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Abstract—Atrial fibrillation is the most common heart rhythm
disease. Due to a lack of understanding in matter of underlying
atrial structures, current treatments are still not satisfying.
Recently, with the popularity of deep learning, many segmen-
tation methods based on fully convolutional networks have
been proposed to analyze atrial structures, especially from late
gadolinium-enhanced magnetic resonance imaging. However, two
problems still occur: 1) segmentation results include the atrial-
like background; 2) boundaries are very hard to segment. Most
segmentation approaches design a specific network that mainly
focuses on the regions, to the detriment of the boundaries.
Therefore, this paper proposes an attention full convolutional
network framework based on the ResNet-101 architecture, which
focuses on boundaries as much as on regions. The additional
attention module is added to have the network pay more attention
on regions and then to reduce the impact of the misleading
similarity of neighboring tissues. We also use a hybrid loss
composed of a region loss and a boundary loss to treat boundaries
and regions at the same time. We demonstrate the efficiency of
the proposed approach on the MICCAI 2018 Atrial Segmentation
Challenge public dataset.

I. INTRODUCTION

Segmentation of left atrium in 3D late gadolinium-enhanced

magnetic resonance (LGE-MR) images with high precision is

a key step for atrial fibrillation (AF) ablation. Although a lot of

research has been made on the automation of this task, manual

annotations are still commonly used in the medical community,

which is highly time-consuming and is subject to inter- and

intra-observer variabilities [1]. With the recent development of

convolutional neural networks (CNNs), remarkable progress

has been made in matter of automatic segmentation [2].

However, the heterogeneity of the features corresponding to

a same label may introduce intra-class inconsistencies and

affect the accuracy of the segmentation [3]. Although the full

convolutional network (FCN) [4] or U-Net [5] architectures

can make up for the spatial resolution loss to a certain extent,

it performs poorly on small parts of objects. The main issues

are then the lack of precision regarding the boundaries of the

segmented objects and the loss of small objects and small

parts of objects. Therefore, in this paper, we consider two

challenging problems applyied on cardiac imaging: 1) how to

enlarge the receptive field of a CNN and improve the segmen-

tation accuracy on small parts of objects; 2) how to balance

the importance of the regions and the boundaries of objects.

Many challenging problems are linked with cardiac imaging:

poor contrast between the segmented domain and surrounding

structures, heterogeneities in matter of brightness due to the

blood flow, non-homogeneous partial volume effects due to

limited cardiac magnetic resonance (CMR) resolution (1.5T,

3.0T, etc.), and so on [6]. Most of the proposed network frame-

works are based on FCN or on U-Net. They use upsampling

layers and combine the feature maps from lower to higher

resolutions. Many extensions to these networks have been

proposed already: Chen [7] proposes a shape-aware multi-

view autoencoder (thanks to some modifications to the original

U-Net) to achieve high segmentation performance on cardiac

magnetic resonance (MR) image segmentation; Khened [8]

proposes DenseNet, based on FCNs, for cardiac segmentation

and tries to overcome the feature map explosion, but still fails

at the boundaries. In fact, the most used loss functions for

segmentation network such as dice or cross-entropy (CE) are

based on regional integrals, which are convenient for training

deep neural networks [9]. However, the CE has well-known

drawbacks in the context of highly unbalanced problems, and

dice losses may undergo diffculties when dealing with very

small structures, and are both region-based. Some methods

incorporated boundary information into the loss function.

Shen [10] proposes a multi-task FCN architecture where the

boundary information is directly incorporated into the loss

function, improving its results of segmentation. Kervadec [9]

designs one novel boundary loss, and combines it with the

standard regional losses, improving the boundary accuracy

without losing the region one. Su [11] and Qin [12] propose a

novel boundary-aware network, using the hybrid loss to help

the network focus on region segmentation without neglecting

boundaries. These kind of losses improve the boundary quality

but not the differenciation between similar objects or small

objects segmentation.

To enlarge the receptive field to segment small objects,

Yu [13] proposes what he calls dilated convolutions. By

combining them with deep residual networks [14], he intro-

duces dilated residual networks [15]. Wang [16] proposes a

multi-path dilated residual network based on Mask-RCNN

model [17], and solves the problem of information loss of

small objects in deep neural networks. Liu [18] proposes a

context embedding object detection network capturing both

details and context information to boost the performance on

small object detection. However, dilated convolutions often

lead to gridding artifacts [13]. Attention plays an important

role in human perception [19, 20, 21]. An important property

of the human visual system is to not process a whole scene at

once. Instead, humans exploit a sequence of partial glimpses
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Fig. 1: Architecture of our network.

and selectively focus on salient parts in order to capture the

visual structure in a better way [22, 23]. For this reason, at-

tention modules have been developed: they focus on important

regions, filter irrelevant information, and make up the limited

receptive field of CNNs. They get good performance on

segmentation tasks [24, 25, 26, 27]. For example, Zhang [24]

proposes an efficient multi-scale feature interaction mechanism

with attention, paying more attention to the important regions

of objects, capturing more detail information, and so improv-

ing segmentation accuracy on small objects. Attention modules

are also used for cardiac segmentation. Zhou [28] designed a

cross-modal attention module between the encoder and the

decoder, which leverages the correlated information between

modalities to benefit the cross-modal cardiac segmentation.

