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Abstract— In this paper, we create a new tendon-connected
multi-functional optical tactile sensor, MechTac, for object
perception in the field of view (TacTip) and location of touching
points in the blind area of vision (TacSide). In a multi-point
touch task, the information of the TacSide and the TacTip
are overlapped to commonly affect the distribution of papillae
pins on the TacTip. Since the effects of TacSide are much less
obvious to those affected on the TacTip, a perceiving out-of-
view neural network (O2VNet) is created to separate the mixed
information with unequal affection. To reduce the dependence
of the O2VNet on the grayscale information of the image, we
create one new binarized convolutional (BConv) layer in front of
the backbone of the O2VNet. The O2VNet can not only achieve
real-time temporal sequence prediction (34 ms per image), but
also attain the average classification accuracy of 99.06%. The
experimental results show that the O2VNet can hold a high
classification accuracy even facing the image contrast changes.

I. INTRODUCTION

Tactile sensors can measure tiny deformation of the surface
and the pressure created by physical interaction with the
object and the environment. Due to the low producing cost
(only cameras and 3D printing components) of acquiring
multiple kinds of information of force distribution, object lo-
cation, pose, size, and shape, etc., vision-based tactile sensor
draw a great of attentions in recent years. The representative
optical tactile sensors include BRL TacTip series [1], [2]
and Tacto [3]. These tactile sensors usually have a soft skin,
feature markers (e.g., papillae pins), and a camera system
inside the sensor to capture the image changes when the soft
skin interacts with unknown objects. However, the effective
sensing ranges are limited to the camera’s field of view, so
it is not easy to use optical tactile sensors for detection in a
large range and make flexible robot skill.

In this work, we will develop a new vision-based tactile
sensor: MechTac (see Fig. 2), which combines mechanical
transmission and optical detection to increase the tactile
regions. The sensor is made of a TacTip and four TacSide
skins (see Fig. 3). Under the TacSide skin, the tendons are
weaved into nets (see Fig. 2), and add connects into the
TacTip area with papillae pins. Then, when you press on
different regions on the skin (e.g. in Fig. 2), the associated
tendons are tightened to drive the connecting nodes, so that
the functional pins are moved under these tendon-driven
affections. The MechTac will receive both information from
the TacTip and the TacSide.
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(a) (b) (c) (d)

Fig. 1. The distribution of papillae pins on the TacTip. (a) the original
image; (b) under the direct effect of interaction on the TacTip; (c) under the
indirect effect of the TacSide; (d) under the joint effect of the interaction
on both the TacTip and the TacSide.

The effect of the TacSide through tendons is much weaker
than the one direct interaction with the TacTip. In Fig. 1,
compared with the original image (Fig. 1(a)), we can see
a clearer deformation under the effect of interaction on the
TacTip (Fig. 1(b)) than the indirect effect of the TacSide
(Fig. 1(c)). Under the joint effect of the interaction on
both the TacTip and the TacSide (Fig. 1(d)), the effect of
the TacSide can be easily masked by that of the TacTip.
Therefore, based-on monocular images, the core challenge
for signal processing is to realize the classification of the
independent signal from the hybrid information. And with
changes in the distribution of papillae pins on the TacTip,
the MechTac captures uneven lighting images as in Fig. 1(b)
and Fig. 1(c), which results in unstable image contrast.

Deep learning methods have applied to the object recog-
nition [2], effective estimation of contact force [4], slip
and rotation detection [5]. These deep learning methods are
mainly data-driven, and study the transformation relationship
between the input image and the corresponding label. Hence,
for vision-based tactile sensors using deep learning, the
pivotal point is to map directly from visual sensor data to
task representations. However, most deep learning models
are based on monocular images, and the images often contain
only a single information to ensure good task performance.
In [6], using the monocular camera captured the deformation
images in contact region, and input the modified LSTM
network to detect contact slip. When other information
is needed, it is acquired with other specific cameras. For
example, Padmanabha et al. [7] used multiply cameras to
capture the images of different view, and then used two
different modified ResNet framework for the state estimation
and connector insertion tasks, respectively. Trueeb et al. [8]
captured images of the different particle patterns through
four cameras, and then mapped to the 3D contact force
distribution by one deep learning framework. Choi et al. [9]
used the depth sensor to obtain partial point clouds of the
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Fig. 2. MechTac. For solving the perceiving tactile information out of field of view (blind area of vision), we use tendons to weave on a net connect the
TacTip and the pressing regions. when you press on different regions on the skin the associated tendons are tightened to modify the distributions of the
pins on the TacTip to generate displacement of feature pins.

