Research Presentation

by Emma Casagrande

overseen by Loica Avanthey and Laurent Beaudoin

Introduction

Integration of ROS into underwater/surface robots

Context

Use cases:

- Marine Exploration
- Underwater Mapping
- Environmental Monitoring
- Offshore Industry Activities

Challenges:

- Natural Environment
- Cost
- · Bring-up Time
- Lack of Modularity

Robots of Seal

Image: Surface Robot Kraken

Image: Underwater Robot Ryu

Mission: mapping underwater terrain

Main Challenges

· Communication between underwater and surface

Main Challenges

- Communication between underwater and surface
- Combination of software tools

What is ROS?

Pros

- · Modularity: reuse of code
- **Efficiency**: Extensive open-source code
- Compatibility: Operates across numerous OS and hardware
- Testing

Cons

- Not Real-Time
- Lack of Documentation
- Minimal AUV Applications
- Difficult Adoption Cycle

What is ROS?

Pros

- · Modularity: reuse of code
- **Efficiency**: Extensive open-source code
- Compatibility: Operates across numerous OS and hardware
- Testing

Cons

- Not Real-Time
- Lack of Documentation
- Minimal AUV Applications
- Difficult Adoption Cycle

Main Objective

Challenge: Combination of ROS and Ardupilot:

- · Integration issues with ROS.
- Technical challenges and time-consuming setup.

Objective:

- Modular, low-cost robot that relies <u>exclusively</u> on ROS
- Re-assemble step-by-step surface robot

State of art: Combination of Software Tools

	Yellowfin AUV	Modularis	Hybrid System
Mission/Goal	Underwater AUV for research and exploration	Modular AUV design	Hybrid underwater robotic system combining features of ROVs and AUVs
Tools	MOOS XMOS ROS2	ROS1 ROS2	ROS2 ARDUPILOT

State of art: Combination of Software Tools

Image: Yellowfin System Architecture

Image : Hybrid Software-Hardware Interaction

Virtual Simulation on Gazebo

Objectives:

- Simulate the surface of a water body:
 - Step 1: simple still water surface
 - Step 2: addition of waves, currents
- Interaction with vehicle: buoyancy forces
- Have a 3D model of the lab's surface robot

Virtual Simulation on Gazebo

Image: File Architecture

Image: Gazebo Simulations of water

Configuration of Raspberry Pi

Objectives:

- Raspberry Pi as access point using DHCP server
- Testing communication range
- "Ping/Pong" code

Steps:

- Install/Update
- Configure hostapd
- Setup the dhcp server
- Configure Netplan
- Reboot and test

Next Steps and Goals

1. Gazebo Simulation

2. Testing Communication

 Test the maximum distance of communication between two Raspberry Pis.

3. Enhancing SEAL Robots

- Step-by-step assembly of the surface robot.
- Replace Ardupilot with ROS alternatives.

Conclusion

Strategic Move towards ROS:

- Purpose: Overcome challenges of integrating multiple systems
- Current Progress:
 - Developing virtual simulator in Gazebo for surface robot testing.
 - Configured Raspberry Pi for wireless communication.

Thank you for listening

Sources

<u>DESIGN AND DEVELOPMENT OF THE YELLOWFIN UUV by Georgia Institute of Technology</u>

AN OVERVIEW OF AUTONOMOUS UNDERWATER VEHICLE SYSTEMS AND SENSORS AT GEORGIA TECH

<u>An implementation of ROS on the Yellowfin autonomous underwater vehicle by</u> <u>Georgia Institute of Technology</u>

Modularis research paper by University of Florida Research team

<u>Github: Maritime-Robotics-Student-Society/sailing-robot</u>

Hybrid Underwater Robot System Based on ROS | Semantic Scholar