Based on 3D U-Net [29], Li [30] designed an attention module

based on hierarchical aggregation to force the network to focus

on the left atrium. Zhang [31] designed three types of attention

modules (spatial, channel, and region) achieving good segmen-

tation results on ventricles. Tong [32] presents an interleaved

attention mechanism, improving the performance of cardiac

MRI segmentation when applied to recurrent FCNs. Wei [33]

proposes a spatial constrained channel attention module to

pay more attention to the left ventricle and to decrease the

impact of surrounding similar tissues. This approach leads to

an effective segmentation of multiply connected domains but

do not take the boundaries into account.

Facing these difficulties, we propose a novel attention FCN

framework that focuses on the region of interest and is region-

and boundary-aware. The main contributions of our work are:

1) a novel attention network framework based on the pre-

trained Resnet-101 with attention module, which can improve

the segmentation accuracy on small parts of objects; 2) a novel

hybrid loss that considers regions and boundaries of objects

equally by combining region loss with boundary loss.

II. METHODOLOGY

A. Overview of Network Architecture

We propose a new attention network (see Fig. 1) using

ResNet-101 pretrained on ImageNet [34] to compute feature

maps. We discard its average pooling and fully connected lay-

ers, and keep only the sub-network made of one convolution-

based and four residual-based “stages”. Since the resolution

decreases at each stage, we obtain a set of fine to coarse

feature maps (with five levels of features).We add specialized

convolutional layers (with a 3×3 kernel size) with K (e.g.

K = 16) feature maps placed at the end of four residual-

based “stages”. They are concatenated together after up-

convolutional layers. These last feature maps are combined

with each of the outputs of the specialized layers, and then

fed into the attention module to generate the attention features.

Finally, we concatenate the attention features with the outputs

of Conv1 and we fed them into the softmax layer.

Attention Module. As mentioned before, in a traditional

segmentation model, the usual issue is that receptive fields

are too small, which leads to poor contextual representations.

Furthermore, the relationship between the different channels

should be explored since each channel map represents one

feature-specific response. Therefore, improving the depen-

dencies among channel maps can lead to richer features.

To solve these issues, we use an attention module inspired

by [3]. As shown in Fig. 2, F ∈ R
C×W×H acts as an input

feature map for the attention module, where C, W, H are

the channel, the width and the height of the feature map

respectively. The upper branch F is fed into a convolutional,

a Reshape and then a Transpose layers, resulting in a feature

map Fu
0 ∈ R

(W×H)×C . In the second branch (consider the

order from top to bottom), the input feature map F follows

the same operations minus the Transpose layer, resulting in
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Fig. 2: Attention Module. λ, λ′, β and β′ as hyperparameters, which is trained like the convolutional kernel. They decrease

the weight of the unimportant feature maps.

Fu
1 ∈ R

C×(W×H). Then, the Multiply and the Softmax layers

follow; they are applied on Fu
0 and Fu

1 to obtain the spatial

attention map Au ∈ R
(W×H)×(W×H). The input F is fed into

a different convolutional layer in the third branch, and is then

multiplied by Au fed into the Transpose layer, resulting in Fu
2 .

Therefore the output Fu of the upper branch can be formulated

as follows:

Fu = λ× Fu
2 + β × F, (1)

where λ ∈ R
C is initialized to [0,..,0], and β ∈ R

C is

initialized to [1,..,1]. The values λ and β are used to gradually

learn the importance of the spatial attention map.

In the lower branch, the attention module mainly focuses

on the most important channels. The channel attention map

Al can be obtained by different combinations of convolutional,

Reshape and Transpose layers as shown at the bottom of Fig. 2.

Finally, the output Fl of the lowest branch can be defined as

follows: Fl = λ′×Fl
2+β′×F, where λ′ ∈ R

C is initialized to

[0,..,0], and β′ ∈ R
C is initialized to [1,..,1]. The feature map

Fl
2 denotes the results of the product of the input F with Al

fed into a convolutional passing through the transpose block.