objects, which included invariance of photometric variations
and geometric information, and finally a 3D CNN method
is used to grasp unknown objects. As far as we know, given
visual information’s important role in tactile sensors, directly
using deep learning methods to classify different tasks from
hybrid information of monocular images (like the hybrid
information appearing on the MechTac) has not yet been
explored. Moreover, vision-based tactile sensors always face
variable environments such as the light intensity resulting in
the image contrast changes, but the above-mentioned deep
learning methods do not take the image contrast changes
into account when they design network frameworks, so these
methods cannot maintain good classification performance
facing the image contrast changes.

Therefore, to achieve multi-task classification from hybrid
information of monocular images and handle the image
contrast changes, we make three following contributions: 1)
Creating the MechTac sensor for 3D object recognition and
building the training dataset. We collect a total of 10,051
images while the MechTac performs a contact motion. 2)
We propose one new perceiving out-of-view neural net-
work, O2VNet, which consists of one proposed binarized
convolutional (BConv) layer, one modified DenseNet121
architecture [10], and some fully connected (FC) and dropout
layers. The O2VNet can achieve localization of touching
regions on the TacSide and objects perception on the TacTip
from only one image. Compared with the 3D network
proposed in [11], our proposed 2D network also uses the
temporal information by stacking three consecutive images
as input, instead of high memory consumption and time-
consuming 3D network, and accomplishes the multi-tasking
separation from the monocular images. 3) Since the MechTac
is often subjected to changes in external light intensity when
capturing images, the contrast of the image changes, so based
on Local Binary Pattern (LBP) [12], we propose a binarized
convolutional (BConv) layer that transforms the grayscale
image into an image of integer labels, and simply stacks in
front of the backbone of the O2VNet for end-to-end training.

Fig. 3. Mechanical Structure of the MechTac

II. PRELIMINARY WORK

A. Mechanical Structure of Tactile Sensor

The mechanical integration in the MechTac is shown in
Fig. 3. We choose the hemispherical sensor head for the
TacTip to connect the tendons and the connecting nodes are
distributed symmetrically, and each TacSide is a thin skin of
a quarter cylinder with fixed nodes to attach the tendons to
create the mesh structure. An endoscopy camera is clamped
by the fixing unit and attached as a whole to the base, which
is connected to the robot end-effector. The bracket has three
functions: It fixes the camera to the base unit, adjusts the
distance between the camera and the TacTip, and is used
to mount the TacTip and TacSides. The MechTac has four
TacSides (F1 to F4), and in each TacSide the connection
topology under the skin in Fig. 3. In each TacSide, there are
six tendons that weave the mesh (orange lines). We divide a
TacSide into four areas, labelled P1 to P4. Each area covers
three lines, which means that each pressing area leads to
a co-reaction of three tendons. We will implement three
classification tasks using the MechTac (see Fig. 4), including
object classification (T1 to T3) and localization of touching
region (rough/precise localization, task F and P).

B. Dataset Description

We need to collect tactile image data through the MechTac
installed at the robot end-effector, called TAC dataset (see
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(T3,F1,P2)

(T0,F2,P2) (T0,F0,P0)

(T2,F0,P0)

(T1,F0,P0)

Fig. 4. Tactile data collection. Using Franka robot equipped with MechTac
sensor to collect images with labels in Eq. 1

Fig. 4). To reduce the effect of class imbalance, we follow
certain rules (Eq. 1) to collect data while the MechTac
performs a contact motion, for example, when i = j =
k = 0, we collect one image and label its category (T0,
F0, P0). Class T0 denotes that the TacTip dose not touch
any object. Class F0 and P0 denote that the TacSide is not
subject to touch. The rules include the four cases shown in
Fig. 1, which provides O2VNet with the feature distinction
of learning the four cases, and is beneficial for O2VNet
to locate the touch region under the simultaneous effect
of the TacTip and the TacSide. According to the rules, a
total of 10,051 images were collected. Each image keeps the
same image size (875×656 pixels). Later, we perform some
preprocessing on these images: 1) we crop initial images
size 875×656 pixels into images size 520×520 pixels; 2)
we resize the images size into 224×224 pixels. Finally, we
split these images into a training set (8,041), a validation set
(1,005), and a test set (1,005).

