2020) and achieve a mean DC of 20.6%, 51% on
edema and scar,respectively. The computation time of the entire pipeline is less
than 3 seconds for an entire 3D volume, making it usable for clinical practice.
However, the segmentation accuracy of myocardial pathology is affected by the
segmentation accuracy of surrounding normal tissues. Therefore, in our future
work, we will continue to study the relationship between the surrounding nor-
mal tissue and myocardial pathology and improve the segmentation accuracy of
surrounding normal tissues.
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(b) Edema and scar. Scar is in white. Top = segmentation, bottom = Ground Truth

(d) Myocardium. Top = segmentation, bottom = Ground Truth

(f) Left and right ventricle. Top = segmentation, bottom = Ground Truth

(h) Whole heart. Top = segmentation, bottom = Ground Truth

Fig. 4: Qualitative segmentation results.
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