Therefore, the attention feature map Fa is defined as:

Fa = Conv (Fu) + Conv
(

Fl
)

. (2)

Compared to [3], we make learnable the coefficient beta

multiplying F in the channel and position attention modules

(Eq. 1) so that the improved attention modules focus more on

important features. Furthermore, we do not use a convolution

layer before the channel attention module like in [3], so we do

not destroy the relationships between channel maps. Finally,

we apply one attention module for each scale explaining that

we have four attention modules, contrary to [3] where the

attention modules are only used at the output of the network.

B. Hybrid Loss

Most of medical segmentation methods directly use Cat-

egorical Cross Entropy[35] (CCE) or Dice Coefficient [36]

(DC) losses. Models trained with CCE loss usually have low

confidence in differentiating boundary pixels, leading to blurry

boundaries. DC were proposed for biased training sets but are

not specifically designed for capturing fine structures.

In our framework, we combine four losses: the dice loss,

the cross-entropy (CE) loss, the structure similarity (SSIM)

loss [37], and our self-made boundary loss. When used alone,

the dice and CE losses have respectively shown issues in

capturing fine structures and in segmenting correctly boundary

pixels. Combined together with in addition the SSIM loss

(used to reduce the impact of the misleading similarities of

neighboring tissues), we obtain an efficient region loss. By

adding to it our own boundary loss, we are then able to refine

the segmentation which converges to the boundaries.

Our hybrid loss consists of two parts: region loss and

boundary one. It is defined as: ℓH = ℓR + ℓB, where ℓR

denotes the region loss and ℓB denotes the boundary loss. They

are explained hereafter.

Region Loss.

To obtain high quality regional segmentation, we define

ℓR as a region loss: ℓR = ℓCCE + ℓSSIM + ℓDC, where ℓCCE,
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Fig. 3: Illustration of our “3D-Like” procedure. The red box depicts the boundary of the cropped input image. Three successive

cropped slices (b-d) are used to build a “3D-Like” image (e).

ℓSSIM and ℓDC denote Categorical Cross Entropy (CCE) loss ,

Structural Similarity (SSIM) loss and Dice Coefficient (DC)

loss respectively.

CCE [35] loss is commonly used for multi-class clas-

sification and segmentation. It is defined as ℓCCE =
−

∑C

i=1

∑H

a=1

∑W

b=1 yi(a,b) ln y∗
i
(a,b), where C is the num-

ber of classes of each image, H and W are the height and

width of image, yi(a,b) ∈ {0, 1} is the ground truth one-hot

label of class i at position (a, b) and y∗
i
(a,b) is the predicted

probability that (a, b) belongs to class i.

SSIM [37] loss can assess image quality [37], and can

be used to capture the structural information, which will

decrease the mis-segmentation rate of surrounding similar

tissues. Therefore, we integrated it into our training loss

to learn the differences between the segmented domain and

similar tissues around the segmented domain. Let S and G

be the predicted probability map and the ground truth mask

respectively, the SSIM loss function of S and G is defined as

ℓSSIM = 1− ((2µSµG+ε1)(2σSG+ε2)) / ((µ
2
S+µ2

G+ε1)(σ
2
S+

σ2
G+ε2)), where µS, µG and σS, σG are the means and standard

deviations of S and G respectively, σSG is their covariance, ε1=

0.012 and ε2= 0.032 are used to avoid a division by zero.

DC [36] loss is used to measure the similarity between two

sets as defined in Eq. 2. But for the multi-class segmentation

task, Eq. 2 is not suitable due to the class imbalance problem

in such cases. Therefore, we extend the definition of the DC

loss to multiclass segmentation in the following manner:

dicei = (ǫ+ 2
∑Ni

n=1 y
i
n y∗

i
n) / (ǫ+

∑Ni

n=1 (y
i
n + y∗

i
n)) (3)

ℓDC = 1 −
∑C

i=1 dicei/ (Ni + ǫ), (4)

where Ni denotes the numbers of class i and ǫ > 0 is a smooth

Fig. 4: Illustration of calculating boundary loss.

factor.

Boundary Loss.

The loss functions mentioned before are mainly for region

segmentation, so we propose a boundary loss function to

optimize the segmentation result. As shown in Fig. 4, ∆A

denotes the difference between the boundary Gi
B of the ground

truth of class i and the boundary Si
B of the prediction of class

i. When ∆A tends to zero, it means that the segmentation

results are becoming better around the boundaries. Therefore

the boundary loss is defined as

ℓB =

C
∑

i

∫

Gi
B

∥

∥Si
B (a′, b′) − Gi

B (a, b)
∥

∥

2
d (a, b), (5)

where Gi
B (a, b) is a point on boundary Gi

B and Si
B (a′, b′)

denotes the corresponding point on boundary Si
B, along the

direction normal to Gi
B, i.e., Si

B (a′, b′) is the intersection of

Si
B and the line that is normal to Gi

B at position (a′, b′) (see

Fig. 4 for an illustration), ‖·‖denotes the L2 norm.