Data(Ti, F j, Pk) =

{
150, 0 ⩽ i ⩽ 3, 0 ⩽ j, k ⩽ 4

1, i = j = k = 0
(1)

III. METHODOLOGY

A. Overview of Network Architecture

T-1/fps T T+1/fps Concatenation at T

Fig. 5. Illustration of temporal information. fps denotes frame per second.

The overview of the O2VNet is shown in Fig. 7. Touch
occurrence is a spatio-temporal event on the skin of Mech-
Tac, and it is inevitable that the constructed network uses
the spatio-temporal information. 3D networks can make good
use of spatio-temporal information by exploiting 3D features
while with time-consuming and high memory consump-
tion [13]. Therefore, we prefer 2D networks. Using the tem-
poral information in 2D networks is already common [14],

so we take three consecutive images (T-1/fps, T, T+1/fps) as
input of the O2VNet and the corresponding label at time T as
output, as shown in Fig. 5, motion changes are highlighted
by concatenating three consecutive images (see the yellow
part of the concatenated image).

The concatenated images contain obvious edge and con-
tour movement information. Convolutional Neural Networks
(CNNs) can reliably perceive edge and contour follow-
ing [15] and learn better performing deep models via transfer
learning from ImageNet [16]. Hence, we choose the original
DenseNet121 [10] network architecture as the backbone, pre-
trained on ImageNet. We then discard its fully connected
(FC) layers to keep only the sub-network. To more robust to
spatial translations of the input, the sub-network is followed
by the global average pooling layer. Although the localization
task (task F and P) and object perception (task T) share some
features in the feature extraction stage of the backbone, to
separate them, we design two main output branches here.
This first branch is to complete the task T classification, and
we add one 1024-node FC layer and two 512-node FC layers,
finally, the object classification results are output through
softmax activation function. Since there is a certain degree
of correlation between tactile sensing parts P and F , the
output of their classes is on the same branch. We add one
1024-node FC layer and one softmax activation function for
the output of task P , and then we continues to add one 512-
node FC layer and one softmax activation function after the
1024-node FC layer for the output of task F .

To reduce the dependence of O2VNet on the grayscale
information and make MechTac more robust to changing
environments, we propose one new binarized convolutional
(BConv) layer, and it is added in front of the backbone of
O2VNet.

B. Binarized Convolution
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Fig. 6. Binarized Convolution

The standard 2D convolution operation is mainly com-
posed of two parts. First, the input feature map is sampled
by k×k convolution kernels, and then the sampled values are
weighted and eventually summed and fused. Let us take k=3
as an example, and the standard 3×3 convolution operation
is defined as

Conv (x, y) =
1∑

dx=−1

1∑
dy=−1

ω (dx, dy) I (x+ dx, y + dy)

(2)
where Conv (·) is the feature maps after convolution opera-
tion. I (·) denotes the original feature maps. x and y represent
the location of the pixel in the image coordinate system.
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Fig. 7. Overview of network architecture, called perceiving out-of-view neural network (O2VNet). The proposed binarized convolutional (BConv) layer
can reduce the effect of image contrast changes, and the O2VNet can separate the weak information (classification task F and P) from the mixed information
by two main branches including some FC layers and softmax activation functions.

ω (dx, dy) denotes the weight of convolution kernel. Each
position of the convolution kernel is designed by −1 ≤ dx ≤
1 and −1 ≤ dy ≤ 1.

According to Eq. 2, the standard convolution operation
relies too much on the grayscale information of the image.
Inspired by the grayscale invariance advantage of Local
Binary Pattern (LBP) [12], the grayscale images are trans-
formed into images of integer labels to reduce the O2VNet’s
dependence on grayscale information. The BConv has the
same convolution kernel as the standard convolution. How-
ever, before the convolution operation, a series of operations
need to be performed on the convolution area for the BConv.
The feature maps and convolution in CNNs are 3D, so the
operation remains the same across the channel dimension.
We will model the BConv based on a 3×3 convolution kernel
(see Fig. 6).

BConv (x, y) =
1∑

dx=−1

1∑
dy=−1

ω (dx, dy)S(σ (dx, dy)) (3)

σ (dx, dy) = I (x+ dx, y + dy)− I (x, y) (4)

S(σ (dx, dy)) =

{
1, σ (dx, dy) ≥ 0

0, σ (dx, dy) < 0
(5)

where S(·) denotes the binarization method. The sensitivity
of O2VNet to gray value variations is reduced by it.

