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Speaker verification

Goal:

Verify that an audio utterance corre-
sponds to the identity claimed by the
speaker.
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Self supervised learning

Being label-dependant is very constraining

=⇒ What is self supervised learning?

=⇒ How to use SSL for speaker verification?
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Self supervised method

• Generate two versions of the same audio

• Minimize the distance between their latent representations
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Learn representations with contrastive learning

Assumption: Each utterance in the mini-
batch belong to a unique speaker.

Objective: Learn embeddings that have
small intra-speaker and large inter-speaker
distances.
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Figure: SimCLR [?] model architecture.
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WavLM [Sanyuan Chen, 2021]

• Same architecture than Hubert [Wei-Ning Hsu, 2021] and Wav2Vec2
• Improved data augmentation

• Mixing audio with different utterances
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Weighted sum

• Weighted sum on the transformer layers
• Learn the weights during 1st training phase

• Last half layers are used more for speech information
• First half layers are used more for speaker information
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Multi Head Factorized Attentive Pooling

• Use attention to weight the layer outputs

• Very lightweight backend
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Multi Head Factorized Attentive Pooling [Peng et al., 2023]

• Very powerful model with attention

• Focuses on easier task =⇒ learn the channel characteristics

• Model doesn’t converge

Figure: Supervised Layer Modification Figure: Self Supervised Layer Modification
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Pseudo labels

• Extract embeddings from dataset using baseline ssl model

• Clusterize these embeddings

• Consider each cluster as one speaker id and labelise the dataset
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Loss Gate

• Higher training loss for unreliable pseudo labels

• Consider only samples with loss under threshold

• Threshold chosen by hand [Ruijie Tao, 2021] or dynamically [Bing Han, 2022] with a
GMM
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Loss Gate

• Set loss to 0 for sample with losses below threshold

• Otherwise AAM softmax

Figure: Dynamic Loss Gate
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Dynamic label correction

• Make use of the non reliable labels

• Assume that the model’s prediction is the true label

• Maximize the similarity of prediction between output of clean and augmented
sample
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Loss distribution on simulated dataset

• Simulate errors in dataset
• Assign a random label to 20% of the dataset (voxceleb1)

• Loss is very separable by a threshold
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Loss distribution on real dataset

• Evolution of loss distribution with model training

• Separation by threshold is a lot less trivial

• The id for the non reliable samples is the id of a speaker that is close in the latent
space
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Results
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Results
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