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Speaker verification

Goal:

Verify that an audio utterance corre-

sponds to the identity claimed by the .’%*M ) *m*%

speaker.
<1.0,0.9, 2.4> <1.1,0.9,2.3>
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Self supervised learning

Being label-dependant is very constraining
—> What is self supervised learning?

—> How to use SSL for speaker verification?
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Self supervised method

® Generate two versions of the same audio

® Minimize the distance between their latent representations
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Learn representations with contrastive learning

Assumption: Each utterance in the mini- attract m
. €1,1,aug 21,2,aug ©N,1,aug en,2,aug
batch belong toa unique speaker. attract § attract § ... attract § attract §
1,1,clean €1,2,clean €N 1,clean €N 2,clean
Objective: Learn embeddings that have
small intra-speaker and large inter-speaker I
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Figure: SimCLR [?] model architecture.
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WavLM [Sanyuan Chen, 2021]

® Same architecture than Hubert [Wei-Ning Hsu, 2021] and Wav2Vec2
® |Improved data augmentation
® Mixing audio with different utterances

El
Transformer
with Gated Relative Position Bias
K-means on
MFCC i
WavLM

Victor Miara (LRE) SSL speaker verification Seminaire January 2024



Weighted sum

® Weighted sum on the transformer layers
® | earn the weights during 1st training phase

® Last half layers are used more for speech information
® First half layers are used more for speaker information
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Transformer Layer L

AAM-softmax

Transformer Layer 2

Weights of the weighted sum for the transformer's layers H
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Transformer Layer1
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(a) Top Layer Attentive Pooling
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(b) Layer-wise Weighted Average Pooling
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Multi Head Factorized Attentive Pooling

® Use attention to weight the layer outputs

® Very lightweight backend

Multi-Head Factorized Attention

Unispeech-SAT_Base-TDNN [11]
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Multi Head Factorized Attentive Pooling [Peng et al., 2023]

® Very powerful model with attention
® Focuses on easier task — learn the channel characteristics

® Model doesn’t converge
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Figure: Supervised Layer Modification Figure: Self Supervised Layer Modification
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Pseudo labels

® Extract embeddings from dataset using baseline ss| model

® (Clusterize these embeddings

® Consider each cluster as one speaker id and labelise the dataset

Contrastive Loss
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Loss Gate

® Higher training loss for unreliable pseudo labels
® Consider only samples with loss under threshold

® Threshold chosen by hand [Ruijie Tao, 2021] or dynamically [Bing Han, 2022] with a
GMM
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® Set loss to 0 for sample with losses below threshold

® Otherwise AAM softmax

N
Lprg = Z 1;;,<+log
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Figure: Dynamic Loss Gate
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Dynamic label correction

® Make use of the non reliable labels
® Assume that the model’s prediction is the true label
® Maximize the similarity of prediction between output of clean and augmented

sample
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Loss distribution on simulated dataset

® Simulate errors in dataset
® Assign a random label to 20% of the dataset (voxcelebl)

® | oss is very separable by a threshold
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Loss distribution on real dataset

® Evolution of loss distribution with model training

® Separation by threshold is a lot less trivial

® The id for the non reliable samples is the id of a speaker that is close in the latent

space
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Results

Stage Loss Model EER | Min
(%) | DCF
Supervised | AAM Softmax | WavLM MHFA 0.76 | 0.05
training
from
scratch
Self DLG-LC DINO 3.16 | 0.23
supervised
learning
from
scratch
Iterative AAM Softmax | WavL |iterl |- - 01 1156 [ 0.10
clustering (margin=0.2) | M
MHFA 02 |1.54|0.10
iter2 - 0.2 0.1 1.37 | 0.09

02 11.41 {0.09

0.1 101 1144 (0.10

02 11.51]0.10

iter3 0.2 0.2 0.1 1.50 | 0.09

02 11.43 |0.09

0.1 101 1146 [0.10

05 (1.42]0.11
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Method Margin Threshold | Iteration | EER (%) | Min DCF
0.2 - 1 1.50 0.09
AAMSoftmax
0.1 - 1 1.44 0.10
1.5 1 1.35 0.09
0.2 1 1.27 0.08
dynamic
2 1.16 0.08
AAM + LGL
15 1 1.32 0.09
0.1 0 1 1.33 0.10
dynamic 1 1.30 0.08
1 117 0.08
AAM +LGL + LC 0.2 2 1.01 0.076
dynarmic 3 104 | 0.078
LM-FT 0.5 2 0.99 0.063
(5 sec audio) ' '
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