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Motivations & Goals

Motivations:

¢ Provide a better understanding of a specific class of posets

¢ Interesting for its use in concurrency theory

¢ Higher Dimentional Automata’s languages are pomsets
Goals:

® Enumerate gps-posets

¢ Find a combinatorial proof of a conjecture

¢ Finish an ongoing work started few years ago
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What is a Partially Ordered Set ?

A partially ordered set (poset) is a set with a partial order relation.
An order relation is a relation that is:

e Reflexive: Vx € E, xRx

¢ Transitive: x,y,z € E, xRy A\ yRz — xRz

® Antisymmetric: x,y € E. xRy AYRx = x =y
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What is a Partially Ordered Set ?
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Figure: Example of a poset

®  :represents an event

e —: represents the order relation between the event on the left and the item on
the right
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What is an iposet ?

A poset with interfaces (iposet) is a poset together with 2 injections:

[n]i>P<L[m], nm>0

such that the image of s[n] is minimal and the image of t|m] is maximal.

6/27



What is an iposet ?

A poset with interfaces (iposet) is a poset together with 2 injections:

[n]i>P<L[m], nm>0

such that the image of s[n] is minimal and the image of t|m] is maximal.

® sis a starting interface -

6/27



What is an iposet ?

A poset with interfaces (iposet) is a poset together with 2 injections:

[n]i>P<L[m], nm>0

such that the image of s[n] is minimal and the image of t|m] is maximal.

® sis a starting interface -

e tisaterminating interface - ,

6/27



What is an iposet ?

A poset with interfaces (iposet) is a poset together with 2 injections:

[n]i>P<L[m], nm>0

such that the image of s[n] is minimal and the image of t|m] is maximal.

® sis a starting interface -
e tisaterminating interface - ,

® nisan "unstarted" event - ,

6/27



What is an iposet ?

A poset with interfaces (iposet) is a poset together with 2 injections:

[n]i>P<L[m], nm>0

such that the image of s[n] is minimal and the image of t|m] is maximal.

® sis a starting interface -
e tisaterminating interface - ,
® nisan "unstarted" event - ,

® mis an "unfinished" event -
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Examples of iposets

Valid iposets
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Examples of iposets
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How can we analyze those posets ?

We can define some operations to classify them (>, ®, ...).
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How can we analyze those posets ?

We can define some operations to classify them (>, ®, ...).
Here are some classes of posets:

e Series-Parallel posets (sp-posets)
¢ Gluing-Parallel posets (gp-posets)
¢ Gluing-Parallel-Symmetric posets (gps-posets)
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Parallel composition LRE

The parallel composition P ® Q is defined as the coproduct P LI Q as carrier set
together with the order defined as:

(P7’)<(q7l) — ’:I/\P <iq, Iv]E{LZ}

Another way to consider this definition is the following:
With:
[m] = (P) < [mi], [n2] — (Q) < [m]

P ® Qis defined by:

[N+ n2] = [P® Q] < [my+ my]
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Examples of parallel compositions

The parallel composition is not commutative! I
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Examples of parallel compositions

The parallel composition is not commutative! I

Case 1:

1 QIy——0 =
2)——0
Case 2:
1»——0
1—0 Q@1 =

2)
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Gluing composition

The gluing composition P > Q of two iposets
] =5 (P.<1) = [m]

and
[n2] =2 (@, <2) <% [my]
is defined as:

psq - ) (PUA/K() =s()
(<1U < U (P /tim]) x (Q / s2[m]))*
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Examples of gluing compositions

The gluing composition is defined only if my = n;! The number of starting interfaces of
P must be equal to the number of terminating interfaces of Q.
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GPS-iposets

An iposet is gluing-parallel-symmetric (gps) if it is empty or can be obtained from
the elements:

® 5

® «

°*

® TN

L where m = (s,[2],t) : 2 — 2 is the non-trivial symmetry on 2.

by finitely many applications of > and ®.
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Examples of non GPS-iposets

O——=0 O——>0O O——=>0O
N\l = O0——=O0 M = O0——=O0 W - o ©

14/27



Conjecture




Conjecture

A poset is gps <= it does not contain one the five forbidden structures

0——>0 o——>0 0o——0
N = 040 M= 040 W = o=—o
040 040 o—»o/
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First way

Proposition

A poset is gps = it does not contain one of the forbidden five as an induced
substructure.

Main proof argument

NN, M, W, 3C, LN do not admit non-trivial gluing decompositions.
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Work




Possible paths

e Study the interval representations of the forbidden five (Quentin)
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Possible paths

e Study the interval representations of the forbidden five (Quentin)

® Generate some posets based on some predicates and observe what we get when
we try to add a new event
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Posets construction

¢ We identified 3 basic structures on which we could be able to rely to generate
posets.

O0——>0 o O0——>0——0
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Example of posets construction

layer 1
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Example of posets construction

o = o——>0 =— Forbidden structure :NN

(@] (@] @) o O--->0
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Zigzag distance

Let P be a poset. Let x, y be two points such that x,y € P.
The zigzag distance d,;(x, y) is defined as the length n of a shortest zigzag x.

X=Xo<X2>X3< ..Xp=Y
Xo

X2

X3—>X4
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Beginning of the proof

® Let P be a poset which is not GPS.
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Beginning of the proof

Let P be a poset which is not GPS.

P is ®-indecomposable and >-indecomposable.

Let a be a right-extreme element.

Let b be a maximal element which is not right-extreme.

if dz(a,b) > 2, thend,(a,b) > 4

because of maximality P contains an induced W.

if dzz(a,b) < 2, then d;(a,b) = 2, hencethereisz € Py, for whicha > z < b.
Letm € Psuchthatm < aandm « b.

Letk € Psuchthatk < a,k # a,k # b.

m b 24/27
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Conclusion

1M 2
GPS-iposets: generated from o, »,¢, '™' | 2™ using>and ®

For now, 5 forbidden substructures of 6 points are known

We explored several paths to deal with the proof of the conjecture

Unfortunately, for the time being the proof is still uncomplete

25/27



Acknowledgements

Quentin HAY-KERGROHENN
Uli FAHRENBERG

Hugo BAZILLE

Krzysztof ZIEMIANSKI

26/27



References

[§ Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemianski.
Posets with interfaces as a model for concurrency, 2022.

[ Olavi Aikas, Uli Fahrenberg, Christian Johansen, and Krzysztof Ziemianski.
Generating posets with interfaces, 2022.

27/27



	Introduction
	Motivation
	Posets
	Iposets
	Operations
	GPS-iposets

	Conjecture
	Work
	Conclusion