C. Loss Function

The total loss l of O2VNet is mainly composed of three
parts: task T loss function lT , task F loss function lF , and
task P loss function lP . Hence, l = λlT +αlF +βlP , where
λ, α and β are the hyper-parameters (here chosen equal to
1) to balance the different losses.

For each task, we use the softmax version of focal loss
functionn [17], because it addresses class imbalance better
than the categorical cross-entropy, and can obtain a faster

convergence for the multi-classification task:

FL =

m∑
c=1

−δ(1− pc)
γgc log(pc) (6)

where m denotes number of classes, c denotes class. gc
denotes the ground truth of class c. pc denotes the prediction
results of class c from the softmax. γ is equal to 2, but δ is
different for different classification tasks. For the task T , the
δ is equal to [0.25, 0.25, 0.25, 0.25]. For the task F and P ,
the δ is equal to [0.25, 0.25, 0.25, 0.25, 0.25].

D. Implementation and Experimental Setup

We trained O2VNet on Keras/TensorFlow using a NVidia
Quadro P6000 GPU. We used the Adam optimizer (lr = 1e-
5) and did not use learning rate decay. We trained O2VNet
with a maximal number of 200 epochs and a batch size of
16, and we used early stopping to stop the training when the
metric are not optimized anymore on the validation set. The
image input to the O2VNet was preprocessed by subtracting
the mean.

To reduce overfitting of the O2VNet, we used some
methods such as the regularization technique and data aug-
mentation. We added a dropout layer of 0.5 rate and one L2
regularization after each FC layer. For the data augmentation,
it included that randomly rotated images in the range ±1 de-
gree, randomly zoomed images in the range ±20%, randomly
shifted images horizontally ±0.1 of the total width W of the
image, and randomly shifted images vertically ±0.1 of the
total height H.

E. Evaluation Methods

The classification accuracy and the confusion matrix [18]
are used to evaluate our classification results. The classifi-
cation accuracy is the ratio between the number of correct
predictions and the total number of predictions made. The
confusion matrix is a cross-tab, with rows and columns
representing the true and predicted classification, and the
main diagonal representing the correctly classified elements.
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Task T Task F Task P

Fig. 8. Confusion matrix of each task. Task T denotes object classification (T0 to T3) on the TacTip. Task F and P denote the localization of touching
regions (rough/precise localization) on the TacSide.

IV. EXPERIMENTS

A. Results in Weak Signal Separation

To verify the effectiveness of the O2VNet, we first train
and validate it on the TAC dataset. Then, after obtaining the
optimal classification model, we evaluate it on the test set of
TAC. As shown in Fig. 8, we obtain the confusion matrix
of each task on the test set. High classification accuracy for
each classification task is very important for the localization
of touching regions and object perception. For the object
perception, we simplify the objects (see Fig. 4) to sphere
(T1), concave (T2), prismatic (T3), and the combination of
these three objects can represent the situation where most
objects are in contact with the TacTip. The classification
accuracy of O2VNet for each class of P is close to 99%.
For the localization of touching regions, the classification of
task F is easier than the task P, because its touch area is
larger than task P (see Fig. 3), it is easier to distinguish.
Since the TacSide’s touch region information is transmitted
to the TacTip through tendons (see Fig. 2), and the tendons
are not arranged all over the TacSide, which makes the
signal strength transmitted to the TacTip relatively weak. The
regions from P1 to P4 are adjacent, misclassifications tend
to occur in adjacent regions between them, so for the task
P, there are more misclassifications than the task F. But
the results show that the O2VNet successfully separates
the weak information (localization task) from the mixed
information based on the monocular images.

TABLE I
CLASSIFICATION ACCURACY/% OF O2VNET WITH/WITHOUT BCONV

BConv Class ParametersT F P

✗ 98.92 99.69 99.11 10,458,702 (∼10M)
" 99.22 99.71 98.24 10,458,785 (∼10M)

B. Results in Contrast Image Changes

We conduct one comparative experiment with/without
the BConv layer, as shown in Tab. I. The classification
accuracy of our method with/without BConv on the test set is
similar, so it is not easy to say which method with/without
BConv is better. Therefore, we further test it and perform
a perturbation experiment on the test set of TAC. Captured
images are susceptible to light intensity. Hence, to test the

performance of O2VNet on contrast variations, we use the
contrast function (Eq. 7) of image augmentation tool [19] to
change the contrast of the captured images.