III. EXPERIMENTAL RESULTS

Dataset Description. We evaluate our method on the MIC-

CAI 2018 Atrial Segmentation Challenge 1 (AtriaSeg18). Its

aim is to segment the left atrium. It contains 100 annotated 3D

MRIs from patients with atrial fibrillation. The pixel spacing

of the MR images is 0.625 x 0.625 x 0.625 mm/pixel. The

dataset includes two different image sizes: 88×576×576 and

88×640×640.

Preprocessing. We cropped each slice to 346×346 pixels as

shown in Fig. 3a. The pre-processing begins with a Gaussian

normalization. Because ResNet-101 network’s input is an RGB

image, we propose to take advantage of the 3D information by

stacking 3 successive 2D frames, as presented in our previous

works [38, 39]: to segment the nth slice, we use the nth slice

of the MR volume, and its neighboring (n−1)th and (n+1)th

slices, as green, red and blue channels, respectively. This new

image, named “3D-Like” image, enhances the boundaries of

objects, as shown in Fig. 3.

1http://atriaseg2018.cardiacatlas.org/



Postprocessing. We crop the initial volume of size 88×W×H
into an image of size 88×w×h (where W and H are the

initial width and height of a slice). We keep only the greatest

connected component of the output segmentation and pad with

zeros to get back a T×W×H image.

Implementation and Experimental Setup. We implemented

our experiments on Keras/TensorFlow using a NVidia Quadro

P6000 GPU. We used the hybrid loss function, softmax to

get a probability distribution over classes, Adam optimizer

(batchsize = 3, β1 = 0.9, β2 = 0.999, ε = 0.001, lr = 0.01)

and did not use learning rate decay. We trained the network

during 30 epochs.

Evaluation Methods. Three metrics are used to evaluate

our method: dice to evaluate the regions, and 95% Hausdorff

distance (95HD) and Average Hausdorff distance (AHD) to

quantitatively evaluate the boundaries.

Comparison with State-of-the-arts Methods. The experi-

mental results obtained by several state-of-the-art segmenta-

tion networks are reported in Table I. Compared to other net-

works proposed in the context of medical image segmentation

,i.e., U-Net [5], DANet [3] and Deeplabv3+ [40], our network

achieves a mean improvement of 3.236%, 7.563% and 6.348%
(in terms of DC), 1.579 mm, 3.277 mm and 3.004 mm (on

95HD) and 0.082 mm, 0.384 mm and 0.374 mm (on AHD),

respectively. The attention module increases segmentation

performance by 0.552% (DC), 0.215 mm (95HD), and 0.015

mm (AHD), respectively as shown in Table I.

Ablation Study. To explain the advantages of the proposed

hybrid loss, we conduct an ablation study. We compare the

segmentation results with and without hybrid loss (see Table I).

Segmentation performance increases for DC, 95HD and AHD

for the 4 architectures, proving the benefits of the proposed

hybrid loss.

IV. CONCLUSION

In this paper, we propose a novel attention network architec-

ture, and a new hybrid loss. Unlike a traditional FCN, we first

add multi-layer features to keep as much details as possible,

then we concatenate them with level features, and input them

in the attention modules to obtain the attentional features. By

using the attention module, the proposed network framework

is able to prevent the interferences between the surrounding

similar tissues and to capture large-scale and thiner structures.

We propose a hybrid loss function that fairly treats regions

and boundaries of objects, optimizes the convergence to the

boundaries, while maintaining the segmentation precision of

the regions. Compared to the state-of-the-arts methods on

the AtriaSeg18 challenge dataset, our segmentation results

overcome the best one by an average of 2.179% in terms of DC

and 1.3 mm on 95HD. Taking into account regions as well as

boundaries in our loss permits to have a segmentation more

precise, especially at the boundaries. Moreover, our method

with attention module and hybrid loss is more robust. The

(a) Our Method (b) U-Net [5]

(c) DANet [3] (d) Deeplabv3+ [40]

Fig. 5: Comparison of the proposed method and other state-

of-the-art architectures. The white pixels are the differences

between the prediction and the GT.

computation time of our pipeline is less than 4 seconds for

an entire 3D volume of a heart. As future works, we plan

to continue to study the impact of the hybrid loss when the

region of interest and the background are imbalanced. We plan

also to add shape constraints to the predicted boundary of the

LA in the attention module. The final aim is to be able to

accurately segment LA wall to diagnose fibrosis.
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