Icontrast(x, y) = 255× (
I(x, y)

255
)η (7)

As shown in Fig 9, the image contrast is changed by
the η in Eq. 7, and we set the η to 0.2, 0.4, 0.6, and 0.8,
respectively.

Original image η=0.2 η=0.4 η=0.6 η=0.8

Fig. 9. Contrast images for different η in Eq. 7.

In the Tab. II, the classification accuracy of O2VNet with
BConv does not decrease even with contrast changes. The
O2VNet has good stability to contrast changes without sig-
nificantly increasing parameters (only added 83 parameters).
Therefore, the O2VNet with BConv layer makes MechTac
more robust to changing environments.

TABLE II
CLASSIFICATION ACCURACY/% OF O2VNET WITH/WITHOUT BCONV

FOR PERTURBATION EXPERIMENT

BConv η
Class

T F P

✗

0.2 24.90 41.37 26.67
0.4 46.47 57.06 35.78
0.6 64.90 89.22 56.67
0.8 88.04 98.63 92.55

"

0.2 99.12 99.71 98.33
0.4 99.02 99.71 98.33
0.6 99.12 99.71 98.14
0.8 99.12 99.71 98.24

C. Results in Different Backbones and Input Channels

When choosing the backbone of O2VNet, we compare
the results of various backbones (see Tab. III). Keeping
the entire network framework in Fig. 7 unchanged, we
only replace different backbones to train O2VNet on the
TAC dataset. According to the number of images in TAC
dataset, it is not as large as the ImageNet dataset [16],
and large classification models are prone to overfitting, so
small models are preferred. DenseNet121 [10] serves as the
backbone of O2VNet, allowing the O2VNet to achieve good
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TABLE III
CLASSIFICATION ACCURACY/% OF DIFFERENT BACKBONES

Backbone Class ParametersT F P

DenseNet121 [10] 99.22 99.71 98.24 10,458,785 (∼10M)
VGG16 [20] 73.92 99.31 90.59 17,087,393 (∼17M)

Xception [21] 84.61 97.45 91.67 26,379,913 (∼26M)
InceptionV3 [22] 92.55 99.51 97.16 27,321,217 (∼27M)

ResNet50 [23] 65.49 91.76 83.04 29,106,145 (∼29M)
ResNet101 [23] 84.12 93.73 95.00 48,176,609 (∼48M)

classification accuracy on each task. However, under the
existing network framework, other backbones only perform
well on a particular classification task and cannot take into
account each task.

TABLE IV
CLASSIFICATION ACCURACY/% OF DIFFERENT INPUT CHANNELS N

N Class Parameters Time/msT F P

3 99.22 99.71 98.24 10,458,785 (∼10M) 34
5 80.49 97.35 97.18 10,458,833 (∼10M) 36
7 40.88 91.08 64.71 10,458,881 (∼10M) 37

The size of our O2VNet model is 167MB. We test the
different input channels of O2VNet (see Tab. IV). In this pa-
per, we input three consecutive images (T-1/fps, T, T+1/fps)
into O2VNet, and its classification result is the best. When
we input five or seven consecutive images, the classification
results of O2VNet drop sharply, and the reason for this drop
is related to frame per second (fps). The fps directly affects
the continuity of movement. In the process of collecting
data, the fps is small. Hence, with the larger the number
of input continuous images, the continuity of changes is
more affected. So in the face of small fps, choosing a small
number of input continuous images is more beneficial to the
classification accuracy of the O2VNet. The computation time
of the entire pipeline is 34 ms for one image, making it usable
for MechTac.

V. CONCLUSION

In this paper, we design one vision-based tactile sensor,
MechTac, which combines mechanical transmission and op-
tical detection to increase the tactile regions. To make it
have good perception ability, we propose one perceiving
out-of-view neural network, O2VNet, taking deformation
images from the monocular camera of MechTac as input to
localization of touching regions and objects perception. We
prepare one tactile image dataset, TAC, and each image is
labelled with touch regions and object categories. O2VNet
shows a superior classification accuracy on test set of TAC,
which not only proves the effectiveness of O2VNet to multi-
functional classification task, but also has the ability to
separate specific information from mixed information. And
facing to variation of light intensity, O2VNet still maintains
high classification accuracy due to the proposed BConv
layer. Finally, the classification results shows the enormous
potential of MechTac for robot manipulation